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Abstract—The proliferation of smart mobile devices has
spurred an explosive growth of mobile crowd-learning services,
where service providers rely on the user community to vol-
untarily collect, report, and share real-time information for
a collection of scattered points of interest (PoI). A critical
factor affecting the future large-scale adoption of such mobile
crowd-learning applications is the freshness of the crowd-learned
information, which can be measured by a metric termed “age-
of-information” (AoI). However, we show that the AoI of mobile
crowd-learning could be arbitrarily bad under selfish users’
behaviors if the system is poorly designed. This motivates us to
design efficient reward mechanisms to incentivize mobile users
to report information in time, with the goal of keeping the
AoI and congestion level of each PoI low. Toward this end,
we consider a simple linear AoI-based reward mechanism and
analyze its AoI and congestion performances in terms of price
of anarchy (PoA), which characterizes the degradation of the
system efficiency due to selfish behavior of users. Remarkably,
we show that the proposed mechanism achieves the optimal AoI
performance asymptotically in a deterministic scenario. Further,
we prove that the proposed mechanism achieves a bounded PoA
in general stochastic cases, and the bound only depends on
system parameters. Particularly, when the service rates of PoIs
are symmetric in stochastic cases, the achieved PoA is upper-
bounded by 1/2 asymptotically. Collectively, this work advances
our understanding of information freshness in mobile crowd-
learning systems.

I. INTRODUCTION

Fueled by the proliferation of smart mobile devices (e.g.,
smartphones, tablets, etc.), recent years have witnessed a rapid
growth of information services and data analytics based on
large-scale crowd-learning. A key defining feature of these
crowd-learning applications is that they rely on the user
community to voluntarily collect, report, and share real-time
information for a set of distributed points of interest (PoI).
Such crowd-learned information will in turn benefit the users
themselves and attract more users to join the community
(by reputation, word of mouth, etc.), which further enhances
the accuracy, value, and significance of the crowd-learning
applications. For example, the real-time traffic congestion and
accident information on Google Waze [1] (a community-based
GPS system) relies on the reports from mobile devices and
the tracking of their locations, densities, and trajectories. As
another example, by offering a variety of incentives, many
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data analytics services leverage their user communities to share
real-time information of scattered commodities and resources,
such as cheap gasoline stations (e.g., GasBuddy [2]), parking
space availability (e.g., Pavemint [3]), free WiFi hotspots (e.g.,
WiFi Finder [4]), popular grocery deals information (e.g.,
Basket [5]), to name just a few. It can be foreseen that new
crowd-learning applications will continue to emerge.

Although mobile crowd-learning holds a great potential to
fundamentally change our modern society, a critical factor
affecting its future large-scale adoption is the freshness of
the crowd-learned information, which can be measured by a
fundamental metric termed “Age-of-Information” (AoI). Guar-
anteeing information freshness in crowd-learning is critical
because stale information discourages existing and new users
from participating, which in turn degrades the information
freshness and creates a vicious circle. Unfortunately, due to
the special dynamics between the service provider and the
users, there is an inherent lack of information freshness guar-
antee in mobile crowd-learning: First, to maintain information
freshness, the service provider needs to incentivize the users to
update the states of the PoIs. Second, the crowd-learning users
are “selfish” in the sense that their best interest is to maximize
their own benefit from participating in crowd-learning, rather
than minimizing the AoI for the service provider. Hence,
a poorly designed incentive mechanism could result in two
undesirable consequences: (i) too many users flock to an
attractive PoI, which leads to redundant sampling and severe
queueing congestion; and (ii) all other PoIs suffer from large
AoI because of under-sampling. In light of these unique
characteristics of mobile crowd-learning, several fundamental
open questions naturally arise:

1) Is it possible to guarantee information freshness by incen-
tivizing selfish users in mobile crowd-learning?

2) If the answer to 1) is “yes,” what is the fundamental
relationship between reward and AoI in crowd-learning?

3) How to design reward mechanisms to avoid large queueing
congestion while guaranteeing AoI in crowd-learning?

However, answering the above questions are non-trivial
because the AoI and congestion analysis in mobile crowd-
learning face the following challenges: First, there is a lack
of analytical model that characterizes the essential features of
mobile crowd-learning in the literature. Most of the existing
work on crowd-sensing are based on static models that hardly
capture the dynamic and stochastic nature of participating
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users in mobile crowd-learning. Second, as shown by recent
studies (see, e.g., [6]–[9]), AoI dynamics are fundamentally
different from the traditional queueing evolution, which ne-
cessitates new theoretical tools. Third, as will be shown later,
there is a strong coupling between the AoI and queue-length
processes in crowd-learning, where changing the design of
either one would significantly affect that of the other.

In this paper, we overcome the above challenges and
propose a new analytical model coupled with the Price of
Anarchy (PoA) metric, which characterizes the degradation
of a system due to selfish behavior of users1. This enables
us to analyze and understand the relationships between AoI,
queueing congestion, and rewards under users’ selfishness. The
main results and contributions of this paper are as follows:
• First, we develop a new analytical model for mobile crowd-

learning, which takes into account the strong couplings
between the stochastic arrivals of participating users, PoIs’
information evolutions, and reward mechanisms. As will
be discussed next, this new analytical model enables us to
reveal the fundamental scaling law between AoI, queueing
congestion, and the reward rate set by the service provider.

• Next, as a starting point, we analyze the AoI performance
under a linear AoI-based reward mechanism in a determin-
istic setting, where there is exactly one arriving user in each
time slot, and each PoI serves exactly one user (if any) in
each time slot (and hence no queueing effect in this setting).
We show that given an AoI reward rate β, the PoA is upper-
bounded by O(1/β), which implies that the system achieves
the optimal AoI as β increases asymptotically.

• Finally, based on our results for the deterministic case,
we characterize the joint AoI-congestion performance of
mobile crowd-learning for stochastic settings. Although the
reward policy design for joint AoI and queueing congestion
optimization remains an open problem in stochastic settings,
surprisingly, we show that the above linear AoI-based re-
ward mechanism yields a bounded PoA, which only depends
on the arrival and service parameters of the system. In the
case of symmetric services, the PoA is upper-bounded by
1/2 as the reward rate β increases asymptotically.
Collectively, our results in this paper advance the under-

standing of achieving information freshness in mobile crowd-
learning with selfish users. The remainder of this paper
is organized as follows: Section II reviews related work.
Section III introduces system model and problem statement.
Section IV introduces a linear reward mechanism, and Sec-
tions V–VI study its PoAs in the deterministic and stochastic
cases, respectively. Section VII presents numerical results and
Section VIII concludes this paper.

II. RELATED WORK

To put our work in comparative perspectives, in this section,
we provide an overview on the related work in the areas of
crowd-sensing and age-of-information, respectively.

1The value of PoA is always between 0 and 1, and the larger the PoA, the
less efficient the system. See Sections IV–VI for more in-depth discussions.

a) Crowd-Sensing: In the literature, crowd-sensing refers
to the sensing model where a group of individuals collec-
tively measure some common phenomena, e.g., environmental
quality monitoring [10], noise pollution assessment [11], [12],
and traffic monitoring [13], etc. Although crowd-sensing bears
some similarity to mobile crowd-learning, the main focuses
of the crowd-sensing research community are on network
resource management, system infrastructure, incentive mech-
anism designs, etc. (see [14] for a comprehensive survey). In
contrast, the overarching theme of this paper is to guaran-
tee information freshness in learning scattered objects by a
selfish crowd. Moreover, most of the existing crowd-sensing
research adopts either a static model, where the set of sensing
individuals is fixed (see, e.g., [15] and references therein);
or based on a static game-theoretic model, where a fixed
set of sensing individuals are incentivized/contracted by a
fixed set of employers (see, e.g., [16] and references therein).
These are fundamentally different from our dynamic model
described in Section III. Hence, our work fills a critical gap
in understanding large-scale mobile crowd-learning.

b) Age-of-Information (AoI): Originated from sensing
systems, AoI has attracted increasing attention from the
information theory, signal processing, and communications
communities in recent years. Besides being a useful per-
formance metric, AoI also possesses several key features
that distinguish itself from the traditional notion of queueing
delay. Most notably, in many sensing systems, it has been
found that while queueing delay benefits from lower sampling
rates (implying less data traffic), AoI is non-monotone with
respect to sampling rates. This key difference has sparked AoI
research in several aspects, e.g., real-time sampling and remote
estimation trade-off [17], [18], joint source-channel coding
exploitation [19], [20], caching [21], optimization algorithms
for AoI minimization [22], [23], age-based scheduling [24],
just to name a few. We note that the key differences between
our research and the existing AoI research are: i) the tight
coupling and dependence between multi-user arrival dynamics
and multi-source information time series on a network level;
and ii) the complex interactions between AoI, fresh/outdated
information, and queueing, all of which are governed by the
service provider’s reward mechanism designs. These key dif-
ferences introduce new challenges in guaranteeing stochastic
network information freshness unseen in existing AoI research.

III. NETWORK MODEL AND PROBLEM STATEMENT

As shown in Fig. 1, we consider a mobile crowd-learning
system consisting of N nodes that represent N points of
interest (PoI), e.g., road intersections, parking garages, po-
tential WiFi hotspots, gas stations, etc. We consider a time-
slotted system. In each time slot t, each PoI n has some
state information pn[t] (e.g., congestion level, parking rate and
space, gas price, etc.) that is time-varying and to be sampled
by their users. Note that the dynamics of pn[t] is arbitrary.
We only assume that pn[t] ∈ [pmin, pmax],∀t, for some
positive constants pmin and pmax. A service provider (i.e.,
a crowd-learning-based information/data analytics platform)
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Fig. 1: A system model for mobile crowd-learning.

relies on randomly arriving users to sample and report the
states of the PoIs. The service provider maintains a record
for each PoI, whose value in time slot t is denoted as rn[t],
n = 1, . . . , N . For ease of exposition, we will refer to pn[t]
and rn[t] as “price” and “recorded price” in the rest of
this paper, respectively. Let un[t] be the most recent update
time up to time slot t for PoI n’s record. Hence, the age
(freshness) of record rn[t] in time slot t can be represented as
∆n[t] = t− un[t].

Let A[t] be the number of users arriving at the system in
time slot t. We assume that A[t], t ≥ 0, are independently
and identically distributed (i.i.d.) across time with mean λ ,
E[A[t]] > 0 and bounded second moment E[A2[t]] <∞. The
arrivals model the scenario that users at different locations
use their mobile apps in each time slot to acquire information
of the PoIs before making decisions. Each arriving user will
first observe the current records of all PoIs and choose a
favorable one (e.g., choosing the least congested route, the
lowest gas price, or the cheapest and nearest parking space,
etc.). However, due to the random updating time in crowd-
learning, the information of some PoI n’s record could be old
and hence rn[t] may be outdated and inaccurate.

On the other hand, upon the arrival at his/her chosen PoI,
say n in time slot t, the user will report the PoI’s real-time
state (e.g., real-time price, congestion level, etc.), i.e., pn[t].
Let Rn[t] denote the number of users that can be served by
PoI n in time slot t. We assume that Rn[t], t ≥ 0, are i.i.d.
across time and independently distributed across PoIs with
mean µn , E[Rn[t]] > 0,∀n, and Rn[t] ≤ Rmax,∀n, t, for
some Rmax <∞. We use Qn[t] to denote the number of users
awaiting for service in PoI n in time slot t.

The service provider’s goal is to achieve minimum time-
average AoI while keeping queueing congestion at each PoI
low. The rationale behind this goal is that low AoI (i.e., fresh
information) implies multiple benefits, e.g., high information
accuracy, which attracts more users; hence more advertising
revenues due to large user volume, etc. However, the following
toy example shows that the natural greedy behavior of selfish
users could yield AoI instability in mobile crowd-learning:

A Motivating Example (AoI Instability due to Selfishness):
Consider a two-PoI example as shown in Fig. 2. Consider the
most “natural” price-greedy decision made by selfish users:
In time slot t, each arriving user compares the recorded prices
r1[t] and r2[t] and chooses the cheaper PoI, i.e., choosing
n∗[t] ∈ arg minn∈{1,2}{rn[t]}. Suppose that pn[t] ∈ [0, pmax],
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Fig. 2: A two-PoI motivating example
with p1[0] = 0.999 and p2[0] = 0.1.
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n = 1, 2. Assume that the probability Pr{pn[t] = pmax} = ε,
n = 1, 2, where ε > 0 is some small value. Suppose also
that in the initial state, p1[0] = pmax and p2[0] = δ < pmax.
Thus, at t = 0, all users choose PoI 2 and the record r2[t]
will be updated, in which case the age of PoI 2 in time slot
1 becomes zero, i.e., ∆2[1] = 0. However, due to the high
initial price p1[0], no user chooses PoI 1. Also, due to the
low probability of p2[t] reaching pmax, it would take a long
time (could be unbounded if ε is arbitrarily small) for PoI
1 to receive any user to update r1[·], although p1[t] may be
lower than p2[t]. For example, in Fig. 3, p1[t] and p2[t] are
uniformly distributed in [0, 1]. We let p1[0] = 0.999 (large
initial value) and p2[0] = 0.1. Clearly, we can see that PoI
1’s AoI is large and grows linearly with respect to time.

The above observation of AoI instability due to users’ self-
ishness motivates us to design crowd-learning reward mecha-
nisms to ensure information freshness in crowd-learning.

IV. A LINEAR AOI-BASED REWARD MECHANISM

To keep the AoI being bounded, the service provider would
like users to go to and sample a PoI with the most outdated
information. However, unlike traditional scheduling problems,
the crowd-learning service provider cannot enforce each ar-
riving selfish user to go to a certain PoI. Rather, the service
provider can only offer incentives/rewards to influence the
users to choose certain PoIs. So far, however, the problem of
optimal reward mechanism design for mobile crowd-learning
with selfish users has not been addressed in the literature.
Therefore, in this paper, we start from considering a simple
linear reward mechanism for mobile crowd-learning.

Specifically, we let β > 0 represent the “reward per unit
of age” offered by the service provider. Note that each user
prefers to select a PoI with both low price and congestion
level. We use a parameter γ > 0 to denote users’ sensitivity
to queueing congestion, which depends on specific mobile
crowd-learning application2. Hence, in each time slot t, an
arriving user’s presumed benefit for choosing PoI n and
reporting its state is: β∆n[t] − γQn[t] − rn[t]. In this work,
we assume that all arriving users are selfish and rational, so
that they would select a PoI n∗[t] to maximize their presumed
benefit, i.e.,

n∗[t] ∈ arg max
n∈{1,2,...,N}

(β∆n[t]− γQn[t]− rn[t]) , ∀t. (1)

2Here, we assume that all users are homogeneous and have the same γ-
value. The impact of users’ heterogeneity in congestion sensitivity will be
studied in our future work.
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Note that for any fixed γ, when the reward rate diminishes,
i.e., β ↓ 0, each user essentially follows the “greedy” scheme
to select a PoI with the smallest value of γQn[t] + rn[t].
By contrast, when the reward rate approaches infinity, i.e.,
β ↑ ∞, the effects of Qn[t] and rn[t] become negligible in
users’ presumed benefit and thus it encourages users to help
the service provider maintain information freshness.

To facilitate our subsequent analysis, we use Sn[t] to denote
whether there is at least one user selecting PoI n in time slot
t. In particular, Sn[t] = 1 if at least one user selects PoI n in
time slot t, and Sn[t] = 0 otherwise. Under the assumption of
users’ selfishness and rationality, the dynamics of queue-length
and age of PoI n can be described as follows:

Qn[t+ 1] = max{Qn[t] +A[t]S∗n[t]−Rn[t], 0},∀n. (2)

and ∆n[t+ 1] =

{
∆n[t] + 1, if S∗n[t]1{A[t]>0} = 0,

0, otherwise,
(3)

where S∗n[t] = 1 if n = n∗[t] and S∗n[t] = 0 otherwise, and
1{·} is an indicator function. Let S∗[t] , (S∗n[t])Nn=1.

To understand the impact of users’ selfishness on AoI and
queueing congestion, in this paper, we adopt the so-called
Price of Anarchy (PoA) metric from the game theory literature,
which characterizes the degradation of the system efficiency
due to the selfish behavior of users compared to the optimum.
Roughly speaking, the notion of PoA ρ is defined as:

ρ = 1− Minimum cost
Cost under selfish behavior

. (4)

Note that ρ ∈ [0, 1] and the smaller the PoA, the more efficient
the system under selfish user behavior. In what follows, we will
analyze the PoA of the linear reward scheme (1), where the
definition of cost in (4) depends on specific system scenarios
that will be clarified in subsequent sections.

V. PRICE OF ANARCHY: A DETERMINISTIC CASE

In this section, we first consider a simple deterministic case,
where, in each time slot, there is exactly one arriving user
and each PoI serves exactly one user if there is any. This
deterministic case not only provides interesting insights, its
results and proof strategies will also serve as a foundation for
analyzing general cases with stochastic arrivals and services.
Note that due to the special arrival and service patterns in this
deterministic case, there is no queueing effect at each PoI.
Hence, user’s selfish selection (cf. (1)) becomes:

n∗[t] ∈ arg max
n∈{1,2,...,N}

(β∆n[t]− rn[t]) . (5)

In addition, the evolution of age of PoI n in (3) becomes:

∆n[t+ 1] = (∆n[t] + 1)(1− S∗n[t]). (6)

Next, we study the information freshness performance under
the selfish behavior of users (cf. (5)) based on the notion of
PoA. Since queueing does not play a role and the system is
symmetric, we define the cost function with selfish users under
some reward rate β as ∆

(β)

max and hence the PoA is ρ(β) ,

1 − ∆
(OPT)

max /∆
(β)

max, where ∆
(OPT)

max and ∆
(β)

max are the average
maximum age under an optimal policy (with unselfish users)
and under the user’s selfishness, respectively. The first main
result of this paper is stated as follows:

Theorem 1 (AoI-Based PoA for the Deterministic Case). If
there is exactly one user arriving in each time slot and each
PoI serves exactly one user per time-slot if there is any, the
users’ selfishness yields the following PoA performance:

ρ(β) ≤ pmax

(N − 1)β + pmax
= O(1/β). (7)

Proof. The proof consists of two main steps: (i) Finding an
upper bound on the average maximum age ∆

(β)

max due to users’
selfishness; and (ii) derving a lower bound on the average
maximum age ∆

(OPT)
max achieved by an optimal policy.

Step 1): To find an upper bound on the average maximum
age due to users’ selfish behavior, we perform Lyapunov drift
analysis through an age-based Lyapunov function as follows:

V [t] ,
N∑
n=1

∆n[t]. (8)

Let M[t] , ({∆n[t]}Nn=1, {rn[t]}Nn=1) and consider an un-
selfish policy S̃[t], (S̃n[t])Nn=1∈arg maxS

∑N
n=1 ∆n[t]Sn[t],

i.e., users select the PoI with the largest age. Then, the one-
step conditional expected drift of V [t] can be computed as:

∆V [t] ,E [V [t+ 1]− V [t]|M[t]]

=

N∑
n=1

E [∆n[t+ 1]−∆n[t]|M[t]]

(a)
=

N∑
n=1

E [1− (∆n[t] + 1)S∗n[t]|M[t]]

(b)
=N − 1−

N∑
n=1

E [∆n[t]S∗n[t]|M[t]] (9)

≤N − 1−
N∑
n=1

E

[(
∆n[t]− 1

β
rn[t]

)
S∗n[t]

∣∣∣∣M[t]

]
(c)

≤N − 1−
N∑
n=1

E

[(
∆n[t]− 1

β
rn[t]

)
S̃n[t]

∣∣∣∣M[t]

]
,

(d)

≤N − 1−∆max[t] +
1

β
pmax, (10)

where (a) uses dynamics of ∆n[t] in (6); (b) follows from the
fact that each user joins one of the PoIs in each time slot, i.e.,∑N
n=1 S

∗
n[t] = 1; (c) follows from the definition of S∗n[t]; and

(d) uses the fact that rn[t] ≤ pmax,∀n, t ≥ 0, the definition
of S̃[t], and the fact that exactly one S̃n[t] is non-zero. It then
follows from (10) that:

E [V [t+ 1]− V [t]] ≤ N − 1− E[∆max[t]] +
1

β
pmax. (11)

Summing (11) for t = 0, 1, 2, . . . , T − 1, we obtain:

E[V [T ]− V [0]]≤−
T−1∑
t=0

E[∆max[t]]+(N − 1)T+
T

β
pmax,
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which implies that

∆
(β)

max , lim sup
T→∞

1

T

T−1∑
t=0

E[∆max[t]] ≤ N − 1 +
1

β
pmax. (12)

Step 2): Next, we derive a fundamental lower bound on
the average maximum age that can be achieved by the op-
timal policy. By using the same Lyapunov function in (8)
to compute the conditional expected one-step drift under the
optimal policy {S(OPT)

n [t]} and following similar steps, we
have ∆V [t] = N − 1 −

∑N
n=1E[∆

(OPT)
n [t]S

(OPT)
n [t]|M[t]],

where ∆
(OPT)
n [t] is the age of PoI n in time slot t under the

optimal policy. In Step 1, we have already shown that the
average maximum age is finite under the selfish policy. This
readily implies that the average maximum age is also finite
under the optimal policy. Therefore, E[∆V [t]] will be equal
to zero in steady-state and thus we have

N∑
n=1

E[∆̂(OPT)
n Ŝ(OPT)

n ] = N − 1, (13)

where ∆̂
(OPT)
n and Ŝ(OPT)

n are random variables with the same
distribution as ∆

(OPT)
n [t] and S

(OPT)
n [t] in steady-state under

the optimal policy, respectively. Hence, we have

∆
(OPT)

max

(a)
= E[∆̂(OPT)

max ]
(b)
= E[max

n
∆̂(OPT)
n ]

(c)

≥
N∑
n=1

E[∆̂(OPT)
n Ŝ(OPT)

n ]
(d)
= N − 1, (14)

where step (a) follows from the boundedness of the aver-
age maximum age under the optimal policy; (b) is true for
∆̂

(OPT)
max , maxn ∆̂

(OPT)
n ; (c) follows from the fact that each

arriving user joins exactly one of the PoIs, i.e.,
∑N
n=1 Ŝ

(OPT)
n =

1; and (d) uses (13). Lastly, by combining the upper bound
in Step 1 and lower bound in Step 2, the desired PoA result
in Theorem 1 follows and the proof is complete.

Remark 1. Two insightful remarks for Theorem 1 are in
order: i) In Step 2, the lower bound of ∆(OPT)

max is tight and
can be achieved by the Round-Robin policy, i.e., the system
guides each arriving user to the PoIs in a Round-Robin fashion.
Indeed, under Round-Robin, the ages of PoIs are a permutation
of {0, 1, 2, . . . , N − 1} in each time slot, and hence the max-
imum age under Round-Robin is ∆(RR)

max[t] = N − 1,∀t ≥ 0,
which implies that ∆

(RR)
max = N − 1 = ∆

(OPT)
max ; ii) From

Theorem 1, we can observe that if β increases asymptotically
(i.e., β ↑ ∞), we have ρ(β) ↓ 0. This implies that the system
is optimal and mimicking Round-Robin when the service
provider increases the incentive asymptotically. On the other
hand, if β reduces to zero (i.e., β ↓ 0), we can see from (5)
that each user just follows a price-greedy strategy. In this case,
Theorem 1 suggests that the upper bound of ρ(β) approaches
1, which is consistent with our observation (cf. motivating
example in Section III) that the system suffers a poor AoI
performance and potentially AoI instability (i.e., ∆

(β)

max ↑ ∞).

VI. PRICE OF ANARCHY: STOCHASTIC CASES

Based on the results for the deterministic case, we are now
in a position to analyze the AoI and congestion performances
under users’ selfishness in cases with stochastic arrivals and
services. To facilitate analysis, we define a parameter q ,
Pr{A[t] > 0} for the arrivals, which is strictly positive for
λ , E[A[t]] > 0. Let µΣ ,

∑N
n=1 µn. Here, we adopt the

cost function J(β, γ) , γε
N

∑N
n=1Qn+β

∑N
n=1

µn
µΣ

∆n, where
ε > 0 satisfies µn/λ ≥ µn/µΣ + ε/N,∀n = 1, 2, . . . , N
due to the fact that λ < µΣ (necessary for guaranteeing
the system’s queueing stability3), and Qn and ∆n are the
average queue-length and average age of PoI n under the
user’s selfishness, respectively. We note that in J(β, γ), ε is
used as a scaling parameter to reduce the cost’s sensitivity to
average queue-length 1

N

∑N
n=1Qn under different arrival rates

λ. Also, γ and β are used to emphasize the relative importance
between queueing and AoI costs, as in the presumed benefit
for users’ selfish decisions (cf. (1)). Also, note that J(β, γ)
is based on weighted average age, where the weight µn

µΣ
is

used to “equalize” the different AoI scales caused by the
heterogeneity of the PoIs4. As a result, the PoA is specialized
to ρ(β, γ) , 1 − J (OPT)(β,γ)

J(β,γ) . Our second key result is for the
stochastic cases and stated as follows:

Theorem 2 (Joint AoI-Congestion PoA of Stochastic Cases).
If λ < µΣ, then there exists an ε > 0 satisfying µn/λ ≥
µn/µΣ + ε/N,∀n = 1, 2, . . . , N . In such a case, the users’
selfishness yields the following PoA performance:

ρ(β, γ) ≤ B(γ)− γM + pmax

B(γ) + β
(
N
q − 1

)
+ pmax

+
β
(
N
q −

1
2qµmax

∑N
n=1 µn −

1
2

)
B(γ) + β

(
N
q − 1

)
+ pmax

, (15)

where B(γ) , γ
2λ

(
E[A2[t]] +

∑N
n=1E[R2

n[t]]
)
, M ,

ε
2N(µΣ−λ)

(
Var(A[t]) +

∑N
n=1 Var(Rn[t]) + (µΣ − λ)2

)
−

1
2εRmax, and µmax , maxn µn.

Proof. Similar to the proof of Theorem 1, we first find an up-
per bound on J(β, γ) by using the Lyapunov drift analysis and
then determine a fundamental lower bound on J (OPT)(β, γ).

Step 1): Consider the following Lyapunov function:
L[t] , γ

2λβ

∑N
n=1Q

2
n[t] + 1

q

∑N
n=1 ∆n[t]. Let Z[t] ,

((Qn[t])Nn=1, (∆n[t])Nn=1, (rn[t])Nn=1). Then, the one-step con-
ditional expected drift can be computed as:

∆L[t] , E [L[t+ 1]− L[t]|Z[t]] =E

[
γ

2λβ

N∑
n=1

(
Q2

n[t+ 1]

−Q2
n[t]
)

+
1

q

N∑
n=1

(∆n[t+ 1]−∆n[t])

∣∣∣∣Z[t]

]
3In this paper, we say that a queue n is stable if its average queue-length

is finite, i.e., lim supT→∞
1
T

∑T−1
t=0 E[Qn[t]] < ∞. A system is stable if

all its queues are stable.
4This is also motivated by the fact that the service provider prefers a better

AoI for the PoI with a faster service rate.
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(a)

≤ B(γ)

β
+E

[
γ

λβ

N∑
n=1

Qn[t](A[t]S∗n[t]−Rn[t]),

+
1

q

N∑
n=1

(
1− (∆n[t] + 1)S∗n[t]1{A[t]>0}

) ∣∣∣∣Z[t]

]
, (16)

where (a) is true for B(γ) = γ
2λ (E[A2[t]] +NR2

max) <∞,
and uses dynamics of Qn[t] (cf. (2)) and ∆n[t] (cf. (3)), and
the fact that (max{x, 0})2 ≤ x2,∀x.

Next, we let Z′[t] , (Z[t],1{A[t]>0}). Then, for any
function f(Z[t]), the following sequence of equalities holds:

E{f(Z[t])A[t]|Z[t]} =qE{f(Z[t])A[t]|Z′[t]}
=qE{A[t]|A[t] > 0}E{f(Z[t])|Z′[t]}
=E{A[t]}E{f(Z[t])|Z′[t]}. (17)

Note that each arriving user joins one of the PoIs in each time
slot, i.e.,

∑N
n=1 S

∗
n[t] = 1. Also, the users’ decisions S∗[t]

only depend on Z[t]. Hence, we have that:

(16)
(a)

≤ B(γ)

β
+
N

q
− 1− γ

λβ

N∑
n=1

µnQn[t]

+E

[
γ

β

N∑
n=1

Qn[t]S∗n[t]−
N∑
n=1

∆n[t]S∗n[t]

∣∣∣∣Z′[t]]

≤B(γ)

β
+
N

q
− 1− γ

λβ

N∑
n=1

µnQn[t]

−E
[ N∑
n=1

(
∆n[t]− γ

β
Qn[t]− 1

β
rn[t]

)
S∗n[t]

∣∣∣∣Z′[t]], (18)

where (a) follows from (17) and the fact that q ∈ (0, 1).
Next, consider an unselfish stationary randomized policy with
E[S̃n[t]] = µn/µΣ, ∀n, if A[t] > 0, and µΣ ,

∑N
n=1 µn.

Clearly, from the definition of S∗[t], we have:

(18) ≤ B(γ)

β
+
N

q
− 1− γ

β

N∑
n=1

µn
λ
Qn[t]

− E
[ N∑
n=1

(
∆n[t]− γ

β
Qn[t]− 1

β
rn[t]

)
S̃n[t]

∣∣∣∣Z′[t]], (19)

Noting that µn/λ ≥ µn/µΣ + ε/N,∀n, we have

∆L[t]
(a)

≤ B(γ)

β
+
N

q
− 1 +

pmax

β
− γε

Nβ

N∑
n=1

Qn[t]

− γ

β

N∑
n=1

µn
µΣ

Qn[t]−
N∑
n=1

µn
µΣ
E

[(
∆n[t]− γ

β
Qn[t]

)∣∣∣∣Z′[t]]

=− γε

Nβ

N∑
n=1

Qn[t]−
N∑
n=1

µn
µΣ

∆n[t]+
B(γ)

β
+
N

q
−1+

pmax

β
,

where (a) follows from rn[t] ≤ pmax,∀n, t, and the definition
of the stationary randomized policy {S̃[t]}t≥0. This implies

E [L[t+ 1]− L[t]] ≤ − γε

Nβ

N∑
n=1

E[Qn[t]]

−
N∑
n=1

µn
µΣ
E[∆n[t]] +

B(γ)

β
+
N

q
− 1 +

pmax

β
. (20)

Summing (20) for t = 0, 1, 2, . . . , T − 1, we obtain

E[L[T ]− L[0]] ≤ − γε

Nβ

T−1∑
t=0

N∑
n=1

E[Qn[t]]

−
T−1∑
t=0

N∑
n=1

µn
µΣ
E[∆n[t]] +

(
B(γ)

β
+
N

q
− 1 +

pmax

β

)
T,

which further implies the following upper bound on J(β, γ):

J(β, γ),lim sup
T→∞

1

T

T−1∑
t=0

[
γε

N

N∑
n=1

E[Qn[t]]+β
N∑
n=1

µn
µΣ
E[∆n[t]]

]

≤B(γ) + β

(
N

q
− 1

)
+ pmax. (21)

Step 2): Next, we derive a fundamental lower bound on
J (OPT)(β, γ). Since we have shown that J(β, γ) is upper-
bounded under the selfish policy in Step 1, J (OPT)(β, γ) is
also bounded under the optimal policy. Therefore, we have
J (OPT)(β, γ) = γε

N

∑N
n=1E[Q̂(OPT)

n ] + β
∑N
n=1

µn
µΣ
E[∆̂(OPT)

n ],
where Q̂(OPT)

n and ∆̂(OPT)
n are random variables with the

same distribution as Qn[t] and ∆n[t] in steady-state un-
der the optimal policy, respectively. Next, we lower-bound∑N
n=1E[Q̂(OPT)

n ] and
∑N
n=1 µnE[∆̂(OPT)

n ] individually. In the
rest of the proof, we omit the signifier “(OPT)” for notational
convenience and better readability.

We first consider
∑N
n=1 µnE[∆̂n]. By choosing the Lya-

punov function V1[t] ,
∑N
n=1 µn∆n[t] and following similar

steps as in the derivation of (9), we have

∆V1[t],E [V1[t+ 1]−V1[t]|Z′[t]] = µΣ−

q
N∑
n=1

µnE{Sn[t]|Z′[t]}−q
N∑
n=1

µnE{∆n[t]Sn[t]|Z′[t]}.

Since J (OPT)(β, γ) is bounded under the optimal policy, the
weighted sum of average age must also be finite under the
optimal policy. Therefore, one can conclude that E[∆V1[t]] =
0 in steady-state. It then follows that:

N∑
n=1

µnE
[
∆̂nŜn

]
=

1

q
µΣ −

N∑
n=1

µnE[Ŝn], (22)

where Ŝn is the random variable with the same distribution as
Sn[t] in the steady-state under the optimal policy.

Similarly, using Lyapunov function V2[t],
∑N
n=1µn∆2

n[t]
and setting its drift to zero in steady-state yields:

2
N∑
n=1

µnE[∆̂n]=q
N∑
n=1

µnE[∆̂2
nŜn]+q

N∑
n=1

µnE[∆̂nŜn].(23)
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For any sample path, by Cauchy-Schwarz’s Inequality, we have( N∑
n=1

µn∆̂nŜn

)2

=

( N∑
n=1

√
µnŜn ·

√
µnŜn∆̂n

)2

≤
( N∑
n=1

µnŜn

)( N∑
n=1

µn∆̂2
nŜn

)
, (24)

which implies
∑N
n=1 µn∆̂2

nŜn ≥
(
∑N
n=1 µn∆̂nŜn)2∑N
n=1 µnŜn

, and hence

E

[
N∑
n=1

µn∆̂2
nŜn

]
≥ E

[(∑N
n=1 µn∆̂nŜn

)2

∑N
n=1 µnŜn

]
. (25)

Since f(X,Y ) = X2/Y is convex for all X ≥ 0 and Y >

0, by using Jensen’s Inequality, we have E[X
2

Y ] ≥ (E[X])2

E[Y ] .
Thus, setting X =

∑N
n=1 µn∆̂nŜn and Y =

∑N
n=1 µnŜn,

inequality (25) becomes:

N∑
n=1

µnE
[
∆̂2
nŜn

]
≥

(∑N
n=1 µnE[∆̂nŜn]

)2

∑N
n=1 µnE[Ŝn]

. (26)

By combining (22), (23) and (26), we have:

N∑
n=1

µnE[∆̂n] ≥µΣ

2

[
µΣ

q
∑N
n=1 µnE[Ŝn]

− 1

]
≥µΣ

2

[
µΣ

qµmax
− 1

]
, (27)

where the last step is true for µmax , maxn µn.
In order to lower-bound

∑N
n=1E[Q̂n], we construct a hypo-

thetical single-server queue {Φ[t]} with the same arrival pro-
cess {A[t]}t≥0 and an aggregated service process {RΣ[t]}t≥0,
where RΣ[t] ,

∑N
n=1Rn[t]. The queue-length evolution

of this single-server queue can be written as: Φ[t + 1] =
max{Φ[t]+A[t]−RΣ[t], 0}. Due to resource pooling, the con-
structed hypothetical single-server’s queue-length {Φ[t]}t≥0

is stochastically smaller than {
∑N
n=1Qn[t]}t≥0 under any

feasible policy. Hence, by [25, Lemma 5], we immediately
have the following lower bound:

N∑
n=1

E[Q̂n] ≥ MN

ε
, (28)

where M , ε
2N(µΣ−λ)

(
Var(A[t])+

∑N
n=1 Var(Rn[t])+(µΣ−

λ)2
)
− 1

2εRmax. Lastly, combining (27), (28), and (21) yields
the desired result in Theorem 2 and the proof is complete.

Remark 2. From Theorem 2, we can see that for any fixed

γ value, we have limβ→∞ ρ(β, γ) ≤ 1 − 1
2

1
qµmax

∑N
n=1 µn−1

N
q −1

,

whose upper bound is equal to 1/2 in the case with symmetric
services, i.e., µ1 = µ2 = · · · = µN . However, we shall see
from the numerical results presented in Section VII that for
any fixed γ value, as β increases, the PoA actually converges
to zero in the case with symmetric services. The looseness
of the upper bound analysis is due to the intrinsic nature of

the Lyapunov analysis methodology, which only captures the
drift among neighboring slots in temporal domain and does
not characterize the Round-Robin behavior in spatial domain.

VII. NUMERICAL RESULTS

In this section, we conduct simulations to study the PoA
performance under users’ selfishness (cf. (1)) in a mobile
crowed-learning system. We use a 10-PoI system and assume
that each PoI n’s state information pn[t] belongs to the finite
set {0.25, 0.5, 0.75, 1}, and pn[t] changes to a different value
uniformly at random every 100 time slots. We consider both
deterministic and stochastic cases. For the deterministic case,
we assume that there is exactly one arriving user in each time
slot and each PoI can serve one user in one time slot if any. For
the stochastic case, we assume that users arrive at the system
according to the Bernoulli distribution with mean λ = 0.9
and service provided by each PoI n follows an i.i.d. Bernoulli
distribution with mean µn, n = 1, 2, . . . , 10. We consider both
symmetric and asymmetric services: For symmetric services,
we let µn = 0.1,∀n; For asymmetric services, we let µn =
0.11,∀n = 1, 2, . . . , 5 and µn = 0.09,∀n = 6, 7, . . . , 10.

1) Deterministic Scenario: Fig. 4 illustrates the PoA per-
formance in the deterministic case. In this case, there is
no queueing effect and the PoA performance reflects the
information freshness due to users’ selfish behavior compared
to the optimal AoI performance. We can observe from Fig. 4
that PoA decreases as the reward rate β increases and roughly
follows the O(1/β) law, meaning that the AoI performance
improves. Moreover, PoA decreases to zero for β ≥ 0.5. This
means that the AoI performance is optimal even with selfish
users. Both observations corroborate the result in Theorem 1.

2) Stochastic Scenario: Next, we study the PoA perfor-
mance in stochastic cases. We consider both symmetric and
asymmetric services. Here, PoA reflects the gap between
joint AoI-congestion performance under users’ selfishness
compared to the optimal performance. We note that, even
without incorporating AoI, it remains an open problem to
find an optimal policy to minimize the total mean queue-
length. In deriving the upper bound on PoA, we use the
fundamental lower bound on total mean queue-length (cf. [25,
Lemma 5]), which may not be tight. In this simulation, we
adopt the Join-the-Shortest-Queue (JSQ) policy (e.g., [25]) and
use its mean queue-length to serve as a lower bound for the
queueing component in PoA. This is because JSQ minimizes
the total mean queue-length (see [26, Proposition 3]) in the
case with Bernoulli arrival and symmetric Bernoulli services,
and it is optimal (see [25]) in the case with general arrival and
service processes in the heavy-traffic regime (i.e., arrival rate
approaches the total service rate asymptotically).

Fig. 5 shows the PoA performance of the case with asym-
metric services under different values of γ. We can see that,
for any fixed γ value, PoA converges to 0.1 instead of 0 as β
increases. The main reason is that we adopt the weighted sum
of mean age as the metric for information freshness, and the
policy that achieves optimal information freshness is unknown.
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Fig. 4: PoA with respect to reward rate
β in the deterministic case.
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Fig. 5: PoA with respect to β and γ in the
stochastic case with asymmetric services.
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Fig. 6: PoA with respect to β and γ in the
stochastic case with symmetric services.

Thus, we use our derived fundamental lower bound on the
weighted mean sum-age to replace the optimal value for the
information freshness, which may render a loose bound on
PoA. However, we point out that our derived lower bound
is tight in the symmetric service case as the reward rate β
increases asymptotically, even though the derived upper bound
of PoA is 1/2 (cf. Remark 2). Indeed, we can observe from
Fig. 6 that PoA actually converges to zero as β increases in
the case with symmetric services.

VIII. CONCLUSION

In this paper, we have strived to understand whether or not
we can achieve information freshness guarantee with selfish
users in mobile crowd-learning. To answer this question, we
first developed a new analytical model that takes into account
the essential features of mobile crowd-learning. Then, based
on this model, we showed that the natural greedy behavior
of selfish users could lead to AoI instability, which necessi-
tates the design of reward mechanisms to induce information
freshness guarantee. Toward this end, we proposed a linear
AoI-based reward mechanism, under which we analyzed the
impacts of users’ selfishness on AoI based on the notion
of Price of Anarchy (PoA). We showed that the proposed
reward mechanism achieves bounded AoI and congestion
performances in terms of PoA, and can even achieves optimal
AoI asymptotically in a deterministic scenario. Collectively,
these results serve as an exciting first step toward optimizing
information freshness in mobile crowd-learning systems.
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