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Wireless Scheduling Design for Optimizing Both Service
Regularity and Mean Delay in Heavy-Traffic Regimes

Bin Li, Ruogu Li, and Atilla Eryilmaz

Abstract—We consider the design of throughput-optimal
scheduling policies in multi-hop wireless networks that also
possess good mean delay performance and provide regular service
for all links – critical metrics for real-time applications. To
that end, we study a parametric class of maximum-weight type
scheduling policies, called Regular Service Guarantee (RSG)
Algorithm, where each link weight consists of its own queue-
length and a counter that tracks the time since the last service,
namely Time-Since-Last-Service (TSLS). The RSG Algorithm not
only is throughput-optimal, but also achieves a tradeoff between
the service regularity performance and the mean delay, i.e., the
service regularity performance of the RSG Algorithm improves
at the cost of increasing mean delay.

This motivates us to investigate whether satisfactory service
regularity and low mean-delay can be simultaneously achieved
by the RSG Algorithm by carefully selecting its design parameter.
To that end, we perform a novel Lyapunov-drift based analysis of
the steady-state behavior of the stochastic network. Our analysis
reveals that the RSG Algorithm can minimize the total mean
queue-length to establish mean delay optimality under heavily-
loaded conditions as long as the design parameter weighting for
the TSLS scales no faster than the order of 1

5√ε , where ε measures
the closeness of the network load to the boundary of the capacity
region. To the best of our knowledge, this is the first work that
provides regular service to all links while also achieving heavy-
traffic optimality in mean queue-lengths.

I. INTRODUCTION

Real-time applications, such as voice over IP or live
multi-media streaming, are becoming increasingly popular as
smart phones proliferate in wireless networks. To support
real-time applications, network algorithm design should not
only efficiently manage the interference among simultaneous
transmissions, but also meet the requirements of Quality-
of-Service (QoS) including delay, packet delivery ratio, and
jitter. Such QoS requirements, in turn, depend on the higher-
order statistics of the arrival and service process, which poses
significant challenges for efficient network algorithm design.

In recent years, there has been an increasing understanding
on the algorithm design that targets various aspects of QoS,
especially packet delivery ratio requirement (e.g., [8], [9], [11])
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and low end-to-end delay (e.g., [2], [25], [24], [6]). However,
these QoS metrics do not fully characterize the Quality-of-
Experience (QoE) of users in real-time applications in wireless
networks. For example, in the network where each individual
user wants to watch its video that is delivered by the base
station, each mobile user would like to receive the data from
the base station regularly. Yet, both the time-varying nature of
wireless channels and the scheduling policy significantly affect
the regularity of the received data of each mobile user. The
traditional scheduling policies aiming to maximize the system
throughput (e.g., [21], [16], [10]) or provide various fairness
guarantees (e.g., [15], [3], [17], [20] ) at the base station side
do not take users’ experience into account and thus lead to the
high irregularity of the received data of mobile users.

Our work is motivated by the recent advances made in
[13], [14] that provide a promising approach for managing this
critical QoS metric. In particular, [13] provides a throughput-
optimal algorithm that prioritizes service of links with the
largest link weight in general network topologies, where each
link weight is the weighted-sum of its own queue-length and a
counter, namely the time-since-last-service (TSLS), that tracks
the time since the last service. This algorithm improves service
regularity as its design parameter γ weighting for the TSLS
increases (see Section III for more details). Yet, increasing
γ also has an averse effect on the mean delay performance,
which is also vital for most applications.

With this motivation, this paper focuses on the tradeoff
between the service regularity and the mean delay performance
that this class of policies achieves. In particular, we are
interested in identifying the range of values for γ in which the
mean delay performance guarantees can be provided, while the
regularity characteristics are preserved. To that end, we build
on the recently developed approach of using Lyapunov drifts
for the steady-state analysis of queueing networks [4]. The
main result emanating from this analysis is the scaling law of
γ as the system gets more and more heavily loaded so that the
algorithm is mean delay optimal among all feasible scheduling
policies, and provides the best service regularity among this
class of policies. Specifically, we show that the heavy-traffic
optimality is preserved as long as γ scales1 as O

(
1
5
√
ε

)
, where

ε is the heavy-traffic parameter characterizing the closeness of
the arrival rate vector to the boundary of the capacity region.

Our analysis relates to the vast literature on heavy-traffic
analysis of queueing networks (for example, [22], [5], [1],
[23], [19], [18]), and in particular extends the Lyapunov drift-
based approach in [4]. A critical step in most of these results is

1We say an = O(bn) if there exists a c > 0 such that |an| ≤ c|bn| for
two real-valued sequences {an} and {bn}.
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to establish a state-space collapse along a single dimension,
and thus relate the multi-dimensional system operation to a
resource-pooled single dimensional system. Our construction
also follows such line of argument in broad strokes. However,
the new dynamics of the considered class of algorithms require
new Lyapunov functions and techniques in establishing their
heavy-traffic optimality.

Note on Notation: We use bold and script font of a variable
to denote a vector and a set. Also, let |A| denote the cardinality
of the set A. We use Int(A) to denote the set of interior points
of the set A. We use 〈x,y〉 and x · y to denote the inner
product and component-wise product of the vector x and y,
respectively. We use x2 and

√
x to denote the component-wise

square and square root of the vector x, respectively. We also
use �,�,≺,� to denote component-wise comparison of two
vectors, respectively. Let ‖x‖1 and ‖x‖ denote the l1 and l2
norm of the vector x, respectively.

II. SYSTEM MODEL

We consider a wireless network represented by a graph G =
(N ,L), whereN is the set of nodes and L is the set of links. A
node represents a wireless transmitter or receiver, while a link
represents a pair of transmitter and receiver that are within
the transmission range of each other. We use L , |L| for
convenience. We consider the link-based conflict model, where
links conflicting with each other cannot be active at the same
time. We call a set of links that can be active simultaneously as
a feasible schedule and denote it as S[t] = (Sl[t])l∈L, where
Sl[t] = 1 if the link l is scheduled in time slot t and Sl[t] = 0,
otherwise. Let S be the set of all feasible schedules.

We capture the channel fading over link l in time slot
t via a non-negative-integer-valued random variable Cl[t],
with strictly positive mean and Cl[t] ≤ Cmax,∀l, t, for some
Cmax <∞, which measures the maximum amount of service
available in slot t, if scheduled. We assume that {C[t] =
(Cl[t])

L
l=1}t≥0 is an independently and identically distributed

(i.i.d.) sequence of random vectors with ψc , Pr{C[t] = c}.
We use C to denote the set of all possible channel states. Note
that |C| is finite. Let S(c) , {S · c : S ∈ S} denote the set
of feasible rate vectors in the channel state c ∈ C. Then, the
capacity region is defined as R ,

∑
c ψc ·Conv{S(c)}, where

Conv{A} denotes the convex hull of the set A.
We assume a per-link traffic model, where Al[t] denotes

the number of packets arriving at link l in slot t that are
independently distributed over links and i.i.d. over time with
finite mean λl > 0, and Al[t] ≤ Amax,∀l, t, for some
Amax <∞. Accordingly, a queue is maintained for each link
l with Ql[t] denoting its queue length at the beginning of time
slot t. Let Ul[t] = max{0, Cl[t]Sl[t] − Ql[t] − Al[t]} be the
unused service for queue l in slot t. Then, the evolution of
queue l is described as follows:

Ql[t+ 1] = Ql[t] +Al[t]− Cl[t]Sl[t] + Ul[t], ∀l. (1)

We say that the queue l is strongly stable if it satisfies

lim sup
T→∞

1

T

T∑
t=1

E[Ql[t]] <∞.

We call an algorithm throughput-optimal if it makes all queues
strongly stable for any arrival rate vector λ = (λl)

L
l=1 that lies

strictly within the capacity region.
Our goal is to design a throughput-optimal scheduling algo-

rithm that also possesses the following desirable properties for
satisfying the QoS requirements: (i) provides regular services
in the sense that the normalized second-moment of the inter-
service times of the links is small; and (ii) achieves low mean
delay in the sense that the total mean queue-lengths is small,
especially in the regime where the system is heavily-loaded –
when delay effects are most pronounced.

Next, we provide a regular service scheduler that possesses
throughput-optimality and regular service guarantees, and then
investigate its mean-delay performance under the heavy-traffic
regime.

III. REGULAR SERVICE SCHEDULER

One of our goals is to provide regular services for each link,
which is related to the second moment of the inter-service
times. To characterize the inter-service time, we introduce a
counter Tl for each link l, namely Time-Since-Last-Service
(TSLS), to keep track of the time since link l was last served.
In particular, each Tl increases by 1 in each time slot when link
l has zero transmission rate, either because it is not scheduled,
or because its channel is unavailable, i.e., Cl[t] = 0, and drops
to 0, otherwise. More precisely, the evolution of Tl is described
as follows:

Tl[t+ 1] =

{
0 if Sl[t]Cl[t] > 0;
Tl[t] + 1 if Sl[t]Cl[t] = 0.

(2)

Thus, the TSLS records the link “age” since the last time
it received service, and is closely related to the inter-service
time. Indeed, in [13], we showed that the normalized second
moment of the inter-service times of each link is proportional
to the mean value of its TSLS for any stabilizing policy. Thus,
the TSLS has a direct impact on service regularity: the smaller
the mean TSLS value, the more regular the service.

This connection motivates the following maximum-weight
type algorithm that uses a combination of queue-lengths and
TSLS values as its weights:

Regular Service Guarantee (RSG) Algorithm2:
In each time slot t, select a schedule S∗[t] such that

S∗[t] ∈ arg max
S∈S

L∑
l=1

(αlQl[t] + γβlTl[t])Cl[t]Sl, (3)

where αl > 0, βl ≥ 0 and γ ≥ 0 are design parameters.

The parameters (αl)
L
l=1 are weighting factors for the queue-

lengths, where a larger αl will result in a smaller average
queue-length. The parameters (βl)

L
l=1 weigh Tl[t] differently

2For wireless networks with multi-hop traffic, where packets may traverse
multiple links before their departure, we maintain queue-length and TSLS
counter for each flow at each link. Then, we propose a backpressure-type
algorithm with the link weight consisting of queue-length and TSLS. We can
still show that the proposed backpressure-type algorithm achieves maximum
throughput. However, the service regularity of each flow is hard to characterize
in this setup, which is left for future research.



3

for each link l, with γ being a common scaling factor for all
links. Note that the RSG Algorithm coincides with the MWS
Algorithm when γ = 0. Yet, the true significance of the RSG
algorithm is observed for large γ, since as γ increases, the RSG
Algorithm prioritizes the schedule with the larger TSLS, hence
providing more regular services for each link. In [13], we have
showed that the RSG Algorithm not only achieves throughput
optimality but also provides regular service guarantees.

Yet, large values of γ may also deteriorate the mean delay
performance. We demonstrate this tradeoff in a single-hop
non-fading network with 4 links, where the number of packets
arriving at each link follows a Bernoulli distribution with the
arrival rate of 0.225. Let αl = βl = 1 for each link l. Figure
1 shows the mean delay and service regularity performance of
the RSG Algorithm with varying γ.
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Fig. 1: Performance of the RSG Algorithm

Figure 1 reveals that the improved service regularity of the
RSG Algorithm with increasing γ comes at the cost of larger
mean delays. We can show that the mean of the total TSLS
value is minimized as γ goes to ∞ (see [13]). On the other
hand, it is known (e.g. [19], [4]) that the mean queue-lengths
are minimized under heavily-loaded conditions (cf. Section IV
for more detail) when γ = 0. In view of the tradeoff observed
in the above figure, our objective is to understand whether both
the regularity and the mean-delay optimality characteristics of
the RSG Algorithm can be preserved, especially under heavily-
loaded conditions, by carefully selecting γ.

In the next section, we answer this question in the affir-
mative by explicitly characterizing how γ should scale with
respect to the traffic load in order to achieve the heavy-
traffic optimality while also optimizing the service regularity
performance of the RSG Algorithm.

IV. HEAVY-TRAFFIC OPTIMALITY RESULT

In this section, we present our main result for the RSG
Algorithm in terms of its mean delay optimality under the
heavy-traffic limit, where the arrival rate vector approaches
the boundary of the capacity region.

In the rest of paper, we consider the RSG Algorithm3 with
αl = 1,∀l. We first note that the capacity region R is a
polyhedron due to the discreteness and finiteness of the service
rate choices, and thus has a finite number of faces. We consider
the exogenous arrival process {A(ε)[t]}t≥0 with mean rate
vector λ(ε) ∈ Int(R), where ε measures the Euclidean distance
of λ(ε) to the boundary of R (see Figure 2).

In heavy-traffic analysis, we study the system performance
as ε decreases to zero, i.e., as the arrival rate vector approaches
λ(0) belonging to the relative interior of a face, referred to as
the dominant hyperplane H(d). We denote H(d) , {r ∈ RL :
〈r,d〉 = b}, where b ∈ R, and d ∈ RL is the normal vector
of the hyperplane H(d) satisfying ‖d‖ = 1 and d � 0.

d

r1

r2

ε

( )e
λ

( )0
λ

Line of attraction

( )d
H

Fig. 2: Geometric structure of capacity region

We are interested in understanding the steady-state queue-
length values with vanishing ε. To that end, we first provide
a generic lower bound for all feasible schedulers by con-
structing a hypothetical single-server queue with the arrival
process 〈d,A(ε)[t]〉, and the i.i.d service process Ψ[t] with
the probability distribution

Pr {Ψ[t] = bc} = ψc, for each channel state c ∈ C, (4)

where bc , maxs∈S(c)〈d, c · s〉 is the maximum d-weighted
service rate achievable in channel state c ∈ C. By the
construction of capacity region R, we have E[Ψ[t]] = b. Also,
it is easy to show that the constructed single-server queue-
length {Φ[t]}t≥0 is stochastically smaller than the queue-
length process {〈d,Q(ε)[t]〉}t≥0 under any feasible scheduling
policy. Hence, by using [4, Lemma 4], we have the following

3Let A′l[t] ,
√
αlAl[t] and C′l [t] ,

√
αlCl[t], ∀t ≥ 0, ∀l. Also let

S′(c) , {
√
α · c · S : S ∈ S} and R′ ,

∑
c ψc · CH{S′(c)}. Construct a

hypothetical system with the arrival process {A′[t] = (A′l[t])
L
l=1}t≥0 and

the channel fading process {C′[t] = (C′l [t])
L
l=1}t≥0 under the following

RSG Algorithm in the hypothetical system:

S′
∗
[t] ∈ argmax

S∈S

L∑
l=1

(
Q′l[t] + γ

βl√
αl
T ′l [t]

)
C′l [t]Sl,

where T ′l is the TSLS counter for link l in the hypothetical system and evolves
as follows:

T ′l [t+ 1] =

{
0 if S′l [t]C

′
l [t] > 0;

T ′l [t] + 1 if S′l [t]C
′
l [t] = 0.

Let {Q[t] = (Ql[t])
L
l=1}t≥0 and {Q′[t] = (Q′l[t])

L
l=1}t≥0 be the queue-

length process under the RSG Algorithm in the original system and the RSG
Algorithm with αl = 1 for each link l in the hypothetical system, respectively.
Then, it is easy to show that {

√
α · Q[t]}t≥0 is stochastically equal to

{Q′[t]}t≥0. Thus, we can study the queue length behavior under the RSG
Algorithm with αl = 1 for each link l in the hypothetical system.
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lower bound on the expected steady-state queue-length under
any feasible scheduling policy.

Proposition 1: Let Q
(ε)

be a random vector with the same
distribution as the steady-state distribution of the queue length
processes under any feasible scheduling policy. Consider the
heavy-traffic limit ε ↓ 0, suppose that the variance vector(
σ(ε)

)2
of the arrival process {A(ε)[t]}t≥0 converges to a

constant vector σ2. Then,

lim
ε↓0

εE
[
〈d,Q(ε)〉

]
≥ ζ

2
, (5)

where ζ , 〈d2,σ2〉+ Var(Ψ).
This fundamental lower bound of all feasible scheduling

policies motivates the following definition of heavy-traffic
optimality of a scheduler.

Definition 1: (Heavy-Traffic Optimality) A scheduler is
called heavy-traffic optimal, if its steady-state queue length
vector Q

(ε)
satisfies

lim
ε↓0

εE
[
〈d,Q(ε)〉

]
≤ ζ

2
, (6)

where ζ is defined in Proposition 1.
It is well-known that the MWS Algorithm, which corre-

sponds to the RSG Algorithm with γ = 0, is heavy-traffic
optimal (e.g., [19], [4]). This is shown by first establishing
a state-space collapse, i.e., the deviations of queue lengths
from the direction d are bounded, independent of heavy-traffic
parameter ε. Since the lower bound of mean queue length is of
order of 1

ε , the deviations from the direction d are negligible
compared to the large queue length for a sufficiently small
ε, and thus the queue lengths concentrate along the normal
vector d. Because of this, we also call the normal vector d
the line of attraction.

However, as discussed in Section III, we are interested in
large values of γ to provide satisfactory service regularity.
Yet, it is unknown whether the RSG Algorithm can remain
heavy-traffic optimal when γ is non-zero, since larger values
of γ leads to higher mean queue-lengths (cf. Figure 1). Also,
the state-space collapse result is not applicable since the
deviations from the line of attraction depend on γ. This raises
the question of how γ(ε) should scale with ε in order to
achieve heavy-traffic optimality while allowing γ(ε) to take
large values (providing more regular services). We answer
this interesting and challenging question by providing the
following main result, proved in Section VI.

Proposition 2: Let Q
(ε)

be a random vector with the same
distribution as the steady-state distribution of the queue length
processes under the RSG Algorithm. Consider the heavy-traffic
limit ε ↓ 0, suppose that the variance vector

(
σ(ε)

)2
of the

arrival process {A(ε)[t]}t≥0 converges to a constant vector
σ2. Suppose the channel fading satisfies the mild assumption4

Pr{Cl[t] = 0} > 0, for all l ∈ L. Then,

εE
[
〈d,Q(ε)〉

]
≤ ζ(ε)

2
+B

(ε)
, (7)

4We note that our result holds in single-hop network topologies without this
assumption, and its extension to more general settings is part of our future
work.

where ζ(ε) , 〈d2,
(
σ(ε)

)2〉+ Var(Ψ) + ε2 and B
(ε)

is defined
in (23).

Further, if γ(ε) = O( 1
5
√
ε
), then limε↓0B

(ε)
= 0 and thus

the RSG Algorithm is heavy-traffic optimal.
This result is interesting in that it provides an explicit

scaling regime in which the design parameter γ(ε) can be
increased to utilize the service regulating nature of the RSG
Algorithm without sacrificing the heavy-traffic optimality.
Intuitively, if γ(ε) scales slowly as ε vanishes, each link
weight is dominated by its own queue length in the heavy-
traffic regime and thus the heavy-traffic optimality may be
maintained; otherwise, the heavy-traffic optimality result may
not hold, as will be demonstrated in the next section.

V. SIMULATION RESULTS

In this section, we provide simulation results to compare the
mean delay and service regularity performance of the RSG
Algorithm with the MWS Algorithm. In the simulation, we
consider a single-hop non-fading network with 4 links. Its
capacity region isR = {λ = (λl)

4
l=1 � 0 :

∑4
l=1 λl < 1}. We

use arrival process where the number of arrivals in each slot
follows a Bernoulli distribution. We consider the symmetric
case λ(ε) = (1 − ε

2 ) ×
[
1
4 ,

1
4 ,

1
4 ,

1
4

]
, and the asymmetric case

λ(ε) = [ 12 ,
1
4 ,

1
8 ,

1
16 ] + (1− ε

32 )×
[

1
64 ,

1
64 ,

1
64 ,

1
64

]
.
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Fig. 3: Symmetric arrivals in a single-hop network
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From Figure 3a and 4a, we can observe that the RSG
Algorithm with both γ = 1 and γ = 1

5
√
ε
, and the MWS

Algorithm converge to the theoretical lower bound and thus is
heavy-traffic optimal, which confirms our theoretical results.
Yet, the RSG Algorithm with γ = 1

ε has large mean queue
length, which does not match with the theoretical lower bound
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and thus is not heavy-traffic optimal. Hence, γ should scale
as slowly as O( 1

5
√
ε
) to preserve heavy-traffic optimality.

From Figure 3b and 4b, we can see that the RSG Algo-
rithm with even γ = 1 significantly outperforms the MWS
Algorithm in terms of service regularity. More remarkably,
the RSG Algorithm with γ = 1

5
√
ε

can achieve the lower bound
(see [13]) achieved by the round robin policy under symmetric
arrivals.

VI. DETAILED HEAVY-TRAFFIC ANALYSIS

In this section, we prove Proposition 2 by using the ana-
lytical approach in [4], which includes two parts: (i) showing
state-space collapse; (ii) using the state-space collapse result
to obtain an upper bound on the mean queue lengths. Yet, it is
worth noting that the abrupt dynamics of TSLS counters poses
significant challenges in heavy-traffic analysis. In particular, it
requires new Lyapunov functions and a novel technique to
establish heavy-traffic optimality of the RSG Algorithm.

A. State-Space Collapse

In this subsection, we establish a state-space collapse result
under the RSG Algorithm. That is, we develop upper bounds
for the deviation of steady-state queue-lengths from the line
of attraction d and TSLS counters. These upper bounds are
crucial to establish our main result.

We have mentioned in Section III that the RSG Algorithm is
throughput-optimal, i.e., it stabilizes all queues for any arrival
rate vector that are strictly within the capacity region. Let
{Q(ε)[t]}t≥0 and {T(ε)[t]}t≥0 be queue-length processes and
TSLS counters under the RSG Algorithm, respectively. Also,
we use Q

(ε)
and T

(ε)
to denote their steady-state queue-length

random vector and TSLS random vector, respectively. Then,
by the continuous mapping theorem, we have

Q
(ε)
‖ [t]⇒ Q

(ε)

‖ , Q
(ε)
⊥ [t]⇒ Q

(ε)

⊥ ; (8)

T
(ε)
‖ [t]⇒ T

(ε)

‖ , T
(ε)
⊥ [t]⇒ T

(ε)

⊥ , (9)

where ⇒ denotes convergence in distribution, and we define
the projection and the perpendicular vector of any given L-
dimensional vector I with respect to the normal vector d as:

I‖ , 〈d, I〉d, I⊥ , I− I‖.

Next, we will show that under the RSG Algorithm, the
second moment of ‖Q(ε)

⊥ ‖ is bounded, dependent on γ(ε),
while the second moment of ‖T(ε)‖ is bounded by some
constant independent of ε. Noting that the mean queue-length
under any policy scales at least the order of 1/ε by Proposition
1, the state-space collapse happens in the following sense: by
carefully selecting the scaling law of γ(ε) with respect to ε,
both E

[
‖Q(ε)

⊥ ‖2
]

and E
[
‖T(ε)‖2

]
are negligible compared to

the large mean queue-length for a sufficiently small ε.
Proposition 3: If Pr{Cl[t] = 0} > 0,∀l ∈ L, then, under

the RSG Algorithm, there exists a constant NT,2, independent
of ε, such that

E[‖Q(ε)

⊥ ‖2] = O
(

(γ(ε))
4

(log γ(ε))
2
)
, (10)

E[‖β ·T(ε)‖2] ≤ NT,2, (11)

where we recall that β , (βl)l∈L.
It is quite challenging to directly give an upper bound on

E[‖Q(ε)

⊥ ‖2]. Instead, we will first upper-bound the moment
generation function of ‖Q(ε)

⊥ ‖, and then use the relationship
between the moments of a random variable and its moment
generation function to upper-bound E[‖Q(ε)

⊥ ‖2].
In order to obtain an upper bound on the moment generation

function of ‖Q(ε)

⊥ ‖, we first study the drift of the Lyapunov
function

V⊥(Q(ε),T(ε)) ,

∥∥∥∥(Q(ε)
⊥ ,
√

2γ(ε)Cmaxβ ·T(ε)

)∥∥∥∥ ,
and show that when V⊥(Q(ε),T(ε)) is sufficiently large, it has
a strictly negative drift independent of ε, which is characterized
in the following key lemma.

Lemma 1: Under the RSG Algorithm, there exist positive
constants κ and ς , independent of ε, such that whenever
V⊥(Q(ε)[t],T(ε)[t]) > κ, we have

E[∆V⊥(Q(ε)[t],T(ε)[t])|Q(ε)[t],T (ε)[t]] < −ς, (12)

where ∆V⊥(Q(ε)[t],T(ε)[t]) , V⊥(Q(ε)[t+ 1],T(ε)[t+ 1])−
V⊥(Q(ε)[t],T(ε)[t]).
The proof of Lemma 1 is available in Appendix A.

In [4], after showing that ‖Q(ε)

⊥ ‖ has a negative drift under
the MWS Algorithm when ‖Q(ε)

⊥ ‖ is large enough and ob-
serving that the drift of ‖Q(ε)

⊥ ‖ is bounded, the authors utilize
[7, Theorem 2.3] to develop an upper bound on the moment
generation function of ‖Q(ε)

⊥ ‖, which implies the existence of
all moments of ‖Q(ε)

⊥ ‖. However, the absolute value of the
drift ∆V⊥(Q(ε),T(ε)) has neither an upper bound nor an ex-
ponential tail given the current system state (Q(ε),T(ε)), since
the TSLS counters have bounded increment but unbounded
decrement, i.e., they can at almost increase by 1 and drop to
0 once their corresponding links are scheduled. Therefore, we
cannot directly apply [7, Theorem 2.3], which requires either
boundedness or the exponential tail of the Lyapunov drift to
establish the existence of the moment generation function of
the system-state variables in addition to Lemma 1. Indeed, for
a Markov Chain with a strictly negative drift of Lyapunov
function, if its Lyapunov drift has bounded increment but
unbounded decrement, its moment generation function may
not exist.
Counterexample: Consider a Markov Chain {X[t]}t≥0 with
the following transition probability:

Pj,j+1 =


1 if j = 0;
1
2 if j = 1;
j−1
j+1 if j ≥ 2.

Pj,0 =

{ 1
2 if j = 1;
2
j+1 if j ≥ 1.

The state transition diagram of Markov Chain {X[t]}t≥0 is
shown in Figure 5. Consider a linear Lyapunov function X .
For any X ≥ 2, we have

E[X[t+ 1]−X[t]|X[t] = X] =
X − 1

X + 1
− 2X

X + 1
= −1.

Thus, the Lyapunov function X has a strictly negative drift
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Fig. 5: Markov Chain {X[t]}t≥0

when X ≥ 2 and hence the steady-state distribution of the
Markov Chain exists. Recall that its drift increases at almost by
1, but has unbounded decrement, which has similar dynamics
with the system under the RSG Algorithm.

Next, we will show that even the first moment of this
Markov Chain does not exist, let alone its moment generation
function. Let X be the steady-state random variable of the
Markov Chain and πj , Pr{X = j}. According to the global
balance equations, we can easily calculate

π1 = π0 =
1

3
, πj =

1

3j(j − 1)
, ∀j ≥ 2. (13)

Thus, we have

E[X] =

∞∑
j=1

jπj =
1

3
+

∞∑
j=2

1

3(j − 1)
=∞.

Fortunately, we can establish an upper bound on the moment
generation function of ‖Q(ε)

⊥ ‖ under the RSG Algorithm by
exploiting the coupling between queue length processes and
TSLS counters under the RSG Algorithm. Here, we need a
mild assumption that Pr{Cl[t] = 0} > 0,∀l ∈ L, which
leads to the following lemma that all TSLS counters have an
exponential tail independent of ε.

Lemma 2: If pl , Pr{Cl[t] = 0} > 0,∀l ∈ L, then, under
the RSG Algorithm, there exists a ϑ ∈ (0, 1), independent of
ε, such that

Pr{Tl[t] ≥ m} ≤ ϑm, ∀t ≥ m ≥ 0,∀l ∈ L. (14)

The proof of Lemma 2 is available in Appendix B.
Remark: We can also show that all TSLS counters still have

an exponential tail independent of ε in non-fading single-hop
network topologies. The extension to the more general setup
is left for future research.

Lemma 2 directly implies (11). The rest of proof mainly
builds on the analytical technique in [7], while it requires
carefully partitioning the space (Q

(ε)
⊥ ,T

(ε)) and exploiting
the coupling between the queue-length processes and TSLS
counters. The detailed proof can be found in Appendix C.

B. Proof of Main Result

Having established the state-space collapse result, we are
ready to show the heavy-traffic optimality of the RSG Al-
gorithm. In this subsection, we first give an upper bound
on E[〈d,Q(ε)〉] under the RSG Algorithm and then establish
its heavy-traffic optimality by selecting γ(ε) = O( 1

5
√
ε
). In

[13], we have shown that all moments of steady-state system
variables, such as queue-lengths and TSLS, are bounded under
the RSG Algorithm, which enables us to analyze its heavy-

traffic performance by using the methodology of “setting the
drift of a Lyapunov function equal to zero”.

We will omit the superscript ε associated with the queue
lengths and TSLS counters for brevity in the rest of proof. In
order to derive an upper bound on E[〈d,Q(ε)〉], we need the
following fundamental identity (see [4, Lemma 8]):

E
[
〈d,U(Q,T,C)〉2

]
2

+
E
[
〈d,A−C · S∗(Q,T,C)〉2

]
2

+E
[
〈d,Q + A−C · S∗(Q,T,C)〉〈d,U(Q,T,C)〉

]
=E

[
〈d,Q〉〈d,C · S∗(Q,T,C)−A〉

]
, (15)

which is derived by setting the expected drift of 〈d,Q〉2 to 0.
Next, we give upper bounds for each individual term in the

Left Hand Side (LHS) of (15) and a lower bound for the Right
Hand Side (RHS) of (15). By simply setting the expected drift
of 〈d,Q〉 equal to zero, we have

E
[
〈d,U(Q,T,C)〉

]
= 〈d,E[C · S∗(Q,T,C)]〉 − 〈d,λ〉

(a)
= 〈d,E[C · S∗(Q,T,C)]〉 − (b− ε)

(b)

≤ ε, (16)

where the step (a) follows from the definition of λ(0) , λ+εd
and 〈d,λ(0)〉 = b ( see Fig. 2); (b) follows from the facts that
E[C ·S∗(Q,T,C)] must be within capacity region R and that
〈d, r〉 ≤ b for any vector r ∈ R.

We are ready to provide an upper bound on the first term
in the LHS of (15). Noting the fact that the amount of unused
service in one time slot at each link l cannot be greater than
the maximum channel rate Cmax, i.e., Ul ≤ Cmax, we have

1

2
E
[
〈d,U(Q,T,C)〉2

]
≤1

2
〈d, Cmax1〉E

[
〈d,U(Q,T,C)〉

]
≤ ε

2
〈d, Cmax1〉, (17)

where the last step utilizes inequality (16).
Next, we focus on the second term in the LHS of (15).

The system stability under the RSG Algorithm implies that
it selects the schedule S which maximizes 〈d,S〉 with high
probability when the arrival rate vector is very close to the face
H(d). See Fig. 6a for an example. Based on this observation,
we can show

E
[
〈d,A−C · S∗(Q,T,C)〉2

]
≤ζ(ε) +

∑
c∈C

ε

χc

(
2bbc + (bc)

2
+ 〈d, Cmax1〉2

)
, (18)

where we recall that ζ(ε) , 〈d2,
(
σ(ε)

)2〉 + Var(Ψ) + ε2 is
defined in Proposition 2, and

χc , min
{
bc − 〈d, r〉 : for all r ∈ S(c) \ {w : bc = 〈d,w〉}

}
.

The detailed proof is provided in Appendix G. Inequality (18)
indicates that the second moment of d-weighted difference
between arrivals and services is dominated by the d2-weighted
variance of the arrival process and the variance of the channel
fading process in the heavy-traffic limit.

In order to analyze the third term in the LHS of (15), we
restrict vectors to |L+|-dimensional space, where L+ , {l ∈
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Fig. 6: Key properties of the RSG Algorithm (illustrated in
non-fading case for an easier exposition): (a) when the arrival
rate vector λ(ε) is very close to the face H(d), the RSG
Algorithm should select the feasible schedules S2 and S3

with high probability due to the system stability; (b) when
the vector Q + γβ · T is within the cone K, then the RSG
Algorithm selects the schedules S2 and S3.

L : dl > 0}. We use Ĩ , (Il)l∈L+
to denote the vector I

restricted in the |L+|-dimensional space. Therefore, we have

E [〈d,Q[t] +A[t]−C[t] · S∗[t]〉〈d,U[t]〉]
(a)
=E [〈d,Q[t+ 1]〉〈d,U[t]〉]− E

[
〈d,U[t]〉2

]
(b)

≤E [〈d,Q[t+ 1]〉〈d,U[t]〉]

=E
[
〈d̃, Q̃[t+ 1]〉〈d̃, Ũ[t]〉

]
(c)
=E

[
〈−Q̃⊥[t+ 1], Ũ[t]〉

]
(d)

≤
√
E
[
‖Q̃⊥[t+ 1]‖2

]
E
[
‖Ũ[t]‖2

]
(e)

≤
√
E [‖Q⊥[t+ 1]‖2]

Cmax

dmin
E [〈d,U[t]〉], (19)

where the step (a) utilizes equation (1); (b) is true since
E
[
〈d,U[t]〉2

]
≥ 0; (c) utilizes [4, Lemma 9]; (d) uses

CauchySchwarz inequality; (e) follows from the fact that
‖Ĩ‖ ≤ ‖I‖ for any vector I and the fact that Ũl ≤ Cmax,∀l ∈
L+ and dmin , min

l∈L+

dl. By taking the limit t → ∞ on both

sides of (19), we have

E
[
〈d,Q + A−C · S∗(Q,T,C)〉〈d,U(Q,T,C)〉

]
≤
√
E[‖Q⊥‖2]

Cmax

dmin
E
[
〈d,U(Q,T,C)〉

]
≤
√
εE[‖Q⊥‖2]

Cmax

dmin
. (20)

where the last step uses inequality (16).
Finally, we consider the RHS of (15). By using the definition

of the RSG Algorithm, we can show

E
[
〈d,Q〉〈d,C · S∗(Q,T,C)−A〉

]
≥εE

[
‖Q‖‖

]
− cot(θ)

√(
E[‖Q⊥‖2] + (γ(ε))

2
NT,2

)
ε

×
√∑

c∈C

1

χc

(
(bc)

2
+ 〈d, Cmax1〉2

)
, (21)

where θ ∈ (0, π2 ] is an angle such that 〈d,R∗(Q,T)〉 = b, for
all Q and T satisfying ‖(Q+γβ·T)‖‖

‖Q+γβ·T‖ ≥ cos(θ), R∗(Q,T) ,
E[C · S∗(Q,T,C)|Q,T] (Fig. 6b provides an example illus-
trating this fact), and NT,2 (cf. Proposition 3) is independent
of ε. The proof is provided in Appendix H.

By substituting bounds (17), (18), (20) and (21) into identity
(15), we have

εE
[
‖Q‖‖

]
≤ ζ(ε)

2
+B

(ε)
, (22)

where B
(ε)

,
ε

2
〈d, Cmax1〉+

√
εE[‖Q⊥‖2]

Cmax

cmin

+
1

2

∑
c∈C

ε

χc

(
2bbc + (bc)

2
+ 〈d, Cmax1〉2

)
+ cot(θ)

√
2
(
E[‖Q⊥‖2] + (γ(ε))

2
NT,2

)
ε

×
√∑

c∈C

1

χc

(
(bc)

2
+ 〈d, Cmax1〉2

)
. (23)

Thus, if limε↓0B
(ε)

= 0, then the RSG Algorithm is heavy-
traffic optimal by Definition 1. Noting that NT,2 is indepen-
dent of ε, to satisfy limε↓0B

(ε)
= 0, it is sufficient to have

lim
ε↓0

εE[‖Q⊥‖2] = 0 and lim
ε↓0

ε (γ(ε))
2

= 0. (24)

By using the state-space collapse result established by Propo-
sition 3, it is easy to see that γ(ε) = O( 1

5
√
ε
) meets the above

requirements.

VII. CONCLUSION

We studied the heavy-traffic behavior of the recently pro-
posed maximum-weight type scheduling algorithm, called
Regular Service Guarantee (RSG) Algorithm, where each link
weight consists of its own queue-length and a counter, namely
the time-since-last-service (TSLS), which tracks the time since
the last service. The RSG Algorithm has been shown to
achieve throughput optimality while providing regular service
guarantees. In this paper, we further showed that the RSG Al-
gorithm is heavy-traffic optimal as long as its design parameter
weighting for the TSLS γ = O( 1

5
√
ε
), where ε is the heavy-

traffic parameter characterizing the closeness of the arrival rate
vector to the boundary of the capacity region. Noting that
the service regularity improves with increasing γ, our result
reveals that the RSG Algorithm with a carefully selected pa-
rameter γ can achieve the best service regularity performance
among the class of the RSG Algorithms without sacrificing
the mean delay optimality under heavy-traffic conditions.

APPENDIX A
PROOF OF LEMMA 1

We will omit ε associated with queue length processes,
TSLS counters and parameter γ(ε) for brevity. Also, we will
use I+ to denote I[t+ 1] for any vector I in the rest of proof.
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First, we note that

∆V⊥(Q,T) , V⊥(Q+,T+)− V⊥(Q,T)

=

√
‖(Q+

⊥,
√

2γCmaxβ ·T+)‖2 −
√
‖(Q⊥,

√
2γCmaxβ ·T)‖2

(a)

≤
‖(Q+

⊥,
√

2γCmaxβ ·T+)‖2 − ‖(Q⊥,
√

2γCmaxβ ·T)‖2

2‖(Q⊥,
√

2γCmaxβ ·T)‖
(b)
=

(W (Q+,T+)−W (Q,T))−
(
W‖(Q

+,T+)−W‖(Q,T)
)

2‖(Q⊥,
√

2γCmaxβ ·T)‖
(c)
=

∆W (Q,T)−∆W‖(Q,T)

2‖(Q⊥,
√

2γCmaxβ ·T)‖
, (25)

where the step (a) follows from the fact that f(x) =√
x for x ≥ 0 so that f(y) − f(x) ≤ f ′(x)(y −

x) = y−x
2
√
x

with y = ‖(Q+
⊥,
√

2γCmaxβ ·T+)‖2 and x =

‖(Q⊥,
√

2γCmaxβ ·T)‖2; (b) is true since ‖(I,J)‖2 = ‖I‖2+
‖J‖2 for any vectors I,J, ‖I‖2 = ‖I‖‖2+‖I⊥‖2, W (Q,T) ,
‖(Q,

√
2γCmaxβ ·T)‖2, and W‖(Q,T) , ‖Q‖‖2; (c) is true

by letting

∆W (Q,T) ,W (Q+,T+)−W (Q,T),

∆W‖(Q,T) ,W‖(Q
+,T+)−W‖(Q,T).

Having inequality (25), we can first study the conditional
expectation of ∆W (Q,T) and ∆W‖(Q,T) instead of directly
studying the conditional expectation of ∆V⊥(Q,T). We first
focus on E [∆W (Q,T)|Q,T].

E [∆W (Q,T)|Q,T]

=E
[
‖(Q+,

√
2γCmaxβ ·T+)‖2

− ‖(Q,
√

2γCmaxβ ·T)‖2|Q,T
]

=E[‖Q+‖2 + 2γCmax‖β ·T+‖1
− ‖Q‖2 − 2γCmax‖β ·T‖1|Q,T]

=E[‖Q + A− S∗ ·C + U‖2 − ‖Q‖2

+ 2γCmax(‖β ·T+‖1 − ‖β ·T‖1)|Q,T]

=E[‖Q + A− S∗ ·C‖2 + 2〈Q + A− S∗ ·C,U〉+ ‖U‖2

− ‖Q‖2 + 2γCmax(‖β ·T+‖1 − ‖β ·T‖1)|Q,T]

(a)

≤E[‖Q + A− S∗ ·C‖2 − ‖Q‖2

+ 2γCmax(‖β ·T+‖1 − ‖β ·T‖1)|Q,T]

(b)
=E

[
2〈Q,A− S∗ ·C〉+ ‖A− S∗ ·C‖2

+ 2γCmax

(
L∑
l=1

βl −
∑
l∈H∗

βl −
∑
l∈H∗

βlTl

)∣∣∣∣Q,T
]

(c)

≤2E [〈Q,A− S∗ ·C〉|Q,T] +K1

− 2γE [〈β ·T,S∗ ·C〉|Q,T] , (26)

where the step (a) uses the fact that Ul[t](Ql[t] + Al[t] −
S∗l [t]Cl[t]) = −U2

l [t] for each l; (b) follows from the fact that∑L
l=1 βlT

+
l −
∑L
l=1 βlTl =

∑L
l=1 βl−

∑
l∈H∗ βl−

∑
l∈H∗ βlTl

and H∗ , {l ∈ L : S∗l Cl > 0}; (c) is true for K1 ,
Lmax{A2

max, C
2
max}+ 2γCmax

∑L
l=1 βl.

Next, we consider E [〈Q,A− S∗ ·C〉|Q,T]. By using the

definition of projection λ(0), we have

E [〈Q,A− S∗ ·C〉|Q,T]

=〈Q,λ(0) − εd〉 − E[〈Q,S∗ ·C〉|Q,T]

=− ε‖Q‖‖+ 〈Q,λ(0)〉 − E[〈Q + γβ ·T,S∗ ·C〉|Q,T]

+ γE[〈β ·T,S∗ ·C〉|Q,T]. (27)

Given the queue-length vector Q and TSLS vector T at the
beginning of each slot, according to the definition of the RSG
Algorithm and the capacity region R, it is easy to see that

〈Q + γβ ·T,E[S∗ ·C|Q,T]〉 = max
r∈R
〈Q + γβ ·T, r〉. (28)

Since λ(0) is a relative interior point of dominant hyper-
plane H(d), there exists a small enough δ > 0 such that
Bδ , H(d)

⋂{
r � 0 : ‖r− λ(0)‖ ≤ δ

}
representing the set

of vectors on the hyperplane H(d) that are within δ distance
from λ(0), lies strictly within the face F (d) , H(d)

⋂
R.

Therefore, we have

max
r∈R
〈Q + γβ ·T, r〉 ≥max

r∈Bδ
〈Q + γβ ·T, r〉

≥max
r∈Bδ
〈Q, r〉+ 〈γβ ·T, r∗〉, (29)

where r∗ ∈ arg max
r∈Bδ

〈Q, r〉.

Since normal vector d � 0 and arrival rate vector λ � 0,
we have λ(0) � 0. Therefore, we can find a δ > 0 sufficiently
small such that rl ≥ rmin for all r = (rl)l∈L ∈ Bδ and some
rmin > 0. Hence, by (28) and (29), we have

〈Q + γβ ·T,E[S∗ ·C|Q,T]〉 ≥ max
r∈Bδ
〈Q, r〉+ γrmin‖β ·T‖1.

By substituting above inequality into (27), we have

E [〈Q,A− S∗ ·C〉|Q,T]

≤− ε‖Q‖‖+ min
r∈Bδ
〈Q,λ(0) − r〉

− γrmin‖β ·T‖1 + γE[〈β ·T,S∗ ·C〉|Q,T].

Since λ(0) − r is perpendicular to the normal vector d for
r ∈ Bδ , we have

min
r∈Bδ
〈Q,λ(0) − r〉 = min

r∈Bδ
〈Q⊥,λ(0) − r〉 = −δ‖Q⊥‖.

Hence, we have

E [〈Q,A− S∗ ·C〉|Q,T] ≤ −ε‖Q‖‖ − δ‖Q⊥‖
− γrmin‖β ·T‖1 + γE[〈β ·T,S∗ ·C〉|Q,T]. (30)

Thus, by substituting (30) into (26), we have

E[∆W (Q,T)|Q,T] ≤− 2ε‖Q‖‖ − 2δ‖Q⊥‖
− 2γrmin‖β ·T‖1 +K1. (31)
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Next, we lower bound E[∆W‖(Q,T)|Q,T].

E[∆W‖(Q,T)|Q,T]

=E[〈d,Q+〉2 − 〈d,Q〉2|Q,T]

=E[〈d,Q + A− S∗ ·C + U〉2 − 〈d,Q〉2|Q,T]

=E[〈d,Q + A− S∗ ·C〉2 + 〈d,U〉2

+ 2〈d,Q + A− S∗ ·C〉〈d,U〉 − 〈d,Q〉2|Q,T]

=E[2〈d,Q〉〈d,A− S∗ ·C〉+ 〈d,A− S∗ ·C〉2

+ 2〈d,Q + A− S∗ ·C〉〈d,U〉+ 〈d,U〉2|Q,T]

=2〈d,Q〉〈d,λ− E[S∗ ·C|Q,T]〉
− 2E[〈d,S∗ ·C〉〈d,U〉|Q,T] + E[〈d,U〉2|Q,T]

+ E[〈d,A− S∗ ·C〉2 + 2〈d,Q + A〉〈d,U〉|Q,T]

≥2〈d,Q〉〈d,λ− E[S∗ ·C|Q,T]〉
− 2E[〈d,S∗ ·C〉〈d,U〉|Q,T]

(a)

≥2〈d,Q〉〈d,λ− E[S∗ ·C|Q,T]〉 −K2

(b)
= − 2ε‖Q‖‖ −K2

+ 2‖Q‖‖
(
〈d,λ(0)〉 − 〈d,E[S∗ ·C|Q,T]〉

)
(c)

≥ − 2ε‖Q‖‖ −K2, (32)

where the step (a) is true for K2 , 2LC2
max; step (b) uses

the definition of projection λ(0); step (c) follows from the
fact that E[S∗ ·C|Q,T] ∈ R, R ⊂ {r � 0 : 〈d, r〉 ≤ b} and
b = 〈d,λ(0)〉.

By using (31), (32) and (25), we have

E[∆V⊥(Q,T)|Q,T]

≤
E
[
∆W (Q,T)−∆W‖(Q,T)|Q,T

]
2‖(Q⊥,

√
2γCmaxβ ·T)‖

≤
−2δ‖Q⊥‖ − 2γrmin

∑L
l=1 βlTl +K1 +K2

2‖(Q⊥,
√

2γCmaxβ ·T)‖
.

Note that γβlTl ≥ γβlTl1{αTl≥1} ≥
√
γβlTl1{γβlTl≥1} =√

γβlTl −
√
γβlTl1{γβlTl<1} ≥

√
γβlTl − 1, and ‖Q⊥‖ ≥

1√
L
‖Q⊥‖1, where 1{·} is an indicator function. Thus, we have

E[∆V⊥(Q,T)|Q,T]

≤
− 2δ√

L
‖Q⊥‖1 − 2rmin

∑L
l=1

√
γβlTl +K1 +K2 + 2Lrmin

2‖(Q⊥,
√

2γCmaxβ ·T)‖

≤ −min

{
2δ√
L
,

√
2rmin√
Cmax

}
‖(Q⊥,

√
2γCmaxβ ·T)‖1

2‖(Q⊥,
√

2γCmaxβ ·T)‖

+
K1 +K2 + 2Lrmin

2‖(Q⊥,
√

2γCmaxβ ·T)‖

≤ −min

{
δ√
L
,

rmin√
2Cmax

}
+

K1 +K2 + 2Lrmin

2‖(Q⊥,
√

2γCmaxβ ·T)‖
.

where the last step uses the fact that ‖x‖1 ≥ ‖x‖ for any
vector x. Hence, for any 0 < ς < min

{
δ√
L
, rmin√

2Cmax

}
, by

taking

κ ,
K1 +K2 + 2Lrmin

2
(

min
{

δ√
L
, rmin√

2Cmax

}
− ς
) , (33)

we have the desired result.

APPENDIX B
PROOF OF LEMMA 2

If the event

El[j] , {Cl[j] > 0, Ci[j] = 0,∀i 6= l;Al[j − 1] > 0} (34)

happens for some j ∈ [t − m + 1, t), then under the RSG
Algorithm, link l should be scheduled at least once during the
past m slots and thus T (ε)

l [t] < m. This implies

Pr{T (ε)
l [t] ≥ m}

≤Pr{El[j] does not happen for all j ∈ [t−m+ 1, t)}
=ϑml .

where ϑl , 1− (1− ql)(1− pl)Πi 6=lpi, and ql , Pr{Al[t] =
0},∀l ∈ L. Since λl > 0, we have ql < 1 and thus ϑl ∈ (0, 1).
Thus, by taking ϑ , maxl∈L ϑl, we have the desired result.

APPENDIX C
PROOF OF PROPOSITION 3

In the rest of proof, we will omit ε associated with the
queue length processes, the TSLS counters and parameter
γ(ε) for brevity. As we pointed it out in Section VI, it is
challenging to directly provide an upper bound on E[‖Q⊥‖2].
Therefore, we will first upper-bound the moment generation
function of ‖Q⊥‖, and then establish the relationship between
the moments of a random variable and its moment generation
function to upper-bound E[‖Q⊥‖2].

Lemma 3: If Pr{Cl[t] = 0} > 0,∀l ∈ L, then, under the
RSG Algorithm, there exists a η > 0 satisfying ϑeηF1 < 1
and eηG2 − η(G2 + ς) < 1 such that

E
[
eη‖Q⊥‖

]
≤ G

1− ρ
, (35)

where

G , eηG1 +
LeηF2

1− eηF1ϑ
, (36)

ρ , eηG2 − η(G2 + ς) ∈ (0, 1), (37)

F1 , L

√√√√2γCmax

L∑
l=1

βl +

√√√√1 + 2γCmaxL

L∑
l=1

βl, (38)

F2 ,
2γCmax

∑L
l=1 βl

κ
+ 2Lmax{Amax, Cmax}, (39)

G2
1 , κ2 + 2

(
Amax + 2

√
LCmax

)
κ
√
L

+ L
(
Amax + 2

√
LCmax

)2
+ 2γCmax

L∑
l=1

βl, (40)

G2 , 2Lmax{Amax, Cmax}+
2γCmax

∑L
l=1 βl

κ

+ 2γCmaxL

L∑
l=1

βl, (41)

ϑ is defined in Lemma 2, ς and κ are defined in (33).
In Lemma 1, we have show that V⊥(Q,T) ,

‖(Q⊥,
√

2γCmaxβ ·T)‖ has a negative drift whenever
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V⊥(Q,T) is large enough. However, as we pointed it out in
Section VI, we cannot directly provide an upper bound on the
moment generation function of V⊥(Q,T) by [7, Theorem 2.3],
which requires either boundedness or the exponential tail of
the Lyapunov drift. This is due to the abrupt dynamics of TSLS
counters. We resolve this issue by exploiting the coupling
between the queue-length processes and TSLS counters. Please
see Appendix D for details.

Since we are interested in the scaling law of γ to preserve
heavy-traffic optimality under the RSG Algorithm, we will
write an upper bound on the moment generation function of
‖Q⊥‖ as a function of γ based on Lemma 3.

First, it is easy to see that κ = O(γ), G1 = O(γ), G2 =
O(γ), F1 = O(

√
γ) and F2 = O(1). Note that we need to

choose a η > 0 such that

ϑeηF1 < 1 (42)

eηG2 − η(G2 + ς) < 1. (43)

It is not hard to verify that

0 < η ≤ 1

2
min

{
1

F1
ln

1

ϑ
,

1

G2
ln
G2 + ς

G2

}
(44)

satisfies above requirements. If γ is large enough such that
ς
G2

< 1 and G2 � F1, then we have

1

G2
ln
G2 + ς

G2
≤ 1

F1
ln

1

ϑ
. (45)

Thus, we can take η∗ , 1
2G2

ln G2+ς
G2

to meet the above
requirements, and hence η∗ = O( 1

γ2 ).
Taking η = η∗ and noting that η∗ < 1

2F1
ln 1

ϑ , we have

G

1− ρ
=

eη
∗G1 + Leη

∗F2

1−ϑeη∗F1

1− (eη∗G2 − η∗ (G2 + ς))

≤
eη
∗G1 + Leη

∗F2

1−
√
ϑ

1− (eη∗G2 − η∗ (G2 + ς))

=
eη
∗G1 + Leη

∗F2

1−
√
ϑ

1−
(

1 + ς
G2

) 1
2

+ 1
2

(
1 + ς

G2

)
ln
(

1 + ς
G2

)
(a)
=O

 1

1−
(

1 + ς
2G2

)
+ 1

2

(
1 + ς

G2

)
ς
G2

 = O
(
γ2
)
,

where the step (a) uses η∗G1 = O
(

1
γ

)
and η∗F2 = O

(
1
γ2

)
.

Thus, by Lemma 3, we have E
[
eη
∗‖Q⊥‖

]
= O(γ2).

Having obtained the upper bound on E
[
eη
∗‖Q⊥‖

]
, we need

to establish the relationship between the moments of a random
variable and its moment generation function to upper-bound
E[‖Q⊥‖2], as shown in the following lemma.

Lemma 4: For a random variable X with E[eηX ] <∞ for
some η > 0, we have

E[Xn] ≤ 1

ηn
(
log
(
en−1E[eηX ]

))n
, (46)

for n = 1, 2, 3 · · · .
Please see the Appendix F for the proof of Lemma 4.

By taking n = 2 in Lemma 4, we have the desired result.

APPENDIX D
PROOF OF LEMMA 3

Let Z[t] ,
(
Q⊥[t],

√
2γCmaxβ ·T[t]

)
. We first give an

upper bound on E
[
eη‖Z[t+1]‖

∣∣Q[t],T[t]
]
. To that end, let

l∗[t] ∈ arg maxl βlTl[t]. We partition (Q⊥[t],T[t]) into sets
F1, F2 and F3, where

F1 , {‖Z[t]‖ ≤ κ} ;F2 ,
{
‖Z[t]‖ > κ, ‖Q⊥[t]‖ > Tl∗[t][t]

}
;

F3 ,
{
‖Z[t]‖ > κ, ‖Q⊥[t]‖ ≤ Tl∗[t][t]

}
.

Then, we have

E
[
eη‖Z[t+1]‖

∣∣∣Q[t],T[t]
]

=

3∑
i=1

E
[
eη‖Z[t+1]‖;Fi

∣∣∣Q[t],T[t]
]
.

(47)

Next, we consider each term in (47) individually.
(i) On event F1, we have

‖Z[t]‖ =

√√√√‖Q⊥[t]‖2 + 2γCmax

L∑
l=1

βlTl[t] ≤ κ,

which implies ‖Q⊥[t]‖ ≤ κ. For Q⊥[t+ 1], we have

Q⊥[t+ 1] = Q[t+ 1]− 〈d,Q[t+ 1]〉d
= (Q[t] + A[t]− S[t] + U[t])

− 〈d,Q[t] + A[t]− S[t] + U[t]〉d
=Q[t]− 〈d,Q[t]〉d + (A[t] + U[t] + 〈d,S[t]〉d)

− (S[t] + 〈d,A[t] + U[t]〉d)

(a)

�Q⊥[t] +Amax1 + Cmax1 +
√
LCmaxd

�Q⊥[t] + (Amax + 2
√
LCmax)1, (48)

where step (a) uses the following inequality

〈d,S[t]〉 ≤ ‖d‖‖S[t]‖ ≤
√
LCmax.

Hence, we have

‖Z[t+ 1]‖2 = ‖Q⊥[t+ 1]‖2 + 2γCmax

L∑
l=1

βlTl[t+ 1]

(a)

≤‖Q⊥[t] + (Amax + 2
√
LCmax)1‖2

+ 2γCmax

L∑
l=1

βl(Tl[t] + 1)

=‖Z[t]‖2 + 2
(
Amax + 2

√
LCmax

)
‖Q⊥[t]‖1

+ L
(
Amax + 2

√
LCmax

)2
+ 2γCmax

L∑
l=1

βl

(b)

≤κ2 + 2
(
Amax + 2

√
LCmax

)
κ
√
L

+L
(
Amax + 2

√
LCmax

)2
+ 2γCmax

L∑
l=1

βl , G2
1, (49)

where step (a) uses the inequality (48); step (b) utilizes the
inequality ‖x‖1 ≤

√
L‖x‖ for any L-dimensional vector x.
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Hence, we have

E
[
eη‖Z[t+1]‖;F1

∣∣∣Q[t],T[t]
]
≤ eηG1 (50)

In order to analyze other two terms in (47), we need the
following lemma.

Lemma 5: Under the RSG Algorithm, if ‖Z[t]‖ > κ, then

|‖Z[t+ 1]‖ − ‖Z[t]‖|

≤2Lmax{Amax, Cmax}+
2γCmax

∑L
l=1 βl

κ

+ 2γCmax

∑
l∈H∗ βlTl[t]√

‖Q⊥[t]‖2 + 2γCmax

∑L
l=1 βlTl[t]

, (51)

where H∗ , {l : S∗l [t]Cl[t] > 0}.

The proof is available in Appendix E.

(ii) On event F2, we have∑
l∈H∗ βlTl[t]√

‖Q⊥[t]‖2 + 2γCmax

∑L
l=1 βlTl[t]

≤
Lβl∗[t]Tl∗[t][t]

‖Q⊥[t]‖
≤ L

L∑
l=1

βl.

By substituting above inequality into (51), we get

|‖Z[t+ 1]‖ − ‖Z[t]‖| ≤ G2, (52)

where G2 , 2Lmax{Amax, Cmax} +
2γCmax

∑L
l=1 βl

κ +

2γCmaxL
∑L
l=1 βl. Noting that (12) and (52) satisfy condi-

tions of [7, Lemma 2.2], there exists η1 > 0 such that

E
[
eη(‖Z[t+1]‖−‖Z[t]‖);F2

∣∣∣Q[t],T[t]
]
≤ ρ, ∀0 < η < η1,

where ρ , eηG2 −η(G2 + ς) ∈ (0, 1), independent of ε. Thus,
we have

E
[
eη‖Z[t+1]‖;F2

∣∣∣Q[t],T[t]
]
≤ ρeη‖Z[t]‖. (53)

(iii) On event F3, we have∑
l∈H∗ βlTl[t]√

‖Q⊥[t]‖2 + 2γCmax

∑L
l=1 βlTl[t]

≤
Lβl∗[t]Tl∗[t][t]√

2γCmaxβl∗[t]Tl∗[t][t]

=
L√

2γCmax

√
βl∗[t]Tl∗[t][t]

≤
L
√∑L

l=1 βl√
2γCmax

√
Tl∗[t][t]

≤
L
√∑L

l=1 βl√
2γCmax

Tl∗[t][t]. (54)

By substituting (54) into (51), we get

|‖Z[t+ 1]‖ − ‖Z[t]‖|

≤2Lmax{Amax, Cmax}+
2γCmax

∑L
l=1 βl

κ

+ Tl∗[t][t]L

√√√√2γCmax

L∑
l=1

βl. (55)

In addition, on event F3, we have

‖Z[t]‖ =

√√√√‖Q⊥[t]‖2 + 2γCmax

L∑
l=1

βlTl[t]

≤
√
T 2
l∗[t][t] + 2γCmaxLβl∗[t]Tl∗[t][t]

≤

√√√√T 2
l∗[t][t] + 2γCmaxLTl∗[t][t]

L∑
l=1

βl

≤Tl∗[t][t]

√√√√1 + 2γCmaxL

L∑
l=1

βl (56)

Hence, by utilizing (55) and (56), we have

‖Z[t+ 1]‖ ≤‖Z[t]‖+ |‖Z[t+ 1]‖ − ‖Z[t]‖|
≤F1Tl∗[t][t] + F2, (57)

where F1 , L
√

2γCmax

∑L
l=1 βl +

√
1 + 2γCmaxL

∑L
l=1 βl

and F2 , 2γCmax
∑L
l=1 βl

κ + 2Lmax{Amax, Cmax}. Thus,

E
[
eη‖Z[t+1]‖;F3

∣∣∣Q[t],T[t]
]
≤ eηF2eηF1Tl∗[t][t]. (58)

By substituting (50), (53) and (58) into (47), we have

E
[
eη‖Z[t+1]‖|Q[t],T[t]

]
≤ eηG1 + ρeη‖Z[t]‖ + eηF2eηF1Tl∗[t][t].

By taking expectation on both sides, we have

E
[
eη‖Z[t+1]‖

]
≤ eηG1 + ρE

[
eη‖Z[t]‖

]
+ eηF2E

[
eηF1Tl∗[t][t]

]
≤ eηG1 + ρE

[
eη‖Z[t]‖

]
+ eηF2

L∑
l=1

E
[
eηF1Tl[t]

]
. (59)

Next, we will upper-bound the term E
[
eηF1Tl[t]

]
.

E
[
eηF1Tl[t]

]
(a)
=

t∑
m=0

eηF1m Pr{Tl[t] = m}

≤
t∑

m=0

eηF1m Pr{Tl[t] ≥ m}

(b)

≤
t∑

m=0

eηF1mϑm

≤
∞∑
m=0

eηF1mϑm

(c)
=

1

1− eηF1ϑ
, (60)

where the step (a) uses the fact that Tl[t] ≤ t for any t ≥ 0;
(b) follows from Lemma 2; (c) is true for 0 < η < η2 and
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ϑeη2F1 < 1.
By substituting (60) into (59), we have

E
[
eη‖Z[t+1]‖

]
≤ ρE

[
eη‖Z[t]‖

]
+G, (61)

holding for 0 < η < η0 , min{η1, η2}, where G , eηG1 +
LeηF2

1−eηF1ϑ
. By using (61) and iterating over t, we have

E
[
eη‖Z[t]‖

]
≤ ρteη‖Z[0]‖ +

1− ρt

1− ρ
G.

Letting t→∞ on both sides of the above inequality, we have

E
[
eη‖(Q⊥,

√
2γCmaxβ·T)‖

]
≤ G

1− ρ
,

which implies the desired result.

APPENDIX E
PROOF OF LEMMA 5

If ‖Z[t]‖ > κ, then

|‖Z[t+ 1]‖ − ‖Z[t]‖|

=

∣∣‖Z[t+ 1]‖2 − ‖Z[t]‖2
∣∣

‖Z[t+ 1]‖+ ‖Z[t]‖

≤
∣∣‖Q⊥[t+ 1]‖2 − ‖Q⊥[t]‖2

∣∣
‖Z[t+ 1]‖+ ‖Z[t]‖

+
2γCmax

∣∣∣∑L
l=1 βlTl[t+ 1]−

∑L
l=1 βlTl[t]

∣∣∣
‖Z[t+ 1]‖+ ‖Z[t]‖

≤
∣∣‖Q⊥[t+ 1]‖2 − ‖Q⊥[t]‖2

∣∣
‖Q⊥[t+ 1]‖+ ‖Q⊥[t]‖

+
2γCmax

∣∣∣∑L
l=1 βl −

∑
l∈H∗ βl −

∑
l∈H∗ βlTl[t]

∣∣∣
‖Z[t+ 1]‖+ ‖Z[t]‖

≤ |‖Q⊥[t+ 1]‖ − ‖Q⊥[t]‖|

+
2γCmax

(∑L
l=1 βl −

∑
l∈H∗ βl

)
+ 2γCmax

∑
l∈H∗ βlTl[t]

‖Z[t+ 1]‖+ ‖Z[t]‖

≤ |‖Q⊥[t+ 1]‖ − ‖Q⊥[t]‖|+
2γCmax

∑L
l=1 βl

κ

+ 2γCmax

∑
l∈H∗ βlTl[t]√

‖Q⊥[t]‖2 + 2γCmax

∑L
l=1 βlTl[t]

. (62)

Note that

|‖Q⊥[t+ 1]‖ − ‖Q⊥[t]‖|
(a)

≤‖Q⊥[t+ 1]−Q⊥[t]‖
(b)
=‖Q[t+ 1]−Q[t]−Q‖[t+ 1] + Q‖[t]‖
≤‖Q[t+ 1]−Q[t]‖+ ‖Q‖[t+ 1]−Q‖[t]‖
(c)

≤2‖Q[t+ 1]−Q[t]‖
(d)

≤2‖Q[t+ 1]−Q[t]‖1
≤2Lmax

l
|Ql[t+ 1]−Ql[t]|

≤2Lmax{Amax, Cmax}, (63)

where the step (a) uses the inequality |‖x‖2 − ‖y‖2| ≤ ‖x−
y‖2 for any vector x and y; (b) follows from the definition of
Q = Q⊥ + Q‖; (c) follows from the non-expansive property
of the projection onto the a convex set; (d) is true since ‖x‖ ≤
‖x‖1 for any vector x. By substituting (63) into (62), we have
the desired result.

APPENDIX F
PROOF OF LEMMA 4

E[Xn] =
1

ηn
E
[(

log eηX
)n] (a)

≤ 1

ηn
E
[(

log
(
en−1eηX

))n]
(b)

≤ 1

ηn
(
log
(
en−1E[eηX ]

))n
,

where the step (a) follows from the fact that f(y) = (log y)
n

is increasing in y ∈ [1,∞) for n = 1, 2, · · · ; (b) uses the
fact that g(y) =

(
log
(
en−1y

))n
is concave in [1,∞) for n =

1, 2, · · · , and Jensen’s Inequality.

APPENDIX G
PROOF OF INEQUALITY (18)

To show inequality (18), we need the following lemma.

Lemma 6: Let

πc , Pr
{
〈d, c · S∗(Q,T, c)〉 = bc

∣∣C = c
}

and

χc , min
{
bc − 〈d, r〉 : for all r ∈ S(c) \ {w : bc = 〈d,w〉}

}
.

Then, for each channel state c ∈ C, and any ε ∈ (0, χcψc),
we have

1− πc ≤
ε

χcψc
, (64)

where we recall that ψc , Pr{C = c}.
The proof mainly follows from the stability condition, i.e.,
E
[
〈d,S∗(Q,T, c)〉

]
≥ 〈d,λ〉 = b−ε, and is similar to that of

[4, Claim 1]. We omit the proof here for conciseness. Lemma
6 implies that

E
[(
bc − 〈d,C · S∗(Q,T,C)〉

)2∣∣∣C = c
]

=E
[(
bc − 〈d,C · S∗(Q,T,C)〉

)2∣∣∣〈d,C · S∗(Q,T,C)〉 6= bc

]
× (1− πc)

≤ ε

χcψc

(
(bc)

2
+ 〈d, Cmax1〉2

)
. (65)

Similarly, we have

E
[
bc − 〈d,C · S∗(Q,T,C)〉

∣∣C = c
]
≤ εbc
χcψc

. (66)



13

For E
[
〈d,A−C · S∗(Q,T,C)〉2

∣∣C = c
]
, we have

E
[
〈d,A−C · S∗(Q,T,C)〉2

∣∣C = c
]

=E
[(
〈d,A〉 − b+ b− bc + bc − 〈d, c · S∗(Q,T, c)〉

)2]
=E

[
(〈d,A〉 − b)2

]
+ (b− bc)

2

+ E
[(
bc − 〈d, c · S∗(Q,T, c)〉

)2]
+ 2 (〈d,λ〉 − b) (b− bc)

+ 2 (〈d,λ〉 − b)E
[
bc − 〈d, c · S∗(Q,T, c)〉

]
+ 2 (b− bc)E

[
bc − 〈d, c · S∗(Q,T, c)〉

]
. (67)

Next, we give upper bounds for each individual term in the
right hand side of (67). We will repeatedly use the identity

〈d,λ〉 − b = −ε, (68)

where it follows from the definition of λ(0) (see Fig. 2). By
noting that bc , maxs∈S(c)〈d, c · s〉, we have

(〈d,λ〉 − b)E
[
bc − 〈d, c · S∗(Q,T, c)〉

]
=− εE

[
bc − 〈d, c · S∗(Q,T, c)〉

]
≤ 0. (69)

In addition, by using inequality (66), we have

(b− bc)E
[
bc − 〈d, c · S∗(Q,T, c)〉

]
≤bE

[
bc − 〈d, c · S∗(Q,T, c)〉

]
≤ b εbc

χcψc
. (70)

For E
[
(〈d,A〉 − b)2

]
, we have

E
[
(〈d,A〉 − b)2

]
=E

[
(〈d,A〉 − 〈d,λ〉+ 〈d,λ〉 − b)2

]
=E

[
(〈d,A〉 − 〈d,λ〉 − ε)2

]
=

〈
d2,
(
σ(ε)

)2〉
+ ε2. (71)

Thus, by substituting (65), (68), (69), (70) and (71) into (67),
we have

E
[
〈d,A−C · S∗(Q,T,C)〉2

∣∣C = c
]

≤
〈
d2,
(
σ(ε)

)2〉
+ ε2 + (b− bc)

2

+
ε

χcψc

(
2bbc + (bc)

2
+ 〈d, Cmax1〉2

)
− 2ε (b− bc) .

By taking the expectation on both sides of the above inequality,
we have the desired result.

APPENDIX H
PROOF OF INEQUALITY (21)

Let R∗(Q[t],T[t]) , E[C ·S∗(Q[t],T[t],C[t])|Q[t],T[t]].
For the face F , H(d) ∩ R of the region R, there exists an
angle θ ∈ (0, π2 ] such that 〈d,R∗(Q,T)〉 = b, for all Q and

T satisfying ‖(Q+γβ·T)‖‖
‖Q+γβ·T‖ ≥ cos(θ). Note that

E
[
〈d,Q〉〈d,C · S∗(Q,T,C)−A〉

]
=E

[
〈d,Q + γβ ·T〉〈d,C · S∗(Q,T,C)−A〉

]
− E

[
〈d, γβ ·T〉〈d,C · S∗(Q,T,C)−A〉

]
(72)

For E
[
〈d,Q + γβ ·T〉〈d,C · S∗(Q,T,C)−A〉

]
, we have

E
[
〈d,Q + γβ ·T〉〈d,C · S∗(Q,T,C)−A〉

]
=E

[
〈d,Q + γβ ·T〉 (b− 〈d,A〉)

]
− E

[
〈d,Q + γβ ·T〉

(
b− 〈d,C · S∗(Q,T,C)〉

)]
(73)

By using the fact that the arrivals are independent of system
state, we have

E
[
〈d,Q + γβ ·T〉 (b− 〈d,A〉)

]
=εE

[
〈d,Q + γβ ·T〉

]
=εE

[
‖Q‖‖

]
+ γεE

[
‖
(
β ·T

)
‖ ‖
]
. (74)

For E
[
〈d,Q + γβ ·T〉

(
b− 〈d,C · S∗(Q,T,C)〉

)]
, we have

E
[
〈d,Q + γβ ·T〉

(
b− 〈d,C · S∗(Q,T,C)〉

)]
=E

[
E
[
‖(Q + γβ ·T)‖‖

(
b− 〈d,C · S∗(Q,T,C)〉

)∣∣Q,T]]
=E

[
‖(Q + γβ ·T)‖‖

(
b− 〈d,R∗(Q,T)〉

)]
(a)
=E

[
‖Q + γβ ·T‖ cos(φ)

(
b− 〈d,R∗(Q,T)〉

)]
(b)
=E

[
‖Q + γβ ·T‖ cos(φ)1{φ>θ}

(
b− 〈d,R∗(Q,T)〉

)]
(c)
=E

[
‖(Q + γβ ·T)⊥‖ cot(φ)1{φ>θ}

(
b− 〈d,R∗(Q,T)〉

)]
(d)

≤ cot(θ)E
[
‖(Q + γβ ·T)⊥‖

(
b− 〈d,R∗(Q,T)〉

)]
(e)

≤ cot(θ)

√
E
[
‖(Q + γβ ·T)⊥‖2

]
E
[(
b− 〈d,R∗(Q,T)〉

)2]
≤ cot(θ)

√
E
[
‖(Q⊥‖2 + γ2‖β ·T‖2

]
×
√
E
[(
b− 〈d,R∗(Q,T)〉

)2]
, (75)

where the step (a) is true for that φ is the angle between
vector Q+ γβ ·T and the normal vector d; (b) follows from
the definition of θ; (c) uses ‖(Q + γβ · T)⊥‖ = ‖Q + γβ ·
T‖ sin(φ); (d) follows from the fact that cotangent function
is decreasing in

(
0, π2

]
; (e) uses Cauchy-Schwartz Inequality.

Next, let’s consider E
[(
b− 〈d,R∗(Q,T)〉

)2]
.

E
[(
b− 〈d,R∗(Q,T)〉

)2]
(a)
=E

[(
E
[
Ψ− 〈d,C · S∗(Q,T,C)〉

∣∣Q,T])2]
(b)

≤E
[
E
[(

Ψ− 〈d,C · S∗(Q,T,C)〉
)2∣∣∣Q,T]]

=E
[(

Ψ− 〈d,C · S∗(Q,T,C)〉
)2]

=
∑
c∈C

ψcE
[(
bc − 〈d,C · S∗(Q,T,C)〉

)2∣∣∣C = c
]

(c)

≤ε
∑
c∈C

1

χc

(
(bc)

2
+ 〈d, Cmax1〉2

)
, (76)
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where the step (a) follows from the definition of Ψ with
distribution Pr{Ψ = bc} = ψc for c ∈ C, and the definition
of R∗(Q,T); (b) uses Jensen’s Inequality; (c) uses (65).

Thus, by substituting (74), (75) and (76) into (73), we have

E
[
〈d,Q + γβ ·T〉〈d,C · S∗(Q,T,C)−A〉

]
≥εE

[
‖Q‖‖

]
+ γεE

[
‖(β ·T)‖‖

]
− cot(θ)

√(
E
[
‖Q⊥‖2

]
+ γ2E

[
‖β ·T‖2

])
ε

×
√∑

c∈C

1

χc

(
(bc)

2
+ 〈d, Cmax1〉2

)
. (77)

For E
[
〈d, γβ ·T〉〈d,C · S∗(Q,T,C)−A〉

]
, we have

E
[
〈d, γβ ·T〉〈d,C · S∗(Q,T,C)−A〉

]
=E

[
E
[
〈d, γβ ·T〉〈d,C · S∗(Q,T,C)−A〉

∣∣Q,T]]
=E

[
E
[
〈d, γβ ·T〉

(
〈d,R∗(Q,T)〉 − 〈d,A〉

)∣∣Q,T]]
=E

[
〈d, γβ ·T〉

(
〈d,R∗(Q,T)〉 − b+ b− 〈d,λ〉

)]
(a)

≤E
[
〈d, γβ ·T〉 (b− 〈d,λ〉)

]
(b)
=γεE

[
‖(β ·T)‖‖

]
, (78)

where the step (a) uses the fact that 〈d,R∗(Q,T)〉 ≤ b; (b)
uses (68). By substituting (77) and (78) into (72), we have the
desired result.
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from Boḡaziçi University, Istanbul, in 1999, and
the M.S. and Ph.D. degrees in Electrical and Com-
puter Engineering from the University of Illinois at
Urbana-Champaign in 2001 and 2005, respectively.
Between 2005 and 2007, he worked as a Postdoc-
toral Associate at the Laboratory for Information and
Decision Systems at the Massachusetts Institute of
Technology. He is currently an Associate Professor
of Electrical and Computer Engineering at The Ohio

State University, where he has been a faculty since 2007. He served as a
TPC chair for the International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks (WiOpt) 2015, and is an Associate
Editor for ACM/IEEE Transactions on Networking since March 2015.

Dr. Eryilmaz’s research interests include design and analysis for complex
networked systems with focus on wireless communication and power net-
works, optimal control of stochastic networks, optimization theory, distributed
algorithms, network pricing, and information theory. He was a co-author of
the Best Student Paper Award in WiOpt 2012. He received the NSF-CAREER
Award in 2010, and two Lumley Research Awards for Research Achievements
in 2010 and 2015.


