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Abstract— We study the question of routing for minimum
average drop rate over unreliable servers that are prone to
random buffer failures. Such a generic setup can be used to
model scenarios of interest in unreliable data or manufacturing
networks. Interestingly, we first reveal that the traditional Join-
the-Shortest-Queue (JSQ) or optimal Randomized Splitting
(RS) strategies are consistently outperformed by the Constant
Splitting Rule (CSR) where the incoming traffic is split with a
constant fraction towards the available servers.

This finding motivates us to obtain the optimal splitting
fraction under CSR. However, the objective function to be
minimized depends on the mean queue length of the servers,
whose closed-form expression is not available and often in-
tractable for general arrival and service processes. Thus, we use
non-derivative methods to solve this optimization problem by
approximately evaluating the objective value at each iteration.
To that end, we explicitly characterize the approximation error
by utilizing the regenerating nature of unreliable buffers. By
adaptively controlling the precision of this approximation, we
show that our proposed algorithm converges to an optimal
splitting decision in the almost sure sense.

I. INTRODUCTION

The design and analysis of routing decisions for unreliable

networks has received a lot of research interest [16][11].

In this work, we study the problem of efficient routing for

forwarding the arrivals to parallel unreliable queues, where

all data in a queue will be dropped when a failure happens.

Our goal is to design an efficient routing policy which

has a small average drop rate under any arrival rate. One

application of this problem in the field of manufacturing

systems is the wafer distribution to the parallel production

pipelines. If the power of one production pipeline stops

even for 0.07s, all wafers in that pipeline break down.

Similarly, in data networks serving delay-sensitive traffic,

any unexpected setback in the service causes the dropping

of all awaiting packets. In both scenarios, we need to make

intelligent routing decisions to distribute the incoming traffic

to unreliable servers, which is the focus of this work.

Join the Shortest Queue (JSQ) policy [18], where all

arrivals are forwarded to the shortest queue at each slot, has

been widely used as a basic routing mechanism in wired

or wireless communication networks. When all queues are

reliable (e.g., no failure happens), the JSQ policy is shown

to have minimum delay in the symmetric case [14], or under

heavy-traffic [5][4], and exhibits good performance in the

general cases. However, when there are some unreliable
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queues, the JSQ policy may perform poorly. To see this,

consider a system consisting of one reliable queue and one

totally unreliable queue (e.g., failure happens all the time),

all arrivals are routed to the unreliable queue under the JSQ

policy and thus the average drop rate is 100%. In [11], the

authors studied the Randomized Splitting (RS) policy that

forwards all arrivals to a queue with a certain probability

in the similar scenario. They obtained the optimal RS for

the Poisson arrivals and exponential services. Yet, to the

best of our knowledge, there does not exist a work that

systematically treats this problem under general arrival and

service processes and proposes an efficient routing policy.

In this work, we propose a constant splitting rule (CSR)

that forwards a constant fraction of incoming traffic to each

of the available (unreliable) servers. We show that the opti-

mal CSR minimizes the average drop rate among all routing

policies when both arrivals and services are deterministic.

For the general arrival and service processes, the optimal

CSR outperforms, based on numerical investigations, the

well-known policies, e.g., JSQ and RS. To obtain the optimal

splitting fraction, we need to solve the optimization problem

with the objective function depending on the mean queue

length. Since the formula for the mean queue length is hard

to obtain under general arrival and service processes, it is

difficult to get the exact expression for the objective function,

let alone its derivative. Hence, it is almost impossible to use

first or higher order numerical optimization methods to solve

this optimization problem and thus we use non-derivative

methods to get the optimal splitting fraction.

The most popular non-derivative method includes Pat-

terned Search (PS) algorithms [12][6][7], which construct

the set of points based on the step size varying according

to a certain rule: when no improvement point is obtained on

this set in the current iteration, then the step size reduces and

the process is repeated. However, all these works require the

exact functional value for the given point, which can not be

achieved in practice. In [13], the authors presented a modified

PS algorithm which adaptively adjusts the precision of the

functional evaluations for the deterministic system where the

accuracy of the functional value improves by increasing the

evaluation time.

In our setup, the functional evaluation includes estimating

the mean queue length, which can be approximated by the

time average queue length. However, the approximate error is

in the probabilistic form and thus it is unclear how to control

the precision to guarantee the convergence to the stationary

point almost surely. The earlier works [15][8] attacked this



problem when the objective function is continuously differ-

entiable, which is not the case in our setup. We generalized

the previous results to the case when the objective function

is locally Lipschitz continuous. The following items list

our main contributions along with references on where they

appear in the text:

• In Section III, we reveal the advantage of optimal CSR

over JSQ or RS in the presence of buffer breakdowns, both by

showing its optimality under deterministic processes and also

by providing numerical results under general processes. This

motivates us to obtain the optimal constant splitting fraction

for the general stochastic system by using the aforementioned

PS algorithm.

• In Section IV, we first characterize the probabilistic error

between the approximate value and the true objective value.

Then, we present the PS algorithm that adaptively adjusts

the probabilistic error in each iteration, which is shown to

guarantee the convergence to the optimal point almost surely.

II. SYSTEM MODEL AND PROBLEM STATEMENT

We consider the classic system consisting of a router and

L servers with associated unreliable queues (see Fig. 1). At

Router
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Fig. 1: System model for routing over unreliable queues

each time slot, the router needs to determine how to forward

the arrivals. We assume that all data in the queue will be

dropped if a failure happens. Let Fl[t] denote whether a

failure happens at queue l at slot t, where Fl[t] = 1 if a

failure happens and Fl[t] = 0 otherwise. We assume that

Fl[t], ∀l, t, are independently distributed over queues and

identically distributed over time, with pl := Pr{Fl[t] =
1} > 0, ∀l. Let Ql[t] be the queue length of queue l at

the beginning of slot t. Let A[t] denote the amount of

data arriving at router in slot t with E[A[t]] = λ, and

E[A2[t]] ≤ ν for some ν < ∞. We assume that A[t], ∀t,
are identically distributed over time. Let Sl[t] denote the

maximum amount of data that can be served by server l at

slot t with E[Sl[t]] = µl and E[S2
l [t]] ≤ κl for some κl <∞.

We assume that Sl[t], ∀l, t, are independently distributed over

queues and identically distributed over time. If the router

forwards Al[t] amount of data to queue l at slot t, then the

evolution of queue l is shown as follows 1:

Ql[t + 1] = ((Ql[t] + Al[t])(1 − Fl[t])− Sl[t])
+ , ∀l, (1)

where (x)+ := max{x, 0}. Our goal is to find the routing

policy {(Al[t])
L
l=1}t≥0 that minimizes the average drop rate.

At each slot t, the amount of dropped data at queue l is

equal to (Ql[t] + Al[t])Fl[t] and thus its expected value is

plE[Ql[t] + Al[t]]. Hence, our goal is to solve the following

stochastic control problem (SCP):

Definition 1: (SCP)

Minimize
{(Al[t])L

l=1
}t≥0

lim sup
T→∞

1

T

T−1
∑

t=0

L
∑

l=1

plE [Ql[t] + Al[t]](2)

Subject to

L
∑

l=1

Al[t] = A[t], ∀t. (3)

It is very tough to solve SCP directly. Instead, we consider

the following efficient routing policy.

Definition 2: (Constant Splitting Rule (CSR)) Forward

al fraction of data to queue l, ∀l = 1, ..., L − 1 and the

remaining aL := 1−
∑L−1

l=1 al fraction of data to queue L at

each time slot, where al, ∀l = 1, ..., L− 1, are non-negative

and satisfy
∑L−1

l=1 al ≤ 1.

In Section III, we will show that the optimal CSR is an op-

timal routing policy to the above SCP problem for the system

with symmetric failure probabilities under constant arrivals

and constant services. Moreover, through simulations, we can

observe that the optimal CSR outperforms the well-known

routing policies, e.g., JSQ and optimal RS. Thus, our main

task is to obtain the optimal CSR policy in the rest of the

paper.

Since the mean queue length is a convex function of the

arrival rate for a single queue (by Proposition 4 in Section

IV) and the mean arrival rate for queue l is alλ, let fl(alλ)
be the mean queue length for queue l. Let a , (al)

L−1
l=1 .

To get the optimal CSR, we need to solve the following

optimization problem:

Minimize
a

g(a) :=

L
∑

l=1

plfl(alλ) +

L
∑

l=1

plalλ (4)

subject to

L−1
∑

l=1

al ≤ 1 (5)

al ≥ 0, ∀l = 1, 2, ..., L− 1. (6)

It is difficult to get the exact expression for g(a) under

the general arrival and service processes, let alone to obtain

its derivative. Thus, it is almost impossible to use first or

higher order numerical optimization methods to solve this

optimization problem. Hence, the only option for us is to use

non-derivative methods, which only evaluates the functional

value at each iteration. However, it is worth emphasizing

that it is also hard to get the exact mean queue length

for general arrival and service processes. Thus, we use the

1This particular evolution assumes arrivals into queues before failures.
Other variations would not change the essential features of the subsequent
discussion.



time average queue length to approximate the mean queue

length with the error characterized in the probabilistic form.

By controlling the probabilistic error in each iteration, the

proposed algorithm can guarantee almost sure convergence

to the optimal point.Next, we will show the optimality of

CSR in the deterministic system with symmetric non-zero

failure probabilities and point out its robustness in the general

stochastic system.

III. THE ADVANTAGE OF OPTIMAL CSR

In this section, we first show that the optimal CSR

minimizes the average drop rate among all routing policies

for the system with symmetric failure probabilities under

constant arrivals and services. Moreover, for general arrival

and service processes, we numerically observe that the

optimal CSR outperforms the well-known routing policies,

i.e., JSQ and optimal RS.

Lemma 1: For a single queue with constant arrival λ and

constant service µ under the non-zero failure probability p ∈
(0, 1), the mean queue length is 1−p

p
(λ− µ)+.

Proof: See our technical report [10] for the proof.

Remarks: Note that the mean queue length is not a continu-

ously differentiable function of the arrival rate.

Proposition 1: For the system consisting of L unreliable

queues with the constant service µl and same non-zero

failure probability p under the constant arrival λ, the optimal

CSR minimizes the average drop rate among all routing

policies.

Proof: Under the above setup, our goal (4) is equivalent

to minimizing

lim sup
T→∞

1

T

T
∑

t=1

L
∑

l=1

E[Ql[t]]. (7)

We prove this proposition by first establishing the fact that

under any routing policy, the term (7) in the original system

is lower bounded by that in a single queue with the failure

probability p under the constant arrival λ and constant service
∑L

l=1 µl. Then, we show that the optimal CSR can achieve

this lower bound and thus is optimal among all routing

policies.

Let Qe[t] be the queue length in the introduced single

queue at time t. In our technical report [10], we show that

there exists a random variable Q̄e with E[Q̄e] <∞ such that

limt→∞ E[Qe[t]] = E[Q̄e]. Hence, by Cesaro’s lemma, we

have

lim
T→∞

1

T

T−1
∑

t=0

E[Qe[t]] = E[Q̄e]. (8)

(1) If λ ≤
∑L

l=1 µl, then by Lemma 1, we have E[Q̄e] =
0. Thus, it is obvious that

lim
T→∞

1

T

T−1
∑

t=0

E[
L

∑

l=1

Ql[t]] ≥ lim sup
T→∞

1

T

T−1
∑

t=0

E[Qe[t]]. (9)

(2) If λ >
∑L

l=1 µl, by taking the expectation on both sides

of (1), we have

E[Ql[t + 1]] = (1− p)E[(Ql[t] + Al[t]− µl)
+], ∀l.

Then, we have

E

[

L
∑

l=1

Ql[t + 1]

]

= (1 − p)
L

∑

l=1

E[(Ql[t] + Al[t] − µl)
+]

≥ (1 − p)E

[

L
∑

l=1

Ql[t] + λ −
L

∑

l=1

µl

]

. (10)

On the other hand,

E[Qe[t + 1]] = (1− p)E[Qe[t] + λ−

L
∑

l=1

µl]. (11)

Thus, if
∑L

l=1 Ql[0] = Qe[0], then by combining

(10) and (11), we have E[
∑L

l=1 Ql[1]] ≥ E[Qe[1]]. If

E[
∑L

l=1 Ql[t]] ≥ E[Qe[t]], then we have

E

[

L
∑

l=1

Ql[t + 1]

]

≥ (1 − p)E

[

L
∑

l=1

Ql[t] + λ−

L
∑

l=1

µl

]

(by equation (10))

≥ (1 − p)E

[

Qe[t] + λ−

L
∑

l=1

µl

]

= E[Qe[t + 1]].

Thus, by induction, we have E

[

∑L
l=1 Ql[t]

]

≥

E[Qe[t]], ∀t and thus (9) still holds. By Lemma 1, we have

E[Q̄e] = 1−p
p

(λ−
∑L

l=1 µl)
+. Thus, we have

lim sup
T→∞

1

T

T
∑

t=0

L
∑

l=1

E [Ql[t]] ≥
1− p

p
(λ −

L
∑

l=1

µl)
+. (12)

This shows that the introduced single queue system is in fact

a lower bound to the original system in terms of (7).

Next, we will show that the optimal CSR can achieve

this lower bound. Since for CSR policy, the router for-

wards al fraction of arrivals to queue l at each slot, there

exists a random variable Q̄l with E[Q̄l] < ∞ such that

limt→∞ E[Ql[t]] = E[Q̄l]. Hence, by Cesaro’s lemma, we

have

lim
T→∞

1

T

T−1
∑

t=0

E[Ql[t]] = E[Q̄l]. (13)

By Lemma 1, we have E[Q̄l] = 1−p
p

(alλ− µl)
+. Thus, the

optimization problem (7) becomes

Minimize
(al)L

l=1

1− p

p

L
∑

l=1

(alλ− µl)
+ (14)

Subject to

L
∑

l=1

al = 1 (15)

al ≥ 0, ∀l = 1, ..., L. (16)



It is easy to see that if λ ≤
∑L

l=1 µl, then a∗
l = µl

∑

L
l=1

µl
, ∀l.

In this case, the optimal value is 0. If λ >
∑L

l=1 µl, then

a∗
l =

µl

λ
, ∀l = 1, ..., L− 1, a∗

L =
λ−

∑L−1
l=1 µl

λ
. (17)

In this case, the optimal value is 1−p
p

(λ−
∑L

l=1 µl), which

is exactly the lower bound in (12). Thus, the optimal CSR

is indeed optimal among all routing policies.

Next, we will show that the optimal CSR also outperforms

the well-known routing policies, i.e., JSQ and optimal RS

through simulations.

In the simulation, there are L = 2 unreliable queues. The

amount of arrivals and services in each slot follows Poisson

and exponential distribution in Fig. 2 and 3, respectively.

We use brute-force search method to get the optimal RS and

optimal constant splitting fraction. We compare the average

drop rate among optimal CSR, optimal RS and JSQ under

both symmetric and asymmetric cases. From Fig. 2a, 2b, 3a

and 3b, we can observe that JSQ exhibits good performance

when the failure probability is small and the optimal CSR

is quite robust for both low and high failure probability.

From Fig. 2c, 2d, 3c and 3d, we can see that JSQ performs

better than the optimal RS in the high arrival rate and shows

worse performance in the low arrival rate, while the optimal

CSR has the best performance in all cases. Thus, the optimal

CSR is quite robust when the highly unreliable queues exist.

However, it is hard to solve the optimization problem (4)

without the exact expression for the objective function by the

first or higher order numerical optimization methods. Instead,

we introduce the non-derivative method in the next section.

IV. NON-DERIVATIVE METHOD FOR THE OPTIMAL CSR

In Section III, we observed the advantage of using optimal

CSR over JSQ or optimal RS. In this section, we turn to the

question of finding the optimal splitting fraction that solves

the problem (4). This calls for the use of non-derivative

methods since the objective function is not known in closed

form, and can only be evaluated approximately. To that

end, in Section IV-A, we estimate the error between the

approximate objective function g(a) in (4) and its true value

at the given splitting fraction a in the probabilistic form.

Then, in Section IV-B, we use non-derivative methods to

solve the optimization problem (4) and show its almost sure

convergence to an optimal point.

A. Approximation Error

To use the non-derivative method, we need to know

the functional value at each point. However, for a general

stochastic system, it is almost impossible to get the exact

value of g(a) for each splitting a due to its dependence on

the mean queue length of each queue. In this subsection, we

obtain the approximation of g(a) by using the time average

queue length to estimate the mean queue length. To analyze

the performance of the non-derivative method, we need to get

the estimation error for each approximation. To that end, we

first give the convergence rate of time average queue length

to the mean queue length for a single queue (see Proposition

2). Then, we estimate the error between the approximation

of g(a) and its true value in the probabilistic form (see

Proposition 3).

For a single unreliable queue, let N be the number of

failures happening since t = 0 and YN be the time at

which N th failure happens for a single unreliable queue. The

following proposition characterizes the rate at which the time

average queue length converges to the mean queue length.

Proposition 2: For a single unreliable queue with non-

zero failure probability p, where both arrivals A[t] and

services S[t] are identically and independently distributed

over time, and E[A[t]] = λ and E[A2[t]] = ν <∞, we have

Pr

{
∣

∣

∣

∣

∣

1

YN

YN
∑

t=1

Q[t]− E[Q̄]

∣

∣

∣

∣

∣

> ǫ

}

≤ hN (ǫ|λ, ν, p), (18)

where

hN (ǫ|λ, ν, p) := h1,N

(√
ǫ

2

∣

∣

∣

∣

p

)

+ h1,N

(

ǫp2

2λ(1 − p)

∣

∣

∣

∣

p

)

+h2,N

(

ǫ

4p

∣

∣

∣

∣

λ, ν, p

)

+ h2,N

(√
ǫ

2

∣

∣

∣

∣

λ, ν, p

)

,

h1,N(ǫ|p) :=

{

(1−p)(p+ǫ)2

Nǫ2
, if ǫ ≥ p

(1−p)(p+ǫ)2

Nǫ2
+ (1−p)(p−ǫ)2

Nǫ2
, if ǫ < p

,

and

h2,N (ǫ|λ, ν, p) :=
(ν − 2λ2)p3 + (10λ2 − 3ν)p2 + (2ν − 14λ2)p + 6λ2

Nǫ2p4
.

Proof: The proof is based on the observation that this

system can be regarded as a renewal reward process. See our

technical report [10] for details.

Remarks: 1. In a given stochastic system, for any given ǫ >
0, we have lim

N→∞
hN(ǫ|λ, ν, p) = 0. Thus, we can use the

time average queue length to approximate the mean queue

length at arbitrary accuracy by observing sufficiently many

failures N .

2. We note that, if all moments of A[t] are bounded, the

convergence rate of time average queue length to the mean

queue length is exponentially fast, but is hard to characterized

due to the complexity of queue length evolution. Neverthe-

less, (18) is enough for us, since we focus on the convergence

of the proposed algorithm rather than its convergence rate.

Next, we give the approximation of g(a) and obtain its

error in the probabilistic form. Let Nl be the number of

failures occurring in queue l. Let N := (Nl)
L
l=1. The next

proposition gives the approximation of g(a) with the error

in the probabilistic form.

Proposition 3: For a system with L unreliable queues, we

have

Pr {|ĝN(a)− g(a)| > ǫ} ≤

L
∑

l=1

hNl

(

ǫ

Lpl

∣

∣

∣

∣

alλ, νl, pl

)

,

where ĝN(a) :=
∑L

l=1 plf̂Nl
(alλ) + λ

∑L
l=1 plal, and

f̂Nl
(alλ) is the time average queue length during the interval

[1, YNl
] at queue l, that is, f̂Nl

(alλ) := 1
YNl

∑YNl

t=1 Ql[t].
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Fig. 2: Average drop rate under Poisson distribution: (a) Symmetric case: small failure probability; (b) Symmetric case:

large failure probability; (c) Asymmetric case: same service rate; (d) Asymmetric case: same failure probability.
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Fig. 3: Average drop rate under exponential distribution: (a) Symmetric case: small failure probability; (b) Symmetric case:

large failure probability; (c) Asymmetric case: same service rate; (d) Asymmetric case: same failure probability.

Proof:

Pr {|ĝN(a) − g(a)| > ǫ}

= Pr

{∣

∣

∣

∣

L
∑

l=1

plf̂Nl
(alλ)−

L
∑

l=1

plfl(alλ)

∣

∣

∣

∣

> ǫ

}

≤ Pr

{

L
∑

l=1

pl

∣

∣

∣
f̂Nl

(alλ)− fl(alλ)
∣

∣

∣
> ǫ

}

≤

L
∑

l=1

Pr
{

pl

∣

∣

∣
f̂Nl

(alλ)− fl(alλ)
∣

∣

∣
>

ǫ

L

}

≤

L
∑

l=1

hNl

(

ǫ

Lpl

∣

∣

∣

∣

alλ, νl, pl

)

, (19)

where the last inequality follows from Proposition 2.

Remark: By Proposition 2, we have

lim
Nl→∞

hNl

(

ǫ

Lpl

∣

∣

∣

∣

alλ, νl, pl

)

= 0. Given any δ > 0,

if we want
∑L

l=1 hNl

(

ǫ
Lpl

∣

∣

∣

∣

alλ, νl, pl

)

< δ, we can choose

Nl such that hNl

(

ǫ
Lpl

∣

∣

∣

∣

alλ, νl, pl

)

< δ
L
. Thus, we can

get the approximation of g(a) at arbitrary accuracy by

observing sufficient many failures Nl for each queue l.

B. Non-Derivative method

Let Ω := {a :
∑L−1

l=1 al ≤ 1, al ≥ 0, ∀l = 1, 2, ..., L− 1}.
Note that Ω is an intersection of linearly constraints. In

the following proposed algorithm, we need to construct the

positive spanning sets B and D(ak) ⊆ B at each point ak

that conforms to Ω, that is, for some τ > 0, if for each x

in the boundary of Ω for which ‖x − ak‖ < τ , the tangent

cone TΩ(x) := closure{µ(y − x) : µ ≥ 0,y ∈ Ω} can be

generated by nonnegative linear combination of the columns

of D(ak). Paper [9] introduced the method to construct

D(ak). For example, if L = 2, we can choose D(ak) ≡
[1,−1]; if L = 3, we can select D(ak) ≡ [I,−I,F], where

I is an 2× 2 identity matrix and F = [1 − 1;−1 1]. Let Nk
l

be the number of failures happening at queue l during the

kth iteration. Let Nk := (Nk
l )L

l=1.

Pattern Search (PS) method:

Requirement: ρ ∈ (0, 1), lim
k→∞

∞
∑

n=k

δn = 0 and

lim
k→∞

ǫk

∆k

= 0, as ∆k → 0.

(1) Initialization: choose any a0 ∈ Ω and ∆0 > 0. Given

any ǫ0 > 0 and δ0 ∈ (0, 1), compute N0 such that

Pr{|ĝN0(a0)− g(a0)| > ǫ0} ≤ δ0.

(2) Poll step: In the kth iteration, construct Mk , {ak +
∆kd : d ∈ D(ak)}. Choose ǫk > 0 and δk ∈ (0, 1),
and sequentially evaluate the functional value ĝNk(a′)
for any a′ ∈ Mk satisfying Pr{|ĝNk(a′) − g(ak)| >
ǫk} ≤ δk until some a′ ∈ Mk satisfying ĝNk(a′) <
ĝNk(ak) is obtained, or until all points in Mk are

evaluated.

(3) Step size update: If the poll step produced an improved

point, i.e., ĝ(ak+1) < ĝ(ak), then ∆k+1 = ∆k;

Otherwise, ĝ(ak) ≤ ĝ(ak + ∆kd) for all d ∈ D(ak),
set ak+1 = ak and update ∆k+1 = ρ∆k. Increase

k ← k + 1, and go back to the poll step.

Next, we will establish the convergence property of the

PS algorithm.

Lemma 2: The sequence of step sizes {∆k}
∞
k=0 produced

by the PS algorithm satisfy limk→∞ ∆k = 0, a.s..



Proof: We show Pr (limk→∞ ∆k > 0) = 0 by using

probabilistic argument. See report [10] for details.

Next, we will show that the mean queue length is a convex

function of the arrival rate, which implies that g(a) is convex

and thus is directional differentiable [2].

Proposition 4: For a single queue with the failure proba-

bility p, the mean queue length is a convex function of the

arrival rate under general arrival and service processes.

Proof: The proof is similar to [17] and is by introduc-

tion on Q[t] using the following identities.

Q[t + 1] =((Q[t] + λxt)(1− zt)− µyt)
+

=

{

max{0, Q[t] + λxt − µyt} , if zt = 0;

0 , if zt = 1.

If we assume that Q[t] is convex in λ, we can see that

Q[t + 1] is also convex in λ. Since the theorem is true for

any values of xt, yt and zt, it is also true when these are

realizations of random variables. Thus, the expected queue

length is a convex function of the arrival rate.

By Proposition 4, it is easy to show the convexity of g(a)
over Ω. Before stating the main convergence result, we need

the concept of refining subsequence introduced in [1].

Definition 3: (Refining subsequence) Consider a se-

quence {ak}
∞
k=0 constructed by PS algorithm. We define

the subsequence {ak}k∈K as the refining subsequence, if

∆k+1 < ∆k for all k ∈ K, and ∆k+1 = ∆k for all k /∈ K.

Proposition 5: Let a∗ be a limit point of a refining

subsequence {ak}k∈K, constructed by PS algorithm. Let d

be any column of positive spanning set B along which ĝ(·)
was evaluated for infinitely many iterates in the subsequence

{ak}k∈K. Then, we have

Pr

{

g′(a∗;d) = lim sup
a→a∗,t↓0

g(a + td)− g(a)

t
≥ 0

}

= 1.

Proof: In our technical report [10], we show that

Pr

{

0 > g′(a∗;d) = lim sup
a→a∗,t↓0

g(a + td)− g(a)

t

}

≤ 2 lim
n→∞

∑

k≥n

δk = 0. (20)

Hence, we have the desired result.

Remark: In fact, this result does not require the convexity of

g. Proposition 5 continues to hold if g is locally Lipschitz

continuous, which guarantees the existence of its directional

derivative [3].

Corollary 1: If g is strictly differentiable at a limit point

a∗ of a refining subsequence, and if the selection of the

positive spanning sets D(ak) conforms to Ω for a τ > 0,

then a∗ is a KKT point almost surely, that is, ∇g(a∗)T x ≥ 0
for all x ∈ TΩ(a∗), and −∇g(a∗) ∈ NΩ(a∗) hold with

probability 1, where NΩ(x) := {y : ∀y ∈ TΩ(x),yT x ≤ 0}.
Proof: The proof is similar to the argument in [1].

Remarks: 1. Here, we only require that the objective function

g is differentiable at the limiting point rather than being

continuously differentiable, which is required in [15][8].

2. Even if g is not differentiable at a∗, we still have

desirable property that g′(a∗;d) ≥ 0 for all d ∈ B from

Proposition 5.

V. CONCLUSIONS

In this paper, we investigated the problem of efficient

routing for unreliable networks that are prone to probabilistic

buffer failures. We first revealed the advantage of using

constant splitting rule (CSR) in such a setup over the more

traditional choices of Join the Shortest Queue (JSQ) or

Randomized Splitting (RS). This motivated us to obtain

the optimal splitting fraction that solves the optimization

problem with the objective function depending on the mean

queue length.

Realizing the difficulty in getting the exact expression

for the objective function under general arrival and service

processes, we use non-derivative methods to solve this op-

timization problem by using the time average queue length

to approximate the mean queue length. By adaptively con-

trolling the approximation error, we show that the proposed

algorithm can almost surely converge to an optimal splitting

fraction under mild conditions.
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