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Abstract—In this paper, we study the design of joint flow rate
control and scheduling policies in multi-hop wireless networks for
achieving maximum network utility with provably optimal conver-
gence speed. Fast convergence is especially important in wireless
networks which are dominated by the dynamics of incoming and
outgoing flows as well as the time sensitive applications. Yet,
the design of fast converging policies in wireless networks is
complicated by: (i) the interference-constrained communication
capabilities, and (ii) the finite set of transmission rates to select
from due to operational and physical-layer constraints.

We tackle these challenges by explicitly incorporating such
discrete constraints to understand their impact on the convergence
speed at which the running average of the received service rates
and the network utility converges to their limits. In particular,
we establish a fundamental fact that the convergence speed of
any feasible policy cannot be faster than Ω

(

1
T

)

under both the
rate and utility metrics. Then, we develop an algorithm that
achieves this optimal convergence speed in both metrics. We also
show that the well-known dual algorithm can achieve the optimal
convergence speed in terms of its utility value.

These results reveal the interesting fact that the convergence
speed of rates and utilities in wireless networks is dominated by
the discrete choices of scheduling and transmission rates, which
also implies that the use of higher-order flow rate controllers with
fast convergence guarantees cannot overcome the aforementioned
fundamental limitation.

I. INTRODUCTION

Wireless networks are expected to serve users in an efficient

and fair way, which requires careful flow control and inter-

ference management among simultaneous transmissions. These

design goals can be achieved by solving the Network Utility

Maximization (NUM) problem, where the utility of long-term

average flow rates is maximized under stability constraints.

Moreover, it is desired that these optimal solutions are reached

rapidly due to the dynamic nature of flows and the time-

sensitive nature of many wireless applications.

However, the design of controllers with fast convergence

speed in most wireless networks is complicated by two natu-

ral constraints: (i) interference constraints leading to discrete

link scheduling choices; and (ii) a finite set of choices for

the transmission rate selection over the scheduled links. The

latter constraint is caused by both digital communication (e.g.,

modulation, coding, etc.) and hardware design principles. For
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example, in IEEE 802.11b standard, there are four transmission

rates: 1Mpbs, 2Mpbs, 5.5Mpbs and 11Mbps.

Previous works mainly focus on the design and analysis

of policies with optimal limiting behavior. A large body of

works (e.g. [2], [3], [4], [5], [6], [7]) has utilized dual and

primal-dual methods to develop cross-layer policies with long-

term optimality guarantees. Such solutions are amenable to

distributed implementation due to their natural decomposition

into loosely coupled components. However, being first-order

methods, they suffer from the slow convergence speed shared

by all such methods (e.g. [8], [9], [10]).

This speed deficiency of dual methods has recently spurred

an exciting thread of research activity in the design of dis-

tributed Interior Point (e.g. [11]) and Newton’s (e.g. [12],

[13], [14]) methods for network utility maximization. However,

these works do not incorporate two aforementioned features of

wireless networks, namely the discreteness in the scheduling

and transmission rate selections. We explicitly incorporate these

intrinsic characteristics of wireless networks in our analysis and

algorithm design. To the best of our knowledge, this is the first

work that systematically analyzes and designs algorithms in

terms of their converge speed in wireless networks with such

discrete constraints. Next, we list our main contributions, along

with references on where they appear in the text.

• We show that the convergence speed1 at which the running

average of the received service rates (see Section IV-A) and

their utility (see Section IV-A) over T time slots cannot be

faster than Ω
(

1
T

)

. This fundamental limitation on the conver-

gence speed is caused by the discrete nature of the allowable

transmission rates under the operation of any stabilizing and

asymptotically optimal flow control and scheduling policy.

• We develop a generic algorithm that can work with

a range of flow rate controllers, and achieves the optimal

convergence speed in both rate (see Section IV-B) and utility

(see Section V-B) metrics.

• Somewhat surprisingly, we also show that even a first-order

method such as the well-known dual algorithm can achieve the

aforementioned optimal convergence speed in terms of its utility

value (see Section V-C).

• These results collectively reveal that, under wireless net-

works subject to discrete scheduling and rate constraints, the

convergence speed of cross-layer algorithms is dominated by

the convergence speed of the scheduling component, and not

1The following standard notations are used to describe the rates of growth
of two real-valued sequences {an} and {bn}:an = O(bn) if ∃c > 0 such
that |an| ≤ c|bn|; an = Ω(bn) if bn = O(an).
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the flow rate controller. As such, the speed improvements in

the flow rate convergence, unfortunately, cannot extend to the

received service rates or utilities in wireless networks. On the

bright side, however, with careful design we can achieve the

optimal convergence speed under such constraints.

This work extends our earlier work [1] in several key aspects:

(1) we provide a key example that illustrates the fundamental

speed limitation caused by the discreteness of transmission

rates; (2) we generalize the assumption of consecutive integer-

valued transmission rates to any discrete integer-valued set in

the analysis of convergence speed, and extend the convergence

speed results under utility benefit metric to the case with

heterogeneous transmission rates; (3) we include extensive

comparison between the proposed algorithms and the traditional

dual algorithm in terms of the convergence speed and the

average delay through simulations.

II. SYSTEM MODEL

We consider a multi-hop fading wireless network with a set

L = {1, 2, ..., L} of links that operates in a time-slotted fashion,

where all links transmit at the beginning of each time slot

subject to interference constraints. Due to modulation, coding,

as well as other practical constraints, each link has to transmit

at one of a finite set of rates2. We use S[t] = (Sl[t])
L
l=1 to

denote the service rate vector offered to the links in slot t,
which must be selected from a feasible set of transmission rates

at the time. The feasible set, in turn, depends on the network

fading state and the interference constraints amongst the links.

Using J to denote the set of global channel states (with finite

cardinality), we let Sj denote the set of feasible service rate

vectors when the channel is in state j ∈ J . We assume that

the fading process is stationary and ergodic with πj denoting

the stationary probability of the channel state being in state j.

Then, the capacity region can be defined as

R ,
∑

j∈J
πj · CH{Sj}, (1)

where CH{A} denotes the convex hull of the set A. We

note that R is a polyhedron due to the discreteness of the

transmission rate choices, and hence can be written as R =
{y ≥ 0 : Hy ≤ b}, where y ∈ R

L and H is some positive

matrix. Note that H has L columns and the number of rows in

H is equal to the dimension of b associated with the number

of interference constraints. As a special case, when |J | = 1
we obtain the non-fading scenario.

To capture the heterogeneous and potentially inter-dependent

preferences of users, we define a utility function U : R
L
+ → R+

that measures the total network utility when link l receives an

average service rate of rl, where r = (rl)
L
l=1. We assume that

U(r) to be a strictly concave function that is non-decreasing

2For example, IEEE 802.11a standard uses OFDM transmission technique
and can support rates in Mega bits per second selected from the finite set {6,
9, 12, 18, 24, 36, 48, 54}; In CDMA2000 1xEV-DO specification, the forward
link transmission rate in kilo bits per second is chosen from the finite set
{38.4, 76.8, 153.6, 307.2, 614.4, 921.6, 1228.8, 1843.2, 2457.6}.

in each coordinate. The objective of Network Utility Maxi-

mization (NUM), then, is to design a congestion control and

scheduling algorithm such that the average service rate vector

r solves the following optimization problem:

Definition 1: (Network Utility Maximization (NUM))

max
r=(rl)L

l=1

U(r) (2)

Subject to r ∈ R, (3)

where R is defined in (1). ⋄
The strict concavity of U(·) together with the convexity of

R guarantees the uniqueness of the solution of NUM, which

is denoted as r∗ = (r∗l )L
l=1. Also, due to the non-decreasing

nature of U(·), r∗ must lie on the boundary of R.

It is important to note that r∗ is the optimal average offered

service rate to the links. The purpose of the flow rate controller,

however, is to determine the optimal injection rate of traffic

into the network while maintaining network stability. To define

network stability more rigorously, let Ql[t] denote the queue-

length at link l ∈ L at the beginning of slot t, let Xl[t] denote

the amount of injected data into Queue-l in slot t under a given

flow rate controller, and recall that Sl[t] denotes the service rate

offered to link l in slot t under a given scheduler. Then, the

evolution of Ql can be expressed as

Ql[t + 1] = (Ql[t] + Xl[t] − Sl[t])
+

, t ≥ 1,

where (y)+ , max{0, y}, and Queue-l is said to be stable if

lim sup
T→∞

1

T

T
∑

t=1

E[Ql[t]] < ∞, (4)

and the network is stable if all queues are stable.

In this work, we are interested in the convergence speed

of a broad class of joint flow rate control and scheduling

policies P that are both stabilizing and asymptotically rate

optimal. To define this class of policies abstractly, we introduce

the parameter ǫ > 0 as a generic term to characterize the

performance of the joint policy under specific design choices.

Accordingly, the average injection rate of a given policy under

parameter ǫ lies in a set X (ǫ)
. Similarly, we will use the

superscript ·(ǫ) over (Ql[t])l, (Xl[t])l, (Sl[t])l, etc. to express

the queue-lengths, injections, offered service rates, etc. under

the policy with parameter ǫ. The stability condition requires

that X (ǫ) ⊂ R for all ǫ > 0, and the asymptotic rate

optimality condition requires that limǫ↓0 X
(ǫ)

= {r∗}, i.e., the

asymptotically optimal policy achieves the optimal service rate

vector in the limit. Thus, the parameter ǫ captures the closeness

of the injection rate to the optimal service rate r∗ under the class

of joint policies parametrized by ǫ. We note that this abstraction

includes a wide range of joint control and scheduling policies

in the literature. For example, in the well-known subgradient-

based designs (e.g., [2], [3], [4], [5], [6]) the generic term ǫ
maps to the particular design parameter that corresponds to the

step-size on the subgradient iteration.

The stability condition of the joint flow rate control and
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scheduling policies in P implies that the running average of

departures over time must also converge to the set3 X (ǫ)
. Since

the running average of departures4 up to time T is the real

measure of received service until that time, we are interested

in its convergence speed to X (ǫ)
. To be more precise, for the

policy with parameter ǫ we use D
(ǫ)
l [t] , min(S

(ǫ)
l [t], Q

(ǫ)
l [t])

to denote the departures in slot t for link l ∈ L, and define its

running average until T ≥ 1 as

d
(ǫ)

l [T ] ,
1

T

T
∑

t=1

D
(ǫ)
l [t], ∀l ∈ L, (5)

and use d
(ǫ)

[T ] , (d
(ǫ)

l [T ])l. Next, we introduce the metrics of

interest in our study of convergence speed, both in the running

average departure rate and its corresponding utility value.

Definition 2: (Metrics of Interest) For any policy in P
with parameter ǫ, we define the rate deviation φ(d

(ǫ)
[T ],X (ǫ)

)

between d
(ǫ)

[T ] and the set X (ǫ)
at time T as

φ(d
(ǫ)

[T ],X (ǫ)
) , inf

x
(ǫ)∈X (ǫ)

∥

∥

∥
d

(ǫ)
[T ] − x(ǫ)

∥

∥

∥
, (6)

and the utility benefit received until time T as U(d
(ǫ)

[T ]),
where ‖y‖ is the l2 norm of the vector y. ⋄

In the rest of paper, we will: (i) provide an example showing

the fundamental speed limitation exerted by the discrete choice

of transmission rates (Section III); (ii) establish fundamental

limits on the speed at which E[φ(d
(ǫ)

[T ],X (ǫ)
)] converges to

zero as T increases (Section IV-A); (iii) develop joint flow

control and scheduling policy with provably optimal conver-

gence speed in terms of rate deviation (Section IV-B); (iv)

derive fundamental limits on the speed at which the utility

benefit converges to the optimal utility value of NUM when

sources of randomness are eliminated (Section V-A); (v) show

that our proposed algorithm, as well as the well-known dual

algorithm, achieves the optimal convergence speed in terms of

utility benefit (Section V-B,V-C); and finally (vi) provide the

detailed comparison between the proposed algorithms and the

traditional dual algorithm in terms of the convergence speed

and the average delay through simulations (Section VI).

III. A MOTIVATING EXAMPLE

In this section, we study a simple example to see how the

convergence speed of a sequence is limited by the discreteness

of its elements. In particular, we consider the convergence speed

of any zero-one sequence converging to 0.5. For any zero-one

sequence {D[t] : D[t] ∈ {0, 1}}t≥0, we have
∣

∣

∣

∣

∣

1

T

T
∑

t=1

D[t] − 0.5

∣

∣

∣

∣

∣

=
1

2T

∣

∣

∣

∣

∣

2

T
∑

t=1

D[t] − T

∣

∣

∣

∣

∣

. (7)

3Note that the convergence of a sequence to a set is the convergence of its
minimum distance to the set.

4Due to the discreteness of transmission rate choices, it is unlikely that the

departure rate in slot T converges to the set X
(ǫ)

, as T increases.

Noting that both 2
∑T

t=1 D[t] and T are integers, we have

φ(d[T ], 0.5) =

∣

∣

∣

∣

∣

1

T

T
∑

t=1

D[t] − 0.5

∣

∣

∣

∣

∣

=

{

≥ 1
2T

, if T 6= 2
∑T

t=1 D[t];

= 0, if T = 2
∑T

t=1 D[t].
(8)

Hence, the subsequence {φ(d[Tk], 0.5) : Tk is odd} is always

lower-bounded by 1
2Tk

and thus the convergence speed of

any zero-one sequence cannot be faster than Ω
(

1
T

)

. To val-

idate this result, we consider an independently and identically

distributed (i.i.d.) Bernoulli random sequence with mean 0.5.

Figure 1 shows one realization of this random sequence. From

this figure, we can see that φ(d[T ], 0.5) hits 0 for some T ,

and is always non-zero when T is odd. The subsequence

{φ(d[Tk], 0.5) : Tk is odd} is always lower-bounded by 1
2Tk

.
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Fig. 1: The convergence speed of an i.i.d Bernoulli sequence.

This simple example suggests that the discreteness in the

choice of elements in the sequence exerts a fundamental

limitation on the speed with which its running average over

time can approach its limit. In what follows, we will show

that this observation indeed holds even in the wider context of

a multi-hop fading wireless network with a finite selection of

transmission rates.

IV. CONVERGENCE SPEED IN RATE DEVIATION

In this section, we study the optimal convergence speed in

terms of rate deviation over wireless fading channels. To that

end, we first give the fundamental lower bound on the expected

rate deviation for any algorithm. Then, we provide an algorithm

that can achieve this lower bound and establish the optimality

of the proposed algorithm.

A. A lower bound on the expectation of rate deviation

In this subsection, we show that for any policy in P , the

convergence speed of expected rate deviation is Ω
(

1
T

)

. To

that end, we need the following integer assumption on the
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transmission rate, which measures the number of packets that

can be transmitted in one time unit.

Assumption 1: The service rate Sl for each link l ∈ L
is selected from a finite and nonnegative-integer-valued set

{Bl,1, Bl,2, ..., Bl,Kl
}, where 0 ≤ Bl,1 < Bl,2 < ... < Bl,Kl

and Kl is some positive integer. ⋄
Next, we give the following key lemma, which will also be

useful in the later section.

Lemma 1: Let I , {a1, a2, ..., aK}, where 0 ≤ a1 < a2 <
... < aK and K is some positive integer. If r ∈ (ai, ai+1) for

some i = 1, ..., K − 1, then for any sequence {I[t] : I[t] ∈
I}t≥1, there exists a constant cr ∈ (0, min{ r−ai

2 , ai+1−r

2 })
such that if | 1

T

∑T
t=1 I[t] − r| ≤ cr

T
, then

∣

∣

∣

∣

∣

1

T + 1

T+1
∑

t=1

I[t] − r

∣

∣

∣

∣

∣

≥ cr

T + 1
. (9)

Remark: Note that K can be as large as ∞.

Proof: See Appendix A for the proof.

Proposition 1: Under Assumption 1, for any policy in P
with parameter ǫ, if the closure of set X (ǫ)

does not contain

a vector with all integer-valued coordinates, then convergence

speed of the expected rate deviation to zero is Ω
(

1
T

)

, i.e., there

exists a strictly positive constant c and a positive integer-valued

sequence {Tk}∞k=1 such that

φ(d
(ǫ)

[Tk],X (ǫ)
) ≥ c

Tk

, ∀k ≥ 1, (10)

holds for any sample path of departure rate vector sequence

{D(ǫ)[t]}t≥1, which also implies that

E[φ(d
(ǫ)

[Tk],X (ǫ)
)] ≥ c

Tk

, ∀k ≥ 1. (11)

Remark: If the optimal rate vector r∗ has at least one non-

integer-valued coordinate, then the condition for Proposition 1

holds when ǫ is sufficiently small. Moreover, since the region

R is compact, there are finitely many rate vectors with all

coordinates being integer in R. Thus, Proposition 1 holds in

almost all cases.

Proof: See Appendix B for the proof.

Proposition 1 indicates that the discrete structure of the

transmission rates intrinsically limits the convergence speed

for any algorithm in class P . Thus, the search for higher-

order numerical optimization methods cannot overcome this

fundamental limitation in wireless networks. Despite pessimism

of this observation, we are still interested in designing an

algorithm that can achieve this fundamental bound and establish

the optimality of this algorithm in terms of its convergence

speed. To that end, we define the rate deviation optimality for

an algorithm in class P .

Definition 3: (Rate Deviation Optimality) An algorithm in

class P with parameter ǫ is called rate deviation optimal, if its

departure rate vector sequence {D(ǫ)[t]}t≥1 satisfies

E[φ(d
(ǫ)

[T ],X (ǫ)
)] ≤ F

(ǫ)
1

T
, ∀T ≥ 1, (12)

where F
(ǫ)
1 is a positive constant and d

(ǫ)
[T ] is defined in (5).

Next, we propose an algorithm with rate deviation optimality.

B. A Rate Deviation Optimal Policy

In this subsection, we propose a rate deviation optimal

algorithm with parameter ǫ > 0 that converges to the injection

rate x(ǫ) solving the following optimization problem.

Definition 4: (ǫ-NUM)

max
r=(rl)L

l=1

U(r) (13)

Subject to r ∈ R(ǫ), (14)

where R(ǫ) , {y ≥ 0 : Hy ≤ b − ǫ}.

Since U is strictly concave and R(ǫ) is convex, x(ǫ) is unique.

In addition, as ǫ → 0, x(ǫ) converges to the optimal rate vector

r∗. Without loss of generality, we assume ‖x(ǫ) − r∗‖ ≤ ρ(ǫ),

where limǫ↓0 ρ(ǫ) = 0. The relationship between R(ǫ) and R
in two-dimensional case is shown in Figure 2.

( )
)(

Fig. 2: The relationship between R(ǫ) and R.

Each link maintains a data queue and a virtual queue. Let

Y
(ǫ)
l [t] denote the virtual queue length at link l in each slot t.
Algorithm 1: (Rate Deviation Optimal (RDO) Algorithm

with parameter ǫ): At each time slot t,

Flow control: {x(ǫ)[t] = (x
(ǫ)
l [t])l}t≥1 is a sequence gen-

erated by a numerical optimization algorithm solving ǫ-NUM.

Note that x(ǫ)[t] ∈ R(ǫ), ∀t ≥ 1.

Arrival generation: For each link l,

(1) if t = 1, then X
(ǫ)
l [t] = Bl,Kl

;

(2) else if
∑t−1

i=1 X
(ǫ)
l [i] <

∑t−1
i=1 x

(ǫ)
l [i], then X

(ǫ)
l [t] =

Bl,Kl
; X

(ǫ)
l [t] = 0, otherwise.

Then, inject X
(ǫ)
l [t] packets into each data queue l and increase

virtual queue length Y
(ǫ)
l [t] by x

(ǫ)
l [t].

Scheduling: Perform Maximum Weight Scheduling (MWS)

algorithm among virtual queues, that is,

S(ǫ)[t] ∈ argmax
η=(ηl)L

l=1∈SJ[t]

L
∑

l=1

Y
(ǫ)
l [t]ηl, (15)

where J [t] ∈ J denotes the channel state at time t. Use S(ǫ)[t]
to serve data queues.
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Queue evolution: Let Q
(ǫ)
l [1] = Y

(ǫ)
l [1] = 0, ∀l, and for

t ≥ 2, update the data queue length and virtual queue length

as follows:

Q
(ǫ)
l [t + 1] =

(

Q
(ǫ)
l [t] + X

(ǫ)
l [t] − S

(ǫ)
l [t]

)+

, ∀l, (16)

Y
(ǫ)
l [t + 1] =

(

Y
(ǫ)
l [t] + x

(ǫ)
l [t] − S

(ǫ)
l [t]

)+

, ∀l. (17)

Remarks: (1) Recent advances in the design of distributed New-

ton’s method (e.g, [13], [14]) show the promise in generating

sequence {x(ǫ)[t]}t≥1 in quick and distributed way. In addition,

we can also use Gradient Projection method to solve ǫ-NUM.

(2) The purpose of maintaining the virtual queue is to help

show the stability of data queues. In fact, directly performing

MWS among data queues does not hurt the convergence speed,

as we will see in the simulations. However, the Lyapunov drift

argument to show the stability of the proposed algorithm does

not work in such a case, since the deterministic arrivals to each

link l are alternating between 0 and Bl,Kl
, which leads to the

potential positiveness of the one-step Lyapunov drift given the

current queue length state. X l ( ) t D a t a q u e u e Q l ( ) t S l ( ) tx l ( ) t V i r t u a l q u e u e Y l ( ) t S l ( ) t
Fig. 3: The operation of the RDO Algorithm at link l.

Figure 3 shows the operation of the RDO Algorithm at

link l. Next, we show that the RDO Algorithm can achieve

rate deviation optimality if the generated sequence {x(ǫ)[t]}t≥1

converges fast enough. To that end, we need the following

lemma exhibiting that the generated arrivals closely track the

generated sequence {x(ǫ)[t]}t≥1.

Lemma 2: For each link l, we have
∣

∣

∣

∣

∣

T
∑

t=1

(X
(ǫ)
l [t] − x

(ǫ)
l [t])

∣

∣

∣

∣

∣

≤ Bl,Kl
, ∀T ≥ 1. (18)

Proof: See Appendix C for the proof.

Based on Lemma 2, we can show that for each link, the data

queue length is upper-bounded by the sum of some constant

and the virtual queue length for all sample paths, which is

useful in establishing the rate deviation optimality of the RDO

Algorithm.

Lemma 3: For each link l, the data queue length is upper-

bounded by the sum of the virtual queue length and 2Bl,Kl
for

all sample paths, i.e.,

Q
(ǫ)
l [T ] ≤ Y

(ǫ)
l [T ] + 2Bl,Kl

, ∀T ≥ 1, (19)

holds for all sample paths.

Proof: See Appendix D for the proof.

We are now ready to establish the rate deviation optimality

of the RDO Algorithm.

Proposition 2: For the RDO Algorithm with parameter ǫ >
0, as long as the flow controller satisfies 1

T

∑T
t=1 ‖x(ǫ)[t] −

x(ǫ)‖ ≤ R1

T
, for all T ≥ 1, the generated link departure

sequence {D(ǫ)[t]}t≥1 satisfies

E[φ(d
(ǫ)

[T ],x(ǫ))] ≤ R
(ǫ)
1

T
, ∀T ≥ 1, (20)

where R1 and R
(ǫ)
1 are some positive constants.

Remark: {x(ǫ)[t]}t≥1 generated by the distributed Newton’s

method (e.g., [12], [13], [14]) satisfies the condition for Propo-

sition 2.

Proof: See Appendix E for the proof.

Proposition 3: For the RDO Algorithm with parameter ǫ >
0, if at least one coordinate of x(ǫ) is a non-integer and the same

condition in Proposition 2 holds, then the RDO Algorithm is

rate deviation optimal (cf. Definition 3).

Proof: The result directly follows from Propositions 1, 2

and the definition of rate deviation optimality.

So far, we have observed that the discrete choice of trans-

mission rates significantly limits the convergence speed to

Ω( 1
T

) and provided an algorithm that can achieve the optimal

convergence speed in terms of rate deviation. In [15], the

authors showed that for dual algorithm, the convergence speed

of the running average of primal variables over T slots can

be as fast as Ω
(

1
T

)

in terms of utility benefit. To the best

of our knowledge, there does not exist a convergence speed

analysis of dual methods in terms of rate deviation metric due

to the non-smoothness of the dual function (see [16]). This

motivates us to investigate the optimality of dual algorithm in

terms of its convergence speed of the utility benefit metric under

additional assumptions of non-randomness. These assumptions

are necessary to establish the fundamental upper bound on the

utility benefit under random environment, since the aggrega-

tion over links and the randomness (such as random arrivals,

randomized scheduling or channel fading) distort the discrete

structure. Thus, we focus on the deterministic system in next

section, where there is no randomness in the system. It is still

quite difficult and non-trivial to establish the convergence speed

optimality in terms of utility benefit in such a system.

V. CONVERGENCE SPEED IN UTILITY BENEFIT

In this section, we first establish the fundamental upper

bound on the utility benefit for any algorithm in the deter-

ministic system. Then, we show that both deterministic version

of the RDO Algorithm and the well-known dual algorithm can

achieve this upper bound and establish their optimality under

utility benefit metric.

A. An upper bound on the utility benefit

In this subsection, we establish an upper bound on the

utility benefit U(d
(ǫ)

[T ]) for any algorithm in class P with
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parameter ǫ. We do not require the integer Assumption 1

for the deterministic system. Without loss of generality, we

assume that each link has a finite set of transmission rates

Fl , {bl,1, bl,2, ..., bl,Kl
}, where 0 ≤ bl,1 < bl,2 < ... < bl,Kl

.

To establish the fundamental upper bound on the utility benefit,

we need the following assumption on the scheduling:

Assumption 2: Each link l with queue length less than bl,Kl

is not to be scheduled. ⋄
Remark: This scheduling assumption helps establish the funda-

mental bound on the utility benefit. Removing this assumption

does not speedup the convergence, which is validated through

simulations

We also need the following assumptions on the utility func-

tion:

Assumption 3: (1) The utility function U(r) is additive,

that is, U(r) =
∑L

l=1 Ul(rl), where Ul(y) is a concave and

non-decreasing function of y;

(2) hmin ≤ U ′
l (y) ≤ hmax, ∀y, where 0 < hmin < hmax < ∞;

(3) −βmax ≤ U ′′
l (y) ≤ −βmin, ∀y, where 0 < βmin < βmax. ⋄

Examples of such utility functions include Ul(y) = log(y + γ)

and Ul(y) = (y+γ)1−m

1−m
, where m and γ are positive constants.

Now, we are ready to establish the fundamental upper bound

on the utility benefit for any algorithm in class P .
Proposition 4: (1) Under Assumption 2 and 3, for any δ ∈

(0, maxr∈R ‖r − r∗‖) and any policy in P with parameter ǫ,

there exists a constant c(δ) > 0 and a positive integer-valued
sequence {Tk}∞k=1 such that

U(d
(ǫ)

[Tk]) ≤ U(r∗) − 1

2
βmin

√
Lδ

2 − c(δ)

Tk

,∀Tk ≤ c(δ)

Hδ
, (21)

where H ,
√

L(2βmax maxl∈L bl,Kl
+ hmax).

(2) If we further have
∑L

l=1 U ′
l (r

∗
l )r∗l /∈ H, then there exists

a sequence {c(δ)}δ>0 such that c(0) , limδ↓0 c(δ) > 0 and

limδ↓0
c(δ)

Hδ
= ∞, and (21) becomes

U(d
(ǫ)

[Tk]) ≤ U(r∗) − c(0)

Tk

, ∀k ≥ 1, (22)

where H ,

{

∑L
l=1 U ′

l (r
∗
l )Il : I = (Il)

L
l=1 ∈ R and Il ∈ Fl, ∀l

}

.

Remark: The finiteness of the set Fl implies that the set H
also has a finite number of elements. Thus, it is unlikely that
∑L

l=1 U ′
l (r

∗
l )r∗l is in the set H in practice.

Proof: See Appendix F for the proof.

The first part of Proposition 4 establishes a fundamental

bound on how close the utility benefit can be to the optimal

utility level within a finite range of time. The second part, then,

shows that, under an additional mild assumption on r∗, the

range over which the bound holds can be made to extend to

infinity by letting the error go to zero. To illustrate the nature

of this result, Figure 4 shows the utility benefit of an algorithm

in class P over time. It shows that the utility benefit repeatedly

falls below the fundamental bound until time c(δ)

Hδ
, which, from

the second part of the proposition, goes to infinity as δ vanishes.

Note that it is impossible for any policy in class P with

parameter ǫ > 0 that (21) holds for all T ≥ 1, since the

“good” policy (e.g., where ǫ is sufficiently small) can achieve

* )( rU 2m i n2 1* )( LU r
H c )(

] )[( )( TU d
1T 2T 3T 1 0T9T T0

U p p e r B o u n dO n e p o s s i b l e u t i l i t y b e n e f i t

Fig. 4: The utility benefit of an algorithm in class P .

the optimal value at arbitrary accuracy and thus U(d
(ǫ)

[T ]) will

exceed U(r∗)− 1
2βmin

√
Lδ2 eventually. In addition, inequality

(22) implies that the utility benefit of any algorithm cannot

be beyond the optimal value. Thus, these fundamental upper

bounds on the utility benefit motivate the definition of utility

benefit optimality of an algorithm given next.

Definition 5: (Utility benefit optimality) For any δ > 0,

an algorithm in class P with parameter ǫ > 0 is called utility

benefit optimal, if its generated departure rate vector sequence

{D(ǫ)[t]}t≥1 satisfies

U(d
(ǫ)

[T ]) ≥ U(r∗) − 1

2
βmin

√
Lδ2 − F

(ǫ)
3

T
, ∀T ≤ F

(δ)
4 ,

where F
(ǫ)
3 > 0 and F

(δ)
4 > 0 with limδ→0 F

(δ)
4 = ∞. ⋄

Next, we first investigate the utility benefit optimality of the

deterministic version of the RDO Algorithm.

B. The utility benefit optimality of the RDO Algorithm

In this subsection, we show that the deterministic version of

the RDO Algorithm is utility benefit optimal under Assump-

tions 2 and 3.

The deterministic version of the RDO Algorithm works as

follows:

Algorithm 2: (Deterministic RDO (DRDO) Algorithm

with parameter ǫ > 0): At each time slot t,
Flow control: {x(ǫ)[t] = (x

(ǫ)
l [t])l}t≥1 is a sequence gener-

ated by a numerical optimization algorithm solving ǫ-NUM.

Arrival: Inject x
(ǫ)
l [t] amount of data into each queue l;

Scheduling: Perform the MWS algorithm among links

whose queue length are no less than bl,Kl
, that is,

S(ǫ)[t] ∈ argmax
η=(ηl)L

l=1∈R

L
∑

l=1

Q
(ǫ)
l [t]1{Q

(ǫ)
l

[t]≥bl,Kl
}ηl; (23)

Queue evolution: Update the queue length as follows:

Q
(ǫ)
l [t + 1] = (Q

(ǫ)
l [t] + x

(ǫ)
l [t] − S

(ǫ)
l [t])+, ∀l. (24)

Next, we give a lower bound of the DRDO Algorithm under

utility benefit metric.
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Proposition 5: Under Assumption 3 on the utility function

U , for the DRDO Algorithm with parameter ǫ > 0, if
1
T

∑T
t=1 ‖x(ǫ)[t]−x(ǫ)‖ ≤ R2

T
, for all T ≥ 1, then its departure

sequence {D(ǫ)[t]}t≥1 satisfies

U(d
(ǫ)

[T ]) ≥ U(r∗) − hmax

√
Lρ(ǫ) −

√
LhmaxR

(ǫ)
2

T
, ∀T ≥ 1,

where R2 and R
(ǫ)
2 are some positive constants.

Proof: See Appendix G for the proof.

Proposition 6: Under Assumptions 2 and 3, the DRDO

Algorithm is utility benefit optimal (c.f. Definition 5), i.e., for

any δ > 0, by choosing ǫ > 0 such that ρ(ǫ) ≤ βminδ2

2hmax
, the

DRDO Algorithm can achieve the upper bound in (21).

Proof: The proof immediately follows from Propositions

4, 5 and the definition of utility benefit optimality.

Next, we study the utility benefit optimality of the well-

known dual algorithm.

C. Utility benefit optimality of dual algorithm

In this subsection, we establish the utility benefit optimality

of the well-known dual algorithm (e.g., [2], [3], [5], [6]). The

dual algorithm can be obtained by Lagrangian relaxation and

naturally decomposes the network function into the two main

components: the congestion control and the scheduling. Next,

we give the definition of the dual algorithm for completeness.

Definition 6: (Dual Algorithm with parameter ǫ > 0):

Flow control: Given Q(ǫ)[t] = (Q
(ǫ)
l [t])L

l=1, solve the follow-

ing optimization problem:

x(ǫ)[t] ∈ argmax
0≤w≤M

1

ǫ
U(w) −

L
∑

l=1

Q
(ǫ)
l [t]wl; (25)

Scheduling: Perform MWS algorithm among links whose

queue length are no less than bl,Kl
, that is,

S(ǫ)[t] ∈ argmax
η=(ηl)L

l=1∈R

L
∑

l=1

Q
(ǫ)
l [t]1{Q

(ǫ)
l

[t]≥bl,Kl
}ηl; (26)

Queue evolution:

Q
(ǫ)
l [t + 1] = (Q

(ǫ)
l [t] + x

(ǫ)
l [t] − S

(ǫ)
l [t])+, ∀l, (27)

where M is the maximum allowable input rate. ⋄
The Dual Algorithm also uses the scheduling assumption as

the DRDO Algorithm that does not schedule link l with queue

length less than bl,Kl
, which helps establish its utility benefit

optimality. However, removing this scheduling constraint does

not improve the convergence speed, which is validated through

simulations.

We are now ready to give the convergence speed of the Dual

Algorithm in terms of utility benefit.

Proposition 7: For the Dual Algorithm with parameter ǫ >
0, the generated departure sequence {D(ǫ)[t]}t≥1 satisfies

U(d
(ǫ)

[T ]) ≥ U(r∗) − ǫ

2T
‖Q(ǫ)[1]‖2 − ǫL

2
(M2 + 3 max

l∈L
b2
l,Kl

)

− hmax

√
L

T

(

‖Q(ǫ)[1]‖ + G(ǫ)
√

L
)

, ∀T ≥ 1, (28)

where G(ǫ) ,
√

W + hmax

ǫ
and W ,

(

βmax

ǫ
+ 2
)

LM2 +
(

3βmax

ǫ
+ 2
)

L maxl∈L b2
l,Kl

.

Proof: See Appendix H for the proof.

Remark: The difference between our analysis and that in [15]

lies in that we add the scheduling component in wireless

networks and consider the utility of the running average of

departure rate vector sequence rather than that of the running

average of primal vector sequence, which makes it more

challenge to deal with.

From (28), we can see that the utility benefit U(d
(ǫ)

[T ])
converges to the optimal value U(r∗) within error level
ǫL
2 (M2 + 3 maxl∈L b2

l,Kl
) with the speed of Ω

(

1
T

)

. When the

parameter ǫ decreases, the error level will decrease in the price

of the slower convergence speed. Next, we establish the utility

benefit optimality of the Dual Algorithm.

Proposition 8: The Dual Algorithm is utility benefit opti-

mal (c.f. Definition 5), i.e., for any δ > 0, by choosing

ǫ ≤ βminδ2

√
L(M2+3maxl∈L b2

l,Kl
)
, the Dual Algorithm can achieve

the upper bound in (21).

Proof: The proof directly follows from propositions 4, 7

and the definition of utility benefit optimality.

VI. SIMULATION RESULTS

In this section, we consider a single-hop network topology

with L = 5 links in both non-fading and fading channels.

In each time slot, at most one link can be active. We take

the additive utility function with Ul(y) = log(y + γ), ∀l,
where γ = 10−8, for both non-fading and fading scenarios.

Recall that this function satisfies Assumption 3 on the utility

function to establish the utility benefit optimality of both

DRDO Algorithm and the Dual Algorithm. For the non-fading

scenario, each link has a fixed rate and the link rate vector

is p = [0.8, 0.4, 0.6, 0.5, 0.3]. For the fading scenario, each

link suffers from ON-OFF channel fading independently and

the link ON probability vector is also p. For DRDO and RDO

algorithms with parameter ǫ, we use Newton’s method (see [9])

to generate sequence {x(ǫ)[t]}t≥1 that satisfies the condition for

Proposition 2.

A. Non-fading scenario

In this subsection, we mainly investigate the impact of

parameter ǫ on the performance of DRDO algorithm and

Dual Algorithm. Then, we study whether removing scheduling

constraint (each link cannot be scheduled if its queue length is

less than 1) can speedup the convergence.

Figure 5a, 5b and 5c show the impact of parameter ǫ on the

convergence speed and the average queue length per link for

DRDO Algorithm. From Figure 5a and 5c, we can observe

that as ǫ decreases, the utility benefit converges to a value

closer to the optimal value in price of increasing the average

queue length per link. Note that the system is still stable even

when ǫ = 0, which means the optimal point in the boundary

of capacity region can be achieved eventually. Thus, we can
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Fig. 6: Dual Algorithm performance with varying ǫ

choose ǫ = 0 for the deterministic system. In addition, we can

observe from Figure 5a and 5b that ǫ does not have significant

influence on the convergence speed under both utility benefit

and rate deviation metrics.

Figure 6a, 6b and 6c show the impact of parameter ǫ on

the convergence speed and the average queue length per link

for the Dual Algorithm. From Figure 6a, we can observe that

when ǫ is too large (e.g., ǫ = 20), the utility benefit cannot

converge to the optimal value. From Figure 6b, we can see

that the convergence under rate deviation metric requires much

smaller ǫ than that under utility benefit metric. Here, it is worth

mentioning that the large ǫ (e.g., ǫ = 1) can still lead to

the convergence to the optimal value under both metrics of

interest. This is a little contradictory with the traditional dual

algorithm in wireless networks, where the convergence property

requires much smaller ǫ (e.g., ǫ = 0.01). The reason is that

we are interested in the time average metric rather than the

instantaneous value. If ǫ is relatively large, the instantaneous

value oscillates around the optimal value. However, the time

average value may still be arbitrary close to the optimal value.

In addition, among the set of parameters ǫ guaranteeing the

convergence to the optimal value, the smaller ǫ leads to the

slower convergence speed under both interest metrics. From

Figure 6c, we can observe that the average queue length per

link increases as ǫ decreases. This observation matches the

theoretical upper bound on the average queue length. Thus, for

the Dual Algorithm, we need to choose ǫ as large as possible

among the set of parameters ǫ guaranteeing convergence to the

optimal value, which not only leads to faster convergence but

also enjoys smaller average delay.

In Figure 6a, 6b and 6c, we also compare the performance

between the Dual Algorithm and the DRDO Algorithm with

ǫ = 0. We can observe that the Dual Algorithm with proper

parameter ǫ (e.g., ǫ = 5) converges slightly faster than the

DRDO Algorithm under the utility benefit metric. This does not

contradict our result in Section V that both Dual and DRDO

algorithms are utility benefit optimal and thus their convergence

speed may differ at most a constant factor. However, the DRDO

Algorithm converges faster than the Dual Algorithm under rate

deviation metric, which matches our theoretical result that the

DRDO algorithm is still optimal and the optimality of the

Dual Algorithm is unknown under such metric. Finally, we can

see from Figure 6c that the DRDO Algorithm has quite small

average queue length.

Figure 7a, 7b and 7c study the impact of scheduling con-

straint, which does not allow link with queue length less

than 1 to be scheduled. From there figures, we can see that

the scheduling constraint does not have significant impact on

the convergence speed and the average queue length for both

DRDO and Dual algorithms.
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Fig. 9: The performance of Dual Algorithm over wireless fading channels

B. Fading channels

In this subsection, we first consider the performance of

variants of the RDO Algorithm over wireless fading channels.

Then, we compare the performance between the RDO Algo-

rithm and the Dual Algorithm.

We consider a variant of the RDO Algorithm that does

not require maintaining a virtual queue and performs MWS

directly among data queues, and another variant of the RDO

Algorithm that has independent random arrivals and performs

MWS directly among data queues. Recall that the purpose of

introducing virtual queues in RDO Algorithm is to show the

boundedness of the average data queue length by avoiding the

difficulty in using Lyapunov Drift argument. From Figure 8a,

8b and 8c, we can observe that for both rate deviation and

utility benefit metrics, the original RDO Algorithm converges

faster than and has smaller average queue length than a variant

of the RDO Algorithm with independent random arrivals, but

converges slower than and has larger average queue length than

a variant of the RDO Algorithm without virtual queues. Thus,

we suggest to use the arrival generation component in the RDO
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Algorithm and perform MWS among data queues directly in

practice.

Figure 9a, 9b and 9c show the performance of a version of

the Dual Algorithm (see [4]) over wireless fading channels and

compare it with the RDO Algorithm with ǫ = 0. To guarantee

the convergence of the Dual Algorithm under both metrics of

interest under fading, it requires much smaller parameter ǫ than

that under non-fading. As in non-fading scenario, the Dual

Algorithm with proper parameter can outperform the RDO Al-

gorithm under utility benefit metric and has slower convergence

speed than the RDO Algorithm under rate deviation metric,

which matches our result in Section IV-B, the RDO Algorithm

is rate deviation optimal while the optimality of both RDO and

Dual algorithms is unknown under the utility benefit metric in

the fading scenario. In addition, the average queue length of

the Dual Algorithm increases as the decreasing of ǫ, while the

RDO Algorithm always has small average queue length.

VII. CONCLUSION

In this paper, we considered the convergence speed of joint

flow control and scheduling algorithms in Network Utility

Maximization (NUM) problem in multi-hop wireless networks.

We realized that the discreteness of scheduling constraints and

transmission rates are two of the most important features in

wireless networks. We incorporated these important character-

istics into the analysis and design of algorithms in terms of

their convergence speed by defining two metrics of interest:

rate deviation and utility benefit.

We showed that the convergence speed of any algorithm

cannot be faster than Ω
(

1
T

)

for both rate deviation and utility

benefit metrics due to the discrete choices of transmission

rates at each link. This interesting and fundamental finding

reveals that designing faster (e.g., Interior-Point or Newton

based) algorithms for the flow rate control cannot break the

barrier of Ω
(

1
T

)

in wireless networks caused by the scheduling

component. Then, we provided an algorithm that can achieve

optimal convergence speed under both rate deviation and utility

benefit metrics. Moreover, we showed that the well-known dual

algorithm also has optimal convergence speed in terms of utility

benefit, which is a somewhat surprising outcome in view of the

first-order nature of its iteration.
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APPENDIX A

PROOF OF LEMMA 1

Note that

∣

∣

∣

1
T

∑T
t=1 I[t] − r

∣

∣

∣ ≤ cr

T
is equivalent to

−cr ≤
T
∑

t=1

I[t] − Tr ≤ cr. (29)

(i) If I[t + 1] ≤ ai, then we have

T+1
∑

t=1

I[t] − (T + 1)r ≤
T
∑

t=1

I[t] − Tr + ai − r

≤ cr + ai − r (30)

< −cr, (31)

where (30) follows from the inequality (29), and (31)

follows from cr < r−ai

2 .

(ii) If Il[t + 1] ≥ ai+1, then we have

T+1
∑

t=1

I[t] − (T + 1)r ≥
T
∑

t=1

I[t] − Tr + ai+1 − r

≥ −cr + ai+1 − r (32)

> cr, (33)

where (32) follows from the inequality (29), and (33)

follows from cr < ai+1−r

2 .

Thus, by combining (31) and (33), we have the desired result.
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APPENDIX B

PROOF OF PROPOSITION 1

We first show the following claim:

Claim 1: If x
(ǫ)
l ∈ (Bl,i, Bl,i+1), for some i =

1, 2, ..., Kl − 1, is not an integer, then, there exists a

c
x

(ǫ) ∈ (0, min{x
(ǫ)
l

−Bl,i

2 ,
Bl,i+1−x

(ǫ)
l

2 , 1
2}) and a positive

integer-valued sequence {Tk}k≥1 such that

‖d(ǫ)
[Tk] − x(ǫ)‖ ≥ c

x
(ǫ)

Tk

, ∀k, (34)

holds for any sample path of departure rate vector sequence

{D(ǫ)[t]}t≥1. ⋄
Since all elements in the closure of X (ǫ)

have non-integer-

valued coordinates, by Claim 1, if x
(ǫ)
l ∈ (Bl,i

x
(ǫ)

, Bl,i
x
(ǫ)+1),

for some non-negative integer i
x
(ǫ) , is not an integer, then

we can take c′
x
(ǫ) = 1

4 min{x(ǫ)
l − Bl,i

x
(ǫ)

, Bl,i
x
(ǫ)+1 −

x
(ǫ)
l , 1}, ∀x(ǫ) ∈ X (ǫ)

, and there exists a positive integer-valued

sequence {Tk}k≥1 such that

‖d(ǫ)
[Tk] − x(ǫ)‖ ≥

c′
x

(ǫ)

Tk

, ∀k, (35)

holds for any sample path of departure rate vector sequence

{D(ǫ)[t]}t≥1.

If c , inf
x
(ǫ)∈X (ǫ)

c′
x

(ǫ) = 0, then, one of the limiting

points of the set X (ǫ)
has all integer-valued coordinates, which

contradicts our assumption that the closure of set X (ǫ)
does not

contain a vector with all integer-valued coordinates. Thus, we

have c > 0 and obtain

φ(d
(ǫ)

[Tk],X (ǫ)
) = inf

x
(ǫ)∈X (ǫ)

‖d(ǫ)
[Tk] − x(ǫ)‖ ≥ c

Tk

, ∀k,

holds for any sample path of departure rate vector sequence

{D(ǫ)[t]}t≥1, which implies (11).

Next, we prove Claim 1 to complete the proof. Since

‖d(ǫ)
[Tk] − x(ǫ)‖ ≥ |d(ǫ)

l [Tk] − x
(ǫ)
l |, ∀k, (36)

we only need to show

|d(ǫ)

l [Tk] − x
(ǫ)
l | ≥ c

x
(ǫ)

Tk

, ∀k. (37)

Indeed, since c
x

(ǫ) < 1
2 and x

(ǫ)
l > 0, we have

n + 1

x
(ǫ)
l

− c
x

(ǫ)

x
(ǫ)
l

−
(

n

x
(ǫ)
l

+
c
x

(ǫ)

x
(ǫ)
l

)

=
1 − 2c

x
(ǫ)

x
(ǫ)
l

> 0, (38)

which implies

(
n

x
(ǫ)
l

− c
x
(ǫ)

x
(ǫ)
l

,
n

x
(ǫ)
l

+
c
x
(ǫ)

x
(ǫ)
l

) ∩ (
n + 1

x
(ǫ)
l

− c
x
(ǫ)

x
(ǫ)
l

,
n + 1

x
(ǫ)
l

+
c
x
(ǫ)

x
(ǫ)
l

) = ∅,

for any non-negative integer n. Since c
x

(ǫ) <
x
(ǫ)
l

−Bl,i

2 ≤ x
(ǫ)
l

2 ,

we have

n

x
(ǫ)
l

+
c
x
(ǫ)

x
(ǫ)
l

−
(

n

x
(ǫ)
l

− c
x
(ǫ)

x
(ǫ)
l

)

=
2c

x
(ǫ)

x
(ǫ)
l

< 1, (39)

which implies that each interval ( n

x
(ǫ)
l

− c
x
(ǫ)

x
(ǫ)
l

, n

x
(ǫ)
l

+
c
x
(ǫ)

x
(ǫ)
l

) can

at most contain one non-negative integer.

If the interval ( n

x
(ǫ)
l

− c
x
(ǫ)

x
(ǫ)
l

, n

x
(ǫ)
l

+
c
x
(ǫ)

x
(ǫ)
l

) contains some

non-negative integer T for some non-negative integer m, i.e.,

| n
T
− x

(ǫ)
l | ≤ c

x
(ǫ)

T
, where x

(ǫ)
l ∈ (Bl,i, Bl,i+1) for some i =

1, 2, ..., Kl − 1 and c
x

(ǫ) ∈ (0, min{x
(ǫ)
l

−Bl,i

2 ,
Bl,i+1−x

(ǫ)
l

2 , 1
2}),

then, by taking the set I = N
0 , {0, 1, 2, ...} in Lemma 1,

we have | n+l
T+1 − x

(ǫ)
l | ≥ c

x
(ǫ)

T+1 for any positive integer l, which

implies

T + 1 /∈
(

n + l

x
(ǫ)
l

− c
x

(ǫ)

x
(ǫ)
l

,
n + l

x
(ǫ)
l

+
c
x
(ǫ)

x
(ǫ)
l

)

,

for any positive integer l. Thus, ∪∞
n=0(

n

x
(ǫ)
l

− c
x
(ǫ)

x
(ǫ)
l

, n

x
(ǫ)
l

+
c
x
(ǫ)

x
(ǫ)
l

)

does not cover all positive integers and thus there exists a

sequence of positive integers {Tk}∞k=1 such that

Tk /∈ (
j

x
(ǫ)
l

− c
x

(ǫ)

x
(ǫ)
l

,
j

x
(ǫ)
l

+
c
x

(ǫ)

x
(ǫ)
l

) for any non-negative integer j.

Figure 10 shows an example when x
(ǫ)
l = 1

2 , Sl ∈ {0, 1} and

c
x
(ǫ) = 1

4 . We can see that ∪∞
n=0(

n

x
(ǫ)
l

− c
x
(ǫ)

x
(ǫ)
l

, n

x
(ǫ)
l

+
c
x
(ǫ)

x
(ǫ)
l

) does

not cover odd numbers.0 1 2 3 4 5 6 2 n 2 n + 1 2 n + 2
Fig. 10: An example when x

(ǫ)
l = 1

2 , Sl ∈ {0, 1} and c
x

(ǫ) = 1
4 .

For any sample path of random sequence {D(ǫ)
l [t], t ≥ 1},

∑Tk

t=1 D
(ǫ)
l [t] is an integer and thus we have

Tk /∈
(

∑Tk

t=1 D
(ǫ)
l [t]

x
(ǫ)
l

− c
x
(ǫ)

x
(ǫ)
l

,

∑Tk

t=1 D
(ǫ)
l [t]

x
(ǫ)
l

+
c
x
(ǫ)

x
(ǫ)
l

)

,

which is equivalent to (37).

APPENDIX C

PROOF OF LEMMA 2

Since x(ǫ)[t] = (x
(ǫ)
l [t])L

l=1 ∈ R for all t and the maximum

transmission rate for each link l is Bl,Kl
, we have 0 ≤ x

(ǫ)
l [t] ≤

Bl,Kl
. Next, we show this lemma by using induction.

(1) If T = 1, we have

|X(ǫ)
l [1] − x

(ǫ)
l [1]| ≤ max{Bl,Kl

− x
(ǫ)
l [1], x

(ǫ)
1 [1]} ≤ Bl,Kl

;

(2) Assume T = n, (18) holds, that is,

−Bl,Kl
≤

n
∑

t=1

(X
(ǫ)
l [t] − x

(ǫ)
l [t]) ≤ Bl,Kl

. (40)

Then, when T = n + 1, we consider the following two cases:

(2.1) If
∑n

t=1 X
(ǫ)
l [t] ≥ ∑n

t=1 x
(ǫ)
l [t], then, by the RDO
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Algorithm, we have X
(ǫ)
l [n + 1] = 0. Thus, we have

n+1
∑

t=1

(X
(ǫ)
l [t] − x

(ǫ)
l [t]) =

n
∑

t=1

(X
(ǫ)
l [t] − x

(ǫ)
l [t]) − x

(ǫ)
l [n + 1]

≤ Bl,Kl
− x

(ǫ)
l [n + 1] ≤ Bl,Kl

, (41)

n+1
∑

t=1

(X
(ǫ)
l [t] − x

(ǫ)
l [t]) =

n
∑

t=1

(X
(ǫ)
l [t] − x

(ǫ)
l [t]) − x

(ǫ)
l [n + 1]

≥ −x
(ǫ)
l [n + 1] ≥ −Bl,Kl

. (42)

(2.2) If
∑n

t=1 X
(ǫ)
l [t] <

∑n
t=1 x

(ǫ)
l [t], then, by the RDO

Algorithm, we have X
(ǫ)
l [n + 1] = Bl,Kl

. Thus, we have

n+1
∑

t=1

(X
(ǫ)
l [t] − x

(ǫ)
l [t])

=

n
∑

t=1

(X
(ǫ)
l [t] − x

(ǫ)
l [t]) + Bl,Kl

− x
(ǫ)
l [n + 1]

≤Bl,Kl
− x

(ǫ)
l [n + 1] ≤ Bl,Kl

, (43)

n+1
∑

t=1

(X
(ǫ)
l [t] − x

(ǫ)
l [t])

=

n
∑

t=1

(X
(ǫ)
l [t] − x

(ǫ)
l [t]) + Bl,Kl

− x
(ǫ)
l [n + 1]

≥− Bl,Kl
+ Bl,Kl

− x
(ǫ)
l [n + 1] ≥ −Bl,Kl

. (44)

In both cases, we have

∣

∣

∣

∑n+1
t=1 (X

(ǫ)
l [t] − x

(ǫ)
l [t])

∣

∣

∣
≤ Bl,Kl

.

APPENDIX D

PROOF OF LEMMA 3

By using Lemma 2, we have
∣

∣

∣

∣

∣

T−1
∑

t=n

X
(ǫ)
l [t] −

T−1
∑

t=n

x
(ǫ)
l [t]

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

T−1
∑

t=1

(

X
(ǫ)
l [t] − x

(ǫ)
l [t]

)

−
n−1
∑

t=1

(

X
(ǫ)
l [t] − x

(ǫ)
l [t]

)

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

T−1
∑

t=1

(

X
(ǫ)
l [t] − x

(ǫ)
l [t]

)

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

n−1
∑

t=1

(

X
(ǫ)
l [t] − x

(ǫ)
l [t]

)

∣

∣

∣

∣

∣

≤2Bl,Kl
, (45)

which implies that

T−1
∑

t=n

X
(ǫ)
l [t] ≤

T−1
∑

t=n

x
(ǫ)
l [t] + 2Bl,Kl

, ∀n = 1, 2, ..., T − 1.

By using the Lindley’s equation, we have

Q
(ǫ)
l [T ] = max

1≤n≤T−1

{

T−1
∑

t=n

X
(ǫ)
l [t] −

T−1
∑

t=n

S
(ǫ)
l [t], 0

}

≤ max
1≤n≤T−1

{

2Bl,Kl
+

T−1
∑

t=n

x
(ǫ)
l [t] −

T−1
∑

t=n

S
(ǫ)
l [t], 0

}

≤ max
1≤n≤T−1

{

T−1
∑

t=n

x
(ǫ)
l [t] −

T−1
∑

t=n

S
(ǫ)
l [t], 0

}

+ 2Bl,Kl

=Y
(ǫ)
l [T ] + 2Bl,Kl

. (46)

APPENDIX E

PROOF OF PROPOSITION 2

E[φ(d
(ǫ)

[T ],x(ǫ))] = E

∥

∥

∥

∥

∥

1

T

T
∑

t=1

D(ǫ)[t] − x(ǫ)

∥

∥

∥

∥

∥

=E

∥

∥

∥

∥

∥

1

T

T
∑

t=1

D(ǫ)[t] − 1

T

T
∑

t=1

X(ǫ)[t] +
1

T

T
∑

t=1

X(ǫ)[t]

− 1

T

T
∑

t=1

x(ǫ)[t] +
1

T

T
∑

t=1

x(ǫ)[t] − x(ǫ)

∥

∥

∥

∥

∥

≤E

∥

∥

∥

∥

∥

1

T

T
∑

t=1

D(ǫ)[t] − 1

T

T
∑

t=1

X(ǫ)[t]

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

1

T

T
∑

t=1

(x(ǫ)[t] − x(ǫ))

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

1

T

T
∑

t=1

X(ǫ)[t] − 1

T

T
∑

t=1

x(ǫ)[t]

∥

∥

∥

∥

∥

(a)
=

E‖Q(ǫ)[T + 1]‖
T

+
1

T

∥

∥

∥

∥

∥

T
∑

t=1

(

X(ǫ)[t] − x(ǫ)[t]
)

∥

∥

∥

∥

∥

+

∥

∥

∥

∥

∥

1

T

T
∑

t=1

(x(ǫ)[t] − x(ǫ))

∥

∥

∥

∥

∥

(b)

≤
∑L

l=1 E[Q
(ǫ)
l [T + 1]]

T
+

1

T

L
∑

l=1

∣

∣

∣

∣

∣

T
∑

t=1

(

X
(ǫ)
l [t] − x

(ǫ)
l [t]

)

∣

∣

∣

∣

∣

+
1

T

T
∑

t=1

∥

∥

∥x
(ǫ)[t] − x(ǫ)

∥

∥

∥ (47)

where the step (a) follows from the fact that Q
(ǫ)
l [T + 1] −

Q
(ǫ)
l [1] =

∑T
t=1 X

(ǫ)
l [t] −

∑T
t=1 D

(ǫ)
l [t] and Q

(ǫ)
l [1] = 0 for

all l; (b) follows from the fact that ‖y‖ ≤ ∑L
l=1 |yl| for any

L-dimensional vector y.

First, we will show that

E[Y
(ǫ)
l [T ]] ≤ M1, ∀T ≥ 1, ∀l ∈ L, (48)

where M1 is some positive number. This will imply

E[Q
(ǫ)
l [T ]] ≤ M1 + 2Bl,Kl

, ∀T ≥ 1, ∀l ∈ L, by using

Lemma 3. By choosing the Lyapunov function V1(Y
(ǫ)[t]) ,
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1
2

∑L
l=1(Y

(ǫ)
l [t])2, it is easy to show that

∆V1 , E[V1(Y
(ǫ)[t + 1]) − V1(Y

(ǫ)[t])|Y(ǫ)[t] = Y(ǫ)]

≤ −θ(ǫ)
L
∑

l=1

Y
(ǫ)
l + M2, (49)

where M2 and θ(ǫ) are some finite positive constants. By

using Theorem 14.0.1 in [17], there exists Y l such that

limT→∞ E[Y
(ǫ)
l [T ]] = E[Y

(ǫ)

l ], where E[Y
(ǫ)

l ] < ∞. Thus,

give ζ > 0, ∃T0 ≥ 0 such that T > T0 implies that

E[Y
(ǫ)
l [T ]] ≤ E[Y

(ǫ)

l ] + ζ.

For T ≤ T0, we have

E[Y
(ǫ)
l [T ]] ≤

T
∑

t=1

x
(ǫ)
l [t] ≤

T0
∑

t=1

x
(ǫ)
l [t] ≤ T0Bl,Kl

. (50)

Hence, by taking M1 , maxl∈L{T0Bl,Kl
, E[Y

(ǫ)

l ] + ζ}, we

have the desired result.

By Lemma 2, we have

∣

∣

∣

∑T
t=1

(

X
(ǫ)
l [t] − x

(ǫ)
l [t]

)∣

∣

∣ ≤ Bl,Kl
.

Thus, we have

E[φ(d
(ǫ)

[T ],x(ǫ))]

≤ LM1 + 2
∑L

l=1 Bl,Kl

T
+

∑L
l=1 Bl,Kl

T
+

R1

T
=

R
(ǫ)
1

T
,

where R
(ǫ)
1 = LM1 + 2

∑L
l=1 Bl,Kl

+
∑L

l=1 Bl,Kl
+ R1.

APPENDIX F

PROOF OF PROPOSITION 4

(1) Proof of the first part of Proposition 4: For any δ ∈
(0, maxr∈R ‖r− r∗‖), we can easily find a r(δ) = (r

(δ)
l )L

l=1 ∈
R satisfying the following conditions:

(i) ‖r(δ) − r∗‖ = δ;

(ii)
∑L

l=1 U ′
l (r

(δ)
l )r

(δ)
l /∈ G(δ),

where

G(δ) ,

{

L
∑

l=1

U ′
l (r

(δ)
l )Sl : S = (Sl)

L
l=1 ∈ R and Sl ∈ Fl, ∀l

}

.

Due to the discrete structure of scheduling rates S, without

loss of generality, we assume G(δ) has K(δ) elements. Let

G(δ) = {a(δ)
1 , a

(δ)
2 , ..., a

(δ)

K(δ)} and assume
∑L

l=1 U ′
l (r

(δ)
l )r

(δ)
l ∈

(a
(δ)
i , a

(δ)
i+1) for some i = 1, 2, ..., K(δ) − 1.

Consider any policy in P with parameter ǫ. By Assumption 2,

D
(ǫ)
l [t] ∈ Fl, ∀t ≥ 1, ∀l, for any departure rate vector sequence

{D(ǫ)[t] = (D
(ǫ)
l [t])l}t≥1. Next, we show that there exists a

c
(δ) ∈



0, min







∑L
l=1 U ′

l (r
(δ)
l

)r
(δ)
l

− a
(δ)
i

2
,

a
(δ)
i+1 −∑L

l=1 U ′

l (r
(δ)
l

)r
(δ)
l

2









 ,

(51)

and a positive integer-valued sequence {Tk}∞k=1 such that (21)

holds. Let fy(r) , ∇U(r)T(y − r) =
∑L

l=1 U ′
l (rl)(yl − rl),

where r,y ∈ R and T means transpose operation. Then, we

have

|fy(r) − fy(r∗)| (a)
=
∣

∣∇fy(z)T(r − r∗)
∣

∣

(b)

≤ ‖∇fy(z)‖‖r − r∗‖, (52)

where the step (a) follows from the Mean Value Theorem,

where z lies between r and r∗; (b) follows from the Cauchy

Schwartz’s inequality. Since
∂fy

∂rl
= U ′′

l (rl)(yl − rl) − U ′
l (rl),

we have
∣

∣

∣

∣

∂fy

∂rl

∣

∣

∣

∣

≤ |U ′′
l (rl)|(yl + rl) + |U ′

l (rl)| ≤ 2βmaxbl,Kl
+ hmax.

Thus, we have

‖∇fy(z)‖ ≤ H ,
√

L(2βmax max
l∈L

bl,Kl
+ hmax). (53)

Hence, we have

|fy(r) − fy(r∗)| ≤ H‖r− r∗‖, ∀y, r ∈ R. (54)

By setting r = r(δ), we have
∣

∣

∣fy(r(δ)) − fy(r∗)
∣

∣

∣ ≤ Hδ, ∀y ∈ R, (55)

which implies that

fy(r(δ)) ≤ fy(r∗) + Hδ, ∀y ∈ R. (56)

By the first order optimality condition, we have

fy(r∗) = ∇U(r∗)T (y − r∗) ≤ 0, ∀y ∈ R. (57)

Thus, we have fy(r(δ)) ≤ Hδ, ∀y ∈ R. By setting y =
1
T

∑T
t=1 D(ǫ)[t] ∈ R, we have

L
∑

l=1

U ′
l (r

(δ)
l )

(

1

T

T
∑

t=1

D
(ǫ)
l [t] − r

(δ)
l

)

≤ Hδ. (58)

Since
∑L

l=1 U ′
l (r

(δ)
l )r

(δ)
l /∈ G(δ), by Lemma 1, there exists

a c(δ) satisfying (51) and a positive integer-valued sequence

{Tk}∞k=1 such that
∣

∣

∣

∣

∣

1

Tk

Tk
∑

t=1

L
∑

l=1

U ′
l (r

(δ)
l )D

(ǫ)
l [t] −

L
∑

l=1

U ′
l (r

(δ)
l )r

(δ)
l

∣

∣

∣

∣

∣

≥ c(δ)

Tk

. (59)

Thus, if Hδ < c(δ)

Tk
, that is, Tk < c(δ)

Hδ
, then, we have

1

Tk

Tk
∑

t=1

L
∑

l=1

U ′
l (r

(δ)
l )D

(ǫ)
l [t] −

L
∑

l=1

U ′
l (r

(δ)
l )r

(δ)
l ≤ −c(δ)

Tk

. (60)

By using the concavity of the utility function U , we have

U

(

1

Tk

Tk
∑

t=1

D(ǫ)[t]

)

≤ U(r(δ)) + ∇U(r(δ))T

(

1

Tk

Tk
∑

t=1

D(ǫ)[t] − r(δ)

)

≤ U(r(δ)) − c(δ)

Tk

. (61)
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In addition, we have

U(r(δ))
(a)
= U(r∗) + ∇U(r∗)T(r(δ) − r∗)

+
1

2
(r(δ) − r∗)T∇2U(z)(r(δ) − r∗)

(b)

≤ U(r∗) − 1

2
βmin

√
L‖r(δ) − r∗‖2

= U(r∗) − 1

2
βmin

√
Lδ2, (62)

where (a) follows the Mean Value Theorem, where z is between

r∗ and r(δ); (b) uses the first order optimality condition and

‖∇2U(z)‖ ≥
√

Lβmin. By substituting (62) into (61), we have

inequality (21).

(2) Proof of the second part of Proposition 4: We will show

the following claim:

Claim 2: If we further have

L
∑

l=1

U ′
l (r

∗
l )r∗l /∈ H,

i.e.,
∑L

l=1 U ′
l (r

∗
l )r∗l ∈ (

∑L
l=1 U ′

l (r
∗
l )yl,

∑L
l=1 U ′

l (r
∗
l )zl), where

y = (yl)
L
l=1, z = (zl)

L
l=1 ∈ R and yl, zl ∈ Fl, ∀l ∈ L, then,

for any

δ < min

{

1

2G1
min

y′,z′∈G(0):y′ 6=z′

|y′ − z′| ,

1

G1 + G2

(

L
∑

l=1

U ′
l (r

∗
l )r∗l −

L
∑

l=1

U ′
l (r

∗
l )yl

)

,

1

G1 + G2

(

L
∑

l=1

U ′
l (r

∗
l )zl −

L
∑

l=1

U ′
l (r

∗
l )r∗l

)

}

, (63)

there exists

c1
(δ) =

1

4
min

{ L
∑

l=1

U ′
l (r

∗
l )r∗l −

L
∑

l=1

U ′
l (r

∗
l )yl − (G1 + G2)δ,

L
∑

l=1

U ′
l (r

∗
l )zl −

L
∑

l=1

U ′
l (r

∗
l )r∗l − (G1 + G2)δ

}

(64)

and a positive integer-valued sequence {Tk}∞k=1 such that

(21) holds, where G1 ,
√

Lβmax maxl∈L bl,Kl
and G2 ,√

L(βmax maxl∈L bl,Kl
+ hmax). ⋄

When δ is sufficiently small (e.g., where δ satisfies (63)),

we take c(δ) = c
(δ)
1 and thus we have the desired result. Next,

we prove this claim to complete the proof. By using similar

technique in showing inequality (54), we have
∣

∣

∣

∣

∣

L
∑

l=1

U ′
l (r

(δ)
l )r

(δ)
l −

L
∑

l=1

U ′
l (r

∗
l )r∗l

∣

∣

∣

∣

∣

≤ G2δ (65)

∣

∣

∣

∣

∣

L
∑

l=1

U ′
l (r

(δ)
l )yl −

L
∑

l=1

U ′
l (r

∗
l )yl

∣

∣

∣

∣

∣

≤ G1δ (66)

∣

∣

∣

∣

∣

L
∑

l=1

U ′
l (r

(δ)
l )zl −

L
∑

l=1

U ′
l (r

∗
l )zl

∣

∣

∣

∣

∣

≤ G1δ. (67)

Since δ satisfies (63), the relationship between
∑L

l=1 U ′
l (r

(δ)
l )r

(δ)
l and

∑L
l=1 U ′

l (r
∗
l )r∗l is shown in Figure 11.

Ll lll rrU1 **Ll lll yrU1 * Ll lll zrU1 *2 G 1 2 G 2 2 G 1
Ll lll yrU1 )( Ll lll rrU1 )()( Ll lll zrU1 )(

Fig. 11: The relationship between
∑L

l=1 U ′
l (r

(δ)
l )r

(δ)
l and

∑L
l=1 U ′

l (r
∗
l )r∗l .

Thus, we have

L
∑

l=1

U ′
l (r

(δ)
l )r

(δ)
l ∈

(

L
∑

l=1

U ′
l (r

(δ)
l )yl,

L
∑

l=1

U ′
l (r

(δ)
l )zl

)

. (68)

By statement (1), for any departure rate vector sequence

{D(ǫ)[t]}t≥1, there exists a c(δ) satisfying

c(δ) < min

{

∑L
l=1 U ′

l (r
(δ)
l )r

(δ)
l −∑L

l=1 U ′
l (r

(δ)
l )yl

2
,

∑L
l=1 U ′

l (r
(δ)
l )zl −

∑L
l=1 U ′

l (r
(δ)
l )r

(δ)
l

2

}

, (69)

and a positive integer-valued sequence {Tk}∞k=1 such that (21)

holds. By using inequality (65), (66) and (67), we have

min

{∑L
l=1 U ′

l (r
(δ)
l )r

(δ)
l −∑L

l=1 U ′
l (r

(δ)
l )yl

2
,

∑L
l=1 U ′

l (r
(δ)
l )zl −

∑L
l=1 U ′

l (r
(δ)
l )r

(δ)
l

2

}

≥min

{∑L
l=1 U ′

l (r
∗
l )r∗l −∑L

l=1 U ′
l (r

∗
l )yl − (G1 + G2)δ

2
,

∑L
l=1 U ′

l (r
∗
l )yl −

∑L
l=1 U ′

l (r
∗
l )r∗l − (G1 + G2)δ

2

}

. (70)

Thus, we can take c
(δ)
1 as in (64) that satisfies (51).

APPENDIX G

PROOF OF PROPOSITION 5

U
(

d
(ǫ)

[T ]
) (a)

≥ U(x(ǫ)) + ∇U
(

d
(ǫ)

[T ]
)T (

x(ǫ) − d
(ǫ)

[T ]
)

(b)

≥ U(x(ǫ)) −
∥

∥

∥∇U
(

d
(ǫ)

[T ]
)∥

∥

∥

∥

∥

∥d
(ǫ)

[T ] − x(ǫ)
∥

∥

∥

(c)

≥ U(x(ǫ)) −
√

Lhmax

∥

∥

∥d
(ǫ)

[T ] − x(ǫ)
∥

∥

∥ , (71)

where the step (a) follows from the definition of concavity; (b)

follows from Cauchy-Schwartz’s inequality; (c) follows from

Assumption 3.
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By using similar line of argument in Proposition 2, it is not

hard to show that

φ(d
(ǫ)

[T ],x(ǫ)) =
∥

∥

∥d
(ǫ)

[T ] − x(ǫ)
∥

∥

∥ ≤ R
(ǫ)
2

T
, (72)

where R
(ǫ)
2 is some positive constant. Thus, we have

U
(

d
(ǫ)

[T ]
)

≥ U(x(ǫ)) −
√

LhmaxR
(ǫ)
2

T
. (73)

Since ‖x(ǫ) − r∗‖ ≤ ρ(ǫ), by the Mean Value Theorem, we

have

|U(x(ǫ)) − U(r∗)| = |∇U(z)T(x(ǫ) − r∗)|
≤ ‖∇U(z)‖‖x(ǫ) − r∗‖
≤ hmax

√
Lρ(ǫ), (74)

where z is between x(ǫ) and r∗. Thus, we have

U(x(ǫ)) ≥ U(r∗) − hmax

√
Lρ(ǫ), (75)

By substituting (75) into (73), we have the desired result.

APPENDIX H

PROOF OF PROPOSITION 7

Before analyzing the convergence speed of the Dual Algo-

rithm, we need to establish the boundedness of queue length

for all links.

Lemma 4: For Dual Algorithm with parameter ǫ > 0, the

queue lengths for all links are bounded all the time, i.e.,

Q
(ǫ)
l [t] ≤ G(ǫ), ∀l, t, (76)

where G(ǫ) ,
√

W + hmax

ǫ
and W ,

(

βmax

ǫ
+ 2
)

LM2 +
(

3βmax

ǫ
+ 2
)

L maxl∈L b2
l,Kl

.

Proof: See Appendix I for the proof.

We are ready to analyze the convergence speed of the Dual

Algorithm in terms of its utility benefit. By Assumption 2, there

is no unused service in the system and thus we have

U(d
(ǫ)

[T ]) = U

(

1

T

T
∑

t=1

S(ǫ)[t]

)

(a)

≥U

(

1

T

T
∑

t=1

x(ǫ)[t]

)

−∇U

(

1

T

T
∑

t=1

S(ǫ)[t]

)T
∑T

t=1(x
(ǫ)[t] − S(ǫ)[t])

T

(b)

≥U

(

1

T

T
∑

t=1

x(ǫ)[t]

)

− 1

T

∥

∥

∥

∥

∥

∇U

(

1

T

T
∑

t=1

S(ǫ)[t]

)∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

T
∑

t=1

(x(ǫ)[t] − S(ǫ)[t])

∥

∥

∥

∥

∥

(c)

≥U

(

1

T

T
∑

t=1

x(ǫ)[t]

)

− hmax

√
L

T
‖Q(ǫ)[T + 1] − Q(ǫ)[1]‖

(d)

≥U

(

1

T

T
∑

t=1

x(ǫ)[t]

)

− hmax

√
L

T

(

‖Q(ǫ)[1]‖ + ‖Q(ǫ)[T + 1]‖
)

(e)

≥U

(

1

T

T
∑

t=1

x(ǫ)[t]

)

− hmax

√
L

T

(

‖Q(ǫ)[1]‖ + G(ǫ)
√

L
)

,

(77)

where the step (a) follows from the concavity of utility function;

(b) follows from the Cauchy-Schwarz inequality; (c) uses

Assumption 3 and the queue evolution (27); (d) follows from

the triangle inequality; (e) follows from the Lemma 4.

Next, we give the lower bound for U
(

1
T

∑T
t=1 x(ǫ)[t]

)

.

1

ǫ
U

(

1

T

T
∑

t=1

x(ǫ)[t]

)

(a)

≥ 1

ǫ

1

T

T
∑

t=1

U
(

x(ǫ)[t]
)

=
1

T

T
∑

t=1

(

1

ǫ
U(x(ǫ)[t]) −

L
∑

l=1

Q
(ǫ)
l [t]x

(ǫ)
l [t]

)

+
1

T

T
∑

t=1

L
∑

l=1

Q
(ǫ)
l [t]x

(ǫ)
l [t]

(b)

≥ 1

T

T
∑

t=1

(

1

ǫ
U(r∗) −

L
∑

l=1

Q
(ǫ)
l [t]r∗l

)

+
1

T

T
∑

t=1

L
∑

l=1

Q
(ǫ)
l [t]x

(ǫ)
l [t]

=
1

ǫ
U(r∗) +

1

T

T
∑

t=1

L
∑

l=1

Q
(ǫ)
l [t](x

(ǫ)
l [t] − r∗l ), (78)

where the step (a) follows from the Jensen’s inequality; (b)

follows from equation (25). Hence, we have

U

(

1

T

T
∑

t=1

x(ǫ)[t]

)

≥ U(r∗) +
ǫ

T

T
∑

t=1

L
∑

l=1

Q
(ǫ)
l [t](x

(ǫ)
l [t] − r∗l ).

(79)
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Next, let’s consider
∑T

t=1

∑L
l=1 Q

(ǫ)
l [t](x

(ǫ)
l [t] − r∗l ).

T
∑

t=1

L
∑

l=1

Q
(ǫ)
l [t](x

(ǫ)
l [t] − r∗l )

=
T
∑

t=1

L
∑

l=1

Q
(ǫ)
l [t](x

(ǫ)
l [t] − S

(ǫ)
l [t]) +

T
∑

t=1

L
∑

l=1

Q
(ǫ)
l [t](S

(ǫ)
l [t] − r∗l ).

(80)

For
∑L

l=1 Q
(ǫ)
l [t](S

(ǫ)
l [t] − r∗l ), we have

L
∑

l=1

Q
(ǫ)
l [t](S

(ǫ)
l [t] − r∗l )

=

L
∑

l=1

Q
(ǫ)
l [t](S

(ǫ)
l [t] − r∗l )1{Q

(ǫ)
l

[t]≥bl,Kl
}

+
L
∑

l=1

Q
(ǫ)
l [t](S

(ǫ)
l [t] − r∗l )1{Q

(ǫ)
l

[t]<bl,Kl
}

(a)

≥
L
∑

l=1

Q
(ǫ)
l [t](S

(ǫ)
l [t] − r∗l )1{Q

(ǫ)
l

[t]<bl,Kl
}

≥ −
L
∑

l=1

Q
(ǫ)
l [t]r∗l 1{Q

(ǫ)
l

[t]<bl,Kl
}

≥ −L max
l∈L

b2
l,Kl

, (81)

where the step (a) follows from equation (26). Thus, we have

T
∑

t=1

L
∑

l=1

Q
(ǫ)
l [t](S

(ǫ)
l [t] − r∗l ) ≥ −TL max

l∈L
b2
l,Kl

. (82)

Next, we consider
∑L

l=1 Q
(ǫ)
l [t](x

(ǫ)
l [t] − S

(ǫ)
l [t]). By using

the queue length evolution (27), we have

‖Q(ǫ)[t + 1]‖2 = ‖Q(ǫ)[t] + x(ǫ)[t] − S(ǫ)[t]‖2

= ‖Q(ǫ)[t]‖2 + 2

L
∑

l=1

Q
(ǫ)
l [t](x

(ǫ)
l [t] − S

(ǫ)
l [t]) + ‖x(ǫ)[t] − S(ǫ)[t]‖2.

Thus, we have

L
∑

l=1

Q
(ǫ)
l [t](x

(ǫ)
l [t] − S

(ǫ)
l [t])

=
1

2

(

‖Q(ǫ)[t + 1]‖2 − ‖Q(ǫ)[t]‖2
)

− 1

2
‖x(ǫ)[t] − S(ǫ)[t]‖2

≥ 1

2

(

‖Q(ǫ)[t + 1]‖2 − ‖Q(ǫ)[t]‖2
)

− L

2
(M2 + max

l∈L
b2
l,Kl

),

(83)

where we use the fact that ‖x(ǫ)[t]−S(ǫ)[t]‖2 =
∑L

l=1(x
(ǫ)
l [t]−

S
(ǫ)
l [t])2 ≤ ∑L

l=1((x
(ǫ)
l [t])2 + (S

(ǫ)
l [t])2) ≤ L(M2 +

maxl∈L b2
l,Kl

). Hence, we have

T
∑

t=1

L
∑

l=1

Q
(ǫ)
l [t](x

(ǫ)
l [t] − S

(ǫ)
l [t])

≥ 1

2

(

‖Q(ǫ)[T + 1]‖2 − ‖Q(ǫ)[1]‖2
)

− TL

2
(M2 + max

l∈L
b2
l,Kl

)

≥ −1

2
‖Q(ǫ)[1]‖2 − TL

2
(M2 + max

l∈L
b2
l,Kl

). (84)

Thus, by substituting (82) and (84) into (80), we have

T
∑

t=1

L
∑

l=1

Q
(ǫ)
l [t](x

(ǫ)
l [t] − r∗l ) ≥ −1

2
‖Q(ǫ)[1]‖2 − TL

2
(M2 + 3 max

l∈L
b2
l,Kl

).

Hence, we have

ǫ

T

T
∑

t=1

L
∑

l=1

Q
(ǫ)
l [t](x

(ǫ)
l [t] − r∗l )

≥ − ǫ

2T
‖Q(ǫ)[1]‖2 − ǫL

2
(M2 + 3 max

l∈L
b2
l,Kl

). (85)

Thus, by combining (77), (79) and (85), we have the desired

result.

APPENDIX I

PROOF FOR LEMMA 4

Definition 7: (Invariant Pair:)

The pair (Q∗(ǫ), r∗(ǫ)) forms an invariant pair if they satisfy

the following conditions:

U ′
l (r

∗(ǫ)
l ) = ǫQ

∗(ǫ)
l , (86)

r∗(ǫ) ∈ argmax
η∈R

L
∑

l=1

Q
∗(ǫ)
l ηl. (87)

By using similar technique as in [4], we can show the

existence and uniqueness of (Q∗(ǫ), r∗(ǫ)). In addition, r∗(ǫ)

is the same for all ǫ and thus r∗(ǫ) = r∗.

Choose Lyapunov function V2(Q
(ǫ)[t]) = 1

2

∑L
l=1(Q

(ǫ)
l [t] −

Q
∗(ǫ)
l )2. By using similar technique as in [4], we have

∆V2 ,V2(Q
(ǫ)[t + 1]) − V2(Q

(ǫ)[t])

≤− 2ǫ

βmax
V2(Q

(ǫ)[t]) + W1, (88)

where W1 , 1
2

∑L
l=1(x

(ǫ)
l [t]−S

(ǫ)
l [t])2+L maxl∈L b2

l,Kl
. Thus,

if V2(Q
(ǫ)[t]) > W1βmax

2ǫ
, then, V2(Q

(ǫ)[t + 1]) < V2(Q
(ǫ)[t]);

otherwise, V2(Q
(ǫ)[t + 1]) may be greater than or equal to
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V2(Q
(ǫ)[t]). Thus, if V2(Q

(ǫ)[t]) = W1βmax

2ǫ
, then

2V2(Q
(ǫ)[t + 1]) =

L
∑

l=1

(Q
(ǫ)
l [t + 1] − Q

∗(ǫ)
l )2

(a)
=

L
∑

l=1

(Q
(ǫ)
l [t] + x

(ǫ)
l [t] − S

(ǫ)
l [t] − Q

∗(ǫ)
l )2

=

L
∑

l=1

(Q
(ǫ)
l [t] − Q

∗(ǫ)
l )2 +

L
∑

l=1

(x
(ǫ)
l [t] − S

(ǫ)
l [t])2

+ 2

L
∑

l=1

(Q
(ǫ)
l [t] − Q

∗(ǫ)
l )(x

(ǫ)
l [t] − S

(ǫ)
l [t])

(b)

≤‖Q(ǫ)[t] − Q∗(ǫ)‖2 + ‖x(ǫ)[t] − S(ǫ)[t]‖2

+ 2‖Q(ǫ)[t] − Q∗(ǫ)‖‖x(ǫ)[t] − S(ǫ)[t]‖
≤2‖Q(ǫ)[t] − Q∗(ǫ)‖2 + 2‖x(ǫ)[t] − S(ǫ)[t]‖2, (89)

where (a) uses the fact that there is always no unused service

by Assumption 2; (b) follows from Cauchy-Schwarz inequality.

Since

‖Q(ǫ)[t] − Q∗(ǫ)‖2 = 2V2(Q
(ǫ)[t]) =

W1βmax

ǫ
(90)

and

‖x(ǫ)[t] − S(ǫ)[t]‖2 ≤ L(M2 + max
l∈L

b2
l,Kl

), (91)

we have

2V2(Q
(ǫ)[t + 1]) ≤ 2

(

W1βmax

ǫ
+ L(M2 + max

l∈L
b2
l,Kl

)

)

, W2.

Thus, we have

2V2(Q
(ǫ)[t]) ≤ W2, ∀t. (92)

Now, we can give an upper bound for queue lengths at each

time. Indeed, we have

Q
(ǫ)
l [t] = Q

(ǫ)
l [t] − Q

∗(ǫ)
l + Q

∗(ǫ)
l ≤ |Q(ǫ)

l [t] − Q
∗(ǫ)
l | + Q

∗(ǫ)
l

≤
√

W2 +
hmax

ǫ
, ∀l, t,

where the last step follows from |Q(ǫ)
l [t] − Q

∗(ǫ)
l | ≤

√

2V2(Q(ǫ)[t]) ≤
√

W2 and Q
∗(ǫ)
l =

U ′

l (r
∗

l )
ǫ

≤ hmax

ǫ
. Since

W1 ≤ 1
2L(M2 + maxl∈L b2

l,Kl
) + L maxl∈L b2

l,Kl
, we have

W2 ≤
(

βmax

ǫ
+ 2

)

LM2 +

(

3βmax

ǫ
+ 2

)

L max
l∈L

b2
l,Kl

, W.

(93)

Thus, we have

Q
(ǫ)
l [t] ≤

√
W +

hmax

ǫ
, G(ǫ) (94)


