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Abstract— In this paper, we consider optimal distributed
scheduling of real-time traffic with hard deadlines in an ad
hoc wireless network. Specifically, we assume the links share
a common wireless channel and interference is represented
by a conflict graph. Periodic single-hop traffic is considered
where packets arrive at the beginning of each frame and
need to be delivered by the end of the frame (otherwise,
packets will be dropped). Each link is required to guarantee a
maximum allowable packet dropping rate. We show that the
real-time scheduling problem is combinatorial and tends to be
intractable as the network size increases. To solve the real-
time scheduling problem, we propose a frame-based carrier-
sense multiple access (CSMA) algorithm which is shown to be
asymptotically optimal. Moreover, it can be implemented in
a distributed manner with low complexity. Simulation results
also demonstrate the ability of our algorithm to meet the QoS
requirements on deadlines.

I. INTRODUCTION

Scheduling real-time traffic over wireless links is an
important task to provide quality of service (QoS) guar-
antees for mission-critical systems. Consider the scenario
where vehicles are platooning on highways. Vehicles in each
platoon exchange up-to-date driving status (i.e., position,
speed, deceleration, etc.) wirelessly to maintain a small inter-
vehicle distances for fuel economy. The data of driving status
needs to be delivered in a timely manner, otherwise the data
becomes outdated, which could lead to disturbance in the
platooning system.

Scheduling deadline-constrained packets to guarantee a
minimum portion of packets to be delivered on time in
wireless networks has attracted substantial research interest,
driven by real-time applications. Existing research has de-
veloped approximate solutions (e.g., [1]), optimal central-
ized solutions ([2] and [3]), and performance guarantees
of sub-optimal algorithms ([4] and [5]). In [2] and [3],
an optimization framework is proposed for ad hoc wireless
networks with single-hop traffic, but the solutions obtained
from this framework are centralized. In [4] and [5], the
performance (i.e., efficiency ratio) of a sub-optimal low-
complexity algorithm (proposed in [6]) is analyzed for ad
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hoc wireless networks under general interference, channel,
and packet arrival models. Existing optimal distributed al-
gorithms are only designed for fully connected networks
(downlink [6] and peer-to-peer [7]) due to the significantly
reduced scheduling decision space, i.e., only one link can be
scheduled for data transmission at a time.

In this paper, we consider the problem of scheduling real-
time traffic with hard deadlines in an ad hoc wireless network
where the interference is represented by a conflict graph.
Specifically, we consider the case where all links share one
communication channel and channel access time is in frames,
each of which consists of a fixed number of successive time-
slots of equal duration. For each link, packets periodically
arrive at the beginning of each frame and need to be delivered
by the end of the frame (otherwise, the packets will be
dropped). Each link needs to guarantee a maximum allowable
packet dropping rate. The resulting real-time scheduling
problem is combinatorial and tends to be intractable as the
network size goes large [8]. The objective of this paper is
to design an optimal algorithm which solves the underlying
combinatorial optimization problem, and most importantly is
amenable to low-complexity distributed implementation.

The main contributions of this paper are highlighted as
follows.
• We show that the considered real-time scheduling prob-

lem is essentially a Maximum Weighted k-independent
set (MWKIS) problem, where k independent sets are
not necessarily disjoint (see discussions in Section III).
For a fully connected network, a greedy algorithm
that chooses the maximum weighted independent set
(MWIS) at each time slot sequentially in a frame is op-
timal. However, we show that such a greedy algorithm
is not an optimal solution to the MWKIS problem for
ad hoc networks.

• We propose a frame-based carrier-sense multiple access
(CSMA) algorithm for scheduling deadline-constrained
packets. We show that by utilizing a time-reversible
Markov chain the proposed algorithm is asymptotically
optimal. Moreover, the frame-based CSMA is indeed
low-complexity and can be implemented in a distributed
manner. We note that designing a CSMA algorithm
for the MWKIS problem is considerable harder than
the corresponding result for the MWIS problem which
has been studied previously. In particular, one of the
main contributions of the paper is to design a CSMA
algorithm which operates with a small state space,
whereas a naive application of the traditional CSMA
algorithm for the MWIS to the MWKIS problem will



result in a state space that is exponentially large in the
number of arrivals per frame.

The remainder of the paper is organized as follows.
Section II introduces the system model. Section III presents
the optimal solution and shows that the greedy algorithm is
not optimal generally. In Section IV, we propose the frame-
based CSMA which is feasibility-optimal. Simulation results
are given in Section V. Section VI provides concluding
remarks.

II. SYSTEM MODEL

We consider scheduling deadline-constrained packets in an
ad hoc wireless network consisting of a set of links, denoted
by L = {1, 2, · · · , L}, sharing a common communication
channel. Assume that time is slotted and each consecutive
T time slots are grouped into one frame. Let Al[k] denote
the number of packet arrivals at link l ∈ L in frame k. We
assume that packets arrive at each link only at the beginning
of each frame and there is no packet arrival during the
frame. Each packet has to be delivered by the end of the
frame; otherwise, it will be dropped. It is required that each
link guarantees a maximum allowable packet dropping rate
γl ∈ (0, 1) due to missing deadlines. Particularly, in this
paper, we consider periodic traffic flow, i.e., Al[k] = Al > 0
over all frames. Denote A =

[
A1, A2, · · · , AL

]
and Γ =[

γ1, γ2, · · · , γL
]
.

Since nearby links cannot be scheduled at the same time
due to interference, scheduling is required to determine the
subset of links that should transmit at each time slot. A
feasible schedule is a set of links that can be scheduled
simultaneously for transmitting packets without interfering
with each other. In this paper, we use a conflict graph to
model interference such that vertices of the interference
graph represent wireless links and any two vertices are
connected by an edge if and only if the two vertices cannot
be scheduled at the same time. Under the interference
graph model, finding a feasible schedule in the network is
equivalent to finding an independent set in the corresponding
conflict graph.

Denote by S[k] =
(
Slt[k]

)
, l ∈ L, t ∈ {1, 2, · · · , T} =

T , Slt[k] ∈ {0, 1}, a global schedule (L× T matrix) for all
links and time slots in frame k. Specifically, Slt[k] = 1 if link
l is scheduled at time slot t, and Slt[k] = 0 otherwise. We
further assume that if scheduled, each link can only transmit
one packet at a time slot1. The set of all possible globe
schedules is denoted by S, i.e., S[k] ∈ S,∀k. It is easy to
verify that for any element S ∈ S , it needs to satisfy the
following constraints: (i)

∑T
t=1 Slt ≤ Al,∀l ∈ L; and (ii)

for any time slot t, the set {l : Slt = 1,∀l ∈ L} is a feasible
schedule (an independent set). For convenience, we further
denote S[k] by {S·t[k]} and {Sl·[k]}, i.e., in the form of

1This assumption does not imply that channel conditions remain un-
changed. Different modulation and coding schemes can be applied to
combating channel fluctuation. What we really assume here is that each
link is capable of transmitting at least one packet successfully at a time slot
by using appropriate modulation and coding schemes; however, each link
only transmits one packet if scheduled.

column vectors and row vectors respectively. The objective
of real-time scheduling in our setting is to find {S[k]}k≥1
such that for each link the long-term time-average packet
dropping rate due to missing deadlines is no more than the
maximum allowable packet dropping rate.

III. OPTIMAL GLOBAL SCHEDULE

We present an optimal centralized scheduling policy in this
section, based on which we design the optimal distributed
algorithm. A virtual queue technique in [9] can be used to
obtain a schedule {S∗[k]}k≥1 which is optimal in the sense
the requirement on packet dropping rate is fulfilled for all
links.

Assume that each link l maintains a virtual queue to keep
track of the number of dropped packets. Let Vl[k] denote the
queue length at the beginning of frame k. The dynamics of
virtual queue is given by

Vl[k + 1] =
(
Vl[k] +Dl[k]−Bl[k]

)+
, (1)

where (·)+ = max{·, 0}, and Dl[k] ≥ 0 is the increase of
the virtual queue and is equal to the number of dropped
packets in frame k, i.e., Dl[k] = Al −

∑T
t=1 Slt[k]; and

the decrease of the virtual queue is Bl[k] with mean γlAl,
and Bl[k] < Bmax for some Bmax <∞. The requirements
on packet dropping rates will be satisfied for all links if
all virtual queues are mean rate stable (see [9] for details).
According to [7], if there is a scheduling policy that can
make all virtual queues mean rate stable, then there always
exist non-negative numbers α(A,Γ;S) such that∑

S∈S

α(A,Γ;S) = 1, (2)

Al(1− γl) <
∑
S∈S

α(A,Γ;S)

T∑
t=1

Slt,∀l. (3)

The maximal satisfiable region is defined as follows:

C(A,Γ) =
{
(A,Γ) :∃α(A,Γ;S) ≥ 0,

such that (2) and (3) hold
}
.

(4)

Definition 1: A scheduling algorithm is said to be
feasibility-optimal if, for any (A,Γ) ∈ C(A,Γ), it makes
all virtual queues mean rate stable.

Remark: Note that the feasibility-optimal in the context of
virtual queues is equivalent to the throughput-optimal in the
context of data queues.

By applying the dual decomposition [10], an optimal
centralized solution can be obtained as follows.

Algorithm 1 Optimal Centralized Algorithm
For any (A,Γ) ∈ C(A,Γ), the global schedule in each frame
k is given by

S∗[k] ∈ argmax
S∈S

L∑
l=1

f(Vl[k])min

{ T∑
t=1

Slt[k], Al

}
. (5)



In (5), the choice of weight function f(·) facilitates flexible
implementations. f(·) can be an increasing function given in
[11]. For example, f(·) = log log(·). We omit the proof of
optimality of (5) here since it is almost the same as in [7].

It is well known that MaxWeight scheduling [12] is
throughput-optimal for wireless networks with single-hop
traffic, which essentially chooses the MWIS for transmission.
Different from MWIS, (5) is an MWKIS problem, i.e.,
finding k independent sets (not necessarily disjoint) such that
the total weight of their union is maximum. Both MWIS
and MWKIS are combinatorial in nature and difficult to
solve. Motivated by queue-length-based CSMA ([13], [14])
for solving the MWIS problem asymptotically, it is natural
to consider a CSMA-based scheduling algorithm to solve
the MWKIS problem. Further, if a greedy algorithm exists,
which optimally solves MWKIS by solving MWIS sequen-
tially at each time slot, we may directly apply existing CSMA
algorithms for scheduling deadline-constrained packets.

To find a greedy algorithm, based on Lemma 5 in [7], we
first obtain a cost-to-go form of dynamic programming for
the optimal scheduler (5): at each time slot t ∈ T in frame
k, given Vl[k] for all l ∈ L and {S·τ [k]}t−1τ=1, S∗·t[k] is given
by

S∗·t[k] ∈ argmax
S·t

( ∑
l∈S·t

f(Vl[k])

(
Al −

t−1∑
j=1

Slj [k]

)+

+ max
{S·τ [k]}Tτ=t+1

T∑
i=t+1

L∑
l′=1

f(Vl′ [k])

·
(
Al′ −

i−1∑
j=1

Sl′j [k]

)+

Sl′i[k]

)
.

(6)

It can be seen that the optimal solution to (6) at each
time slot depends on the future time slot. Moreover, the
total weight of an independent set at a time slot may change
depending on MWIS selection at previous time slots. For
a fully connected network, a greedy algorithm of selecting
MWIS at each time slot, which is given by

SG·t [k] ∈ argmax
S·t

∑
l∈S·t

f(Vl[k])

(
Al−

t−1∑
j=1

Slj [k]

)+

, ∀t ∈ T .

(7)
is optimal to (5) and (6), and can be implemented distribut-
edly [3], [7]. However, such a greedy algorithm is not an
optimal solution to (5) and (6) for ad hoc networks. We
demonstrate this by giving a counter example to show that
‘greedy does not always stay ahead’. Consider a conflict
graph shown in Fig. 1. We set T = 2, and Al = 1
for all links. Clearly, {l1, l3}, {l1, l5}, {l2, l4} and {l3, l4}
are maximal feasible schedules. We simply let the weights
associated to each link satisfy the following: V1[k] > V3[k] >
V4[k] > V5[k] > V2[k]. Then, by the greedy algorithm,
{l1, l3} is chosen for slot 1 and {l2, l4} is chosen for slot
2, which yields a global schedule

{
{l1, l3}, {l2, l4}

}
with a

total weight of V1[k] + V3[k] + V2[k] + V4[k]. Since at most

1 2

4

3

5

Fig. 1. Conflict graph of a 5-link network

four different links can be scheduled in a frame, the optimal
global schedule is

{
{l1, l5}, {l3, l4}

}
with a total weight of

V1[k]+V5[k]+V3[k]+V4[k]. Therefore, the greedy algorithm
is not optimal to the MWKIS problem.

IV. DISTRIBUTED ALGORITHM

In this section, we propose a low-complexity CSMA-like
distributed algorithm for scheduling deadline-constrained
packets. We prove that our proposed algorithm solves the
MWKIS problem asymptotically, and it supports the entire
maximal satisfiable region, i.e., it is feasibility-optimal.

The idea is to construct a time-reversible Markov chain
of global schedules, where the state space is S, with an
underlying stationary distribution that generates a global
schedule asymptotically approaching MWKIS. The queue-
length-based CSMA also resorts to a time-reversible Markov
chain for solving MWIS. However, it is not straightforward
for solving MWKIS due to the constraint that the number of
scheduled time slots should be no more than the number of
packet arrivals in a frame for each link.

We propose the frame-based CSMA algorithm as follows
to distributedly generate global schedule S[k] in frame k
based on S[k − 1]. A small control slot at the beginning of
each frame is required to run the scheduling algorithm.

In Algorithm 2, a decision schedule M[k] is an indepen-
dent set of non-interfering links in frame k. M denotes
the set of all decision schedules. Refer to [14] for details
of how to generate a decision schedule in a distributed
manner. Fl[t] indicates whether link l is allowed to change
transmission status (i.e, transmit or not transmit) at time slot
t. Xl denotes the number of time slots that are allowed to
change transmission status in frame k based on the previous
frame k− 1. Ul denotes the maximum number of time slots
that will be scheduled to link l depending on Xl and Al. Wl

is the number of time slots scheduled to link l in frame k.
Proposition 1: {S[k]}k≥1 is an irreducible, aperiodic, and

finite-state Markov chain. The stationary distribution of
{S[k]}k≥1 is given by

π(S) =
1

Z
exp

( L∑
l=1

T∑
t=1

Sltf(Vl[k])

)

=
1

Z
exp

( L∑
l=1

Yl(S)f(Vl[k])

)
, ∀S ∈ S,

(8)



Algorithm 2 Frame-based CSMA (in control slot of frame
k)
1. Choose a decision schedule M[k] randomly from M
2. ∀l 6∈M[k], Slt[k] = Slt[k − 1],∀t ∈ T
3. ∀l ∈M[k],
Fl[t] = 0,∀t ∈ T
Let Nl be the set of links interfering with l
for t = 1 to T do

if ∃l′ ∈ Nl such that Sl′t[k − 1] = 1 then
Slt[k] = Slt[k − 1]

else
Fl[t] = 1

end if
end for
Xl(S[k − 1]) ,

∑T
t=1 Fl[t]

Ul(S[k − 1]) , min(Xl(S[k − 1]), Al)
Let h(x, y, z) ,

(
x
y

)
eyz , x, y ∈ N, y ≤ x, and z ≥ 0

Wl randomly takes integer values in [0, Ul(S[k−1])] with
probability distribution

P (Wl = w) =
h(Xl(S[k − 1]), w, f(Vl[k]))∑Ul(S[k−1])

x=0 h(Xl(S[k − 1]), x, f(Vl[k]))
,

w = 0, 1, 2, · · · , Ul(S[k− 1])
Randomly and uniformly select Wl distinct slot indices in
{t : t ∈ T , Fl[t] = 1}, i.e., t1, t2, · · · , tWl

Set Slti [k] = 1 for all i = 1, 2, · · · ,Wl

4. All links transmit according to S[k] = (Slt[k]) in frame k

where Yl(S[k]) ,
∑T
t=1 Slt[k] (i.e., the number of time slots

scheduled to link l in frame k) and Z is a normalization
factor, i.e., Z =

∑
S∈S exp

(∑L
l=1 Yl(S)f(Vl[k])

)
.

Proof: Under Algorithm 2, {S[k]}k≥1 is a discrete-
time Markov chain since for any k ≥ 1, global schedule S[k]
only depends on S[k−1] and the decision schedule M[k]. We
can verify that {S[k]}k≥1 is irreducible since every state can
communicate with state S = 0, and is aperiodic since state
0 is aperiodic. Therefore, {S[k]}k≥1 has a unique stationary
distribution [10]. Next, we will show that if a global schedule
S can make a transition to another global schedule S′, the
stationary distribution given in (8) indeed satisfies the local
balance equation. A transition from state S to state S′ is
possible if there exists a decision schedule M ∈ M such
that it can make this transition happen. A procedure to find
such a decision schedule M is given in Procedure 3.

Note that Procedure 3 is for the purpose of proving
Proposition 1. Denote byMS→S′ the set of all M generated
by this procedure. It is easy to verify the following: (i) there
does not exist M 6∈ MS→S′ that can make a transition
from S to S′; (ii) clearly, MS→S′ = MS′→S; and (iii)
Xl(S) = Xl(S

′) if l ∈ M since ∀l′ ∈ Nl, Sl′ = S′l′ .
Note that Xl(S) is the number of slots which are allowed
to change the transmission state if link l is in a decision
schedule.

There are two cases to make a transition from S to S′.

Procedure 3 Find a decision schedule for S→ S′

Initialization: M = ∅
if Sl· 6= S′l·,∀l ∈ L then

Add l to M
end if
if (∪l∈MNl) ∩M 6= ∅ then

return M = ∅
end if
R , L\ ∪l∈M (Nl ∪ {l})
l ∈ R can be in M arbitrarily as long as any l′ ∈ R∩Nl
is not added to M
return M {If M = ∅, S cannot transit to S′ directly}

1) For l ∈M, Sl transits to S′l with probability

1(
Xl(S)
Yl(S′)

) h(Xl(S), Yl(S
′), f(Vl[k]))∑Ul(S)

x=0 h(Xl(S), x, f(Vl[k]))
. (9)

2) For l ∈ L\M, it has to keep the transmission status for
the entire frame, which occurs with probability one.

Let q(M) denote the arbitrary probability that the decision
schedule M is chosen, and

∑
M∈M q(M) = 1. Next, we

plug in (8) and check the local balance equation for a
transition from S to S′:

π(S)P (S→ S′)

= π(S)
∑

M∈MS→S′

q(M)
∏
l∈M

P (Sl· → S′l·)

=
1

Z

∏
l 6∈M

eYl(S)f(Vl[k])
∑

M∈MS→S′

q(M)

∏
l∈M

P (Sl· → S′l·)e
Yl(S)f(Vl[k])

=
1

Z

∏
l 6∈M

eYl(S)f(Vl[k])
∑

M∈MS→S′

q(M)

∏
l∈M

1(
Xl(S)
Yl(S′)

) (
Xl(S)
Yl(S′)

)
eYl(S

′)f(Vl[k])∑Ul(S)
x=0

(
Xl(S)
x

)
exf(Vl[k])

eYl(S)f(Vl[k])

=
1

Z

∏
l 6∈M

eYl(S)f(Vl[k])
∑

M∈MS→S′

q(M)

∏
l∈M

e(Yl(S
′)+Yl(S))f(Vl[k])∑Ul(S)

x=0

(
Xl(S)
x

)
exf(Vl[k])

= π(S′)P (S′ → S),
(10)

where the first equality is due to the fact that each link l ∈M
makes the transition from S to S′ independently from each
other, and the last equality is due to the fact that Xl(S) =
Xl(S

′) and Ul(S) = Ul(S
′) when making the transition from

S′ to S.
Remark: Note that (Slt[k] : l ∈ M[k], t ∈ T , Fl[t] = 1)

is a discrete-time Markov Chain conditional on S[k − 1],
for all k. Fig. 2 shows an example of how this Markov
chain transits between states. Since the link weight may
change over time according to the virtual queue length, the
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Fig. 2. Transitions between states {00, 01, 10} for link l ∈ M, given
Al = 1, Xl(S[k − 1]) = 2 (hence Ul(S[k − 1]) = 1).

underlying Markov chain of S[k] is assumed to converge to
its steady state before the link weight changes. This is the
so-called timescale separation assumption in establishing the
optimality of the queue-length-based CSMA. Although by
appropriately choosing the weight function f the timescale
separation assumption can be relaxed [11], we still rely on
this assumption to establish the optimality of the frame-based
CSMA scheduling for simplification.

Theorem 1: Frame-based CSMA algorithm is asymptoti-
cally optimal to (5) and (6), i.e., given any ε > 0, δ < 1,
there exists a constant C > 0, whenever ζ(S∗[k]) > C in
frame k, we have

P

{
ζ(S[k]) > (1− ε)ζ(S∗[k])

}
> 1− δ, (11)

where ζ(S[k]) =
∑L
l=1 Yl(S[k])f(Vl[k]) is the

weight associated with schedule S[k] and ζ(S∗[k]) =
maxS[k]∈S ζ(S[k]). Then, the frame-based CSMA algorithm
is feasibility-optimal.

Proof: We denote I the set of schedules whose weights
are less than (1− ε)ζ(S∗[k]), i.e.,

I =

{
S[k] ∈ S : ζ(S[k]) < (1− ε)ζ(S∗[k])

}
. (12)

From Proposition 1, we have

P

{
ζ(S[k]) < (1− ε)ζ(S∗[k])

}
=
∑

S[k]∈I

π(S[k]) =
∑

S[k]∈I

1

Z
exp

(
ζ(S[k])

)

≤ |I|
Z

exp

(
(1− ε)ζ(S∗[k])

)
< |I| exp

(
− εζ(S∗[k])

)
< 2LT exp

(
− εζ(S∗[k])

)
,

where the last two inequities are due to the fact that
exp(ζ(S∗[k])) < Z and |I| < 2LT , respectively. Clearly,
if we choose C = 1

ε (LT log 2 + log 1
δ ), and whenever
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Fig. 3. Conflict graph of the simulated 10-link network
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Fig. 4. Average virtual queue length vs 1 − γ for the fully connected
network

ζ(S∗[k]) > C, we will have (11). Since the feasibility
optimality for virtual queues is equivalent to throughput
optimality for data queues, according to Theorem 1 in [14],
the frame-based CSMA algorithm is feasibility-optimal.

V. SIMULATION RESULTS

In this section, we present two sets of simulations to
compare the frame-based CSMA with a slot-based CSMA,
which performs as the vanilla queue-length-based CSMA at
each time slot with the weights given in (7).

In the first simulation, we consider a fully connected
network (i.e., the conflict graph of the network is a complete
graph) with T = 15, L = 10, and Al = 2, γl = γ for all l.
The simulation has been run for 107 frames. Since at each
time slot, only one link can be scheduled for transmission,
at most 15 packets can be transmitted within a frame.
Therefore, we have γ > 0.25. In the simulation, we examine
the average virtual queue length with respect to 1−γ, which
can be interpreted as the QoS requirement on packet delivery
ratio. We gradually push the network traffic load to the
boundary of the maximal satisfiable region by increasing
1 − γ. The reason that we are particularly interested in the
average virtual queue length is that the average virtual queue
length is a good indicator of our ability to meet the QoS
requirements on deadlines. A larger average virtual queue
length indicates a relatively limited capability to meet the
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Fig. 5. Average virtual queue length vs 1− γ for the 10-link network

requirement. We compare both algorithms in terms of the
virtual queue length averaged over all frames and all links.
As shown in Fig. 4, the frame-based CSMA performs much
better than the slot-based CSMA. The average virtual queue
length under the slot-based CSMA goes very large even for
γ = 0.3.

In the second simulation, we consider a 10-link network
whose conflict graph is shown in Fig. 3. Different from fully
connected networks, more than one link can be scheduled at
a time slot. For example, link 1, 3, 5 can transmit at the same
time. In this case, the maximal satisfiable region is difficult
to characterize due to inhomogeneous degrees of vertices in
the conflict graph. We set T = 5, and Al = 2, γl = γ for
all l. In this simulation, we also compare both algorithms
in terms of the average virtual queue length. Similarly,
as shown in Fig. 5, the frame-based CSMA outperforms
the standard CSMA. Moreover, in both simulations, with a
weight function f of log(·), it is easier for the frame-based
algorithm to achieve the maximal satisfiable region. This
is because the scheduling algorithm reacts faster on virtual
queue length changes with f = log(·). Fig. 6 shows the
actual packet dropping rate with respect to QoS requirement
γ under both algorithms. It can be seen that the proposed
frame-based CSMA is capable of delivering the required
minimum portion of real-time traffic. While the slot-based
CSMA algorithm performs much worse and cannot provide
any QoS guarantees.

VI. CONCLUSION

In this paper, we considered the problem of scheduling
real-time traffic with hard deadlines in a distributed manner
for ad hoc wireless networks. We have shown that the real-
time scheduling problem is essentially an MWKIS problem
and an greedy algorithm of solving an MWIS at each time
slot is not an optimal solution. We then proposed a frame-
base CSMA algorithm which is feasibility-optimal and can
be implemented distributedly. Simulations have been done to
compare our algorithm to existing algorithms. In the future,
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Fig. 6. Actual packet dropping rate for the 10-link network

we will consider the channel effect explicitly and more
general traffic patterns in optimal algorithm design.
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