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Abstract—Randomization is a powerful and pervasive strategy
for developing efficient and practical transmission scheduling al-
gorithms in interference-limited wireless networks. Yet, despite the
presence of a variety of earlier works on the design and analysis
of particular randomized schedulers, there does not exist an
extensive study of the limitations of randomization on the efficient
scheduling in wireless networks. In this work, we aim to fill
this gap by proposing a common modeling framework and three
functional forms of randomized schedulers that utilize queue-
length information to probabilistically schedule non-conflicting
transmissions. This framework not only models many existing
schedulers operating under a time-scale separation assumption as
special cases, but it also contains a much wider class of potential
schedulers that have not been analyzed.

Our main results are the identification of necessary and
sufficient conditions on the network topology and on the functional
forms used in the randomization for throughput-optimality. Our
analysis reveals an exponential and a sub-exponential class of
functions that exhibit differences in the throughput-optimality.
Also, we observe the significance of the network’s scheduling
diversity for throughput-optimality as measured by the number
of maximal schedules each link belongs to. We further validate
our theoretical results through numerical studies.

I. INTRODUCTION

One of the greatest challenges in the efficient communication
in wireless networks is the management of interference amongst
simultaneous transmissions. A commonly used model, which
we also employ in this paper, to capture such interference
effects is through the use of a conflict graph whereby trans-
missions that will collide with each other are indicated as
conflicting. These conflict graphs can represent a variety of
interference models of practical importance, including primary
interference model (e.g., [22], [10]), secondary interference
model (e.g., [3], [4]), or SINR threshold-based interference
model (e.g., [12]). Such conflict graphs can take on extremely
complex forms, especially with growing network sizes. Thus, a
fundamental question in the design of efficient wireless network
protocols is the decision of which subset of non-conflicting
transmissions to activate, and when - an operation commonly
referred to as scheduling.

Of particular interest in the class of scheduling protocols
is the set of throughput-optimal scheduling strategies (e.g.,
[26], [17]) that achieves any throughput (subject to network
stability) that is achievable by any other scheduling strategy.
Thus, throughput-optimal schedulers are critical especially for
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resource-limited wireless networks as they achieve the largest
possible throughput region that is supportable by the network.
The seminal works of Tassiulas and Ephremides [26], [27] and
many subsequent works (e.g., [5], [17], [24]; see [6] for an
overview) have established the throughput-optimality of a vari-
ety of Queue-Length-Based (QLB) Scheduling strategies, which
prioritize activation of links with the greatest backlog awaiting
service, also called Maximum Weight Scheduling (MWS).

These original throughput-optimal strategies require the max-
imum weight schedule to be determined repeatedly as the
queue-length levels change. This calls for computationally
heavy (even NP-hard in certain interference models) and
typically centralized operations, which is impractical. Such
restrictions have motivated new research efforts to develop
more practical throughput-optimal schedulers with reduced
complexity. One such thread led to the development of a class
of evolutionary randomized algorithms (also named pick and
compare algorithms) with throughput-optimality characteristics
(see [25], [4], [21]). Another thread led to the development
of distributed but suboptimal randomized/greedy strategies (see
[14], [9], [2]).

More recently, another exciting thread of results have
emerged that can guarantee throughput-optimality by cleverly
utilizing queue-length information in the context of carrier
sense multiple access (CSMA) (see [15], [8], [19], [18]). In
paper [8], the authors proposed an algorithm that adaptively
selects the CSMA parameters under a time-scale separation as-
sumption, i.e., the Markov Chain underlying the CSMA-based
algorithm converges to steady-state quickly compared with the
time-scale of updating parameters of the algorithm. In paper
[20], the authors showed the throughput-optimality of a CSMA-
based algorithm in which the link weights are chosen to be of
the form log log(q + e) (where q is the queue length) without
the time-scale separation assumption. Ghaderia and Srikant
[7] extended these results by showing that the throughput-
optimality of CSMA-based algorithm will be preserved even
if the link weights have the form log(q)/g(q), where g(q) can
be a function that increases to infinity arbitrarily slowly. Yet,
to the best of our knowledge, there does not exist a general
framework in which a variety of randomized schedulers can be
studied in terms of their throughput-optimality characteristics.

Thus, in this work, we aim to fill this gap by developing a
common framework for the modeling and analysis of queue-
length-based randomized schedulers, and then by establish-
ing necessary and sufficient conditions on the throughput-
optimality of a large functional class of such schedulers under
the time-scale separation assumption. Our framework is built
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upon the observation that a common characteristic to most
of the developed schedulers is their randomized selection of
transmission schedules from the set of all feasible schedules.
Specifically, given the existing queue-lengths of the links, each
scheduling strategy can be viewed as a particular probability
distribution over the set of feasible schedules. While the means
with which this random assignment may vary in its distributive-
ness or complexity, this perspective allows us to model a large
set of existing and an even wider set of potential randomized
schedulers within a common framework.

This work builds on this original point-of-view to explore
the boundaries of randomization in the throughput-optimal
operation of wireless networks. Such an investigation is crucial
in revealing the necessary and sufficient characteristics of
randomized schedulers and the network topologies in which
throughput-optimality can be achieved.

Next, we list our main contributions along with references
on where they appear in the text.
• In Section II, we introduce three functional forms of ran-

domized queue-length-based scheduling strategies that include
many existing strategies as special cases (see Definitions 1, 2
and 3). These strategies differ in the manner in which they
measure the weight of schedules, and hence are used to model
fundamentally different scheduling implementations.
• We categorize the set of all functions used by these strate-

gies into functions of exponential form and of sub-exponential
form (see Definition 4), collectively covering almost all func-
tions of interest (e.g. (log(x + 1))α, xα (α > 0) and 1

xβ exα

(α > 0, β ≥ 0)). These two categories capture the steepness of
the functions used in the schedulers, and help reveal a critical
degree of steepness necessary for throughput-optimality in large
networks.
• Then, we find sufficient (in Section IV) and necessary

(in Section V) conditions on the topological characteristics
of the conflict graph for the throughput-optimality of these
schedulers as a function of the class of functions used in their
operation. Our results, graphically summarized in Section III,
reveal the significance of the network’s scheduling diversity that
is measured by the number of schedules each link belongs to.

II. SYSTEM MODEL

We consider a fixed wireless network represented by a graph
G = (N ,L), where N is the set of nodes and L is the set
of undirected links. We assume a time-slotted system, where
all nodes transmit at the beginning of each time slot. Due to
the interference-limited nature of wireless transmissions, the
success or failure of a transmission over a link depends on
whether an interfering link is also active in the same slot. For
ease of exposition, we assume that a successful transmission
over any link achieves a unit rate measured in packets per slot.

We use conflict graphs to capture any such collision-based
interference in the wireless networks. In a conflict graph
CG = (L, E) of G under a given interference model, the set
of links L in G becomes the set of nodes, and E denotes the
set of edges that connects links that interfere with each other.
In each time slot, we can successfully transmit over nodes in

a subset of L that form an independent set (i.e., that are not
directly connected in CG). We call each such independent set as
a feasible schedule, and denote it as S = (Sl)l∈L ∈ {0, 1}|L|,
where Sl = 1 if link l is active and Sl = 0 is link l is inactive
in the schedule. We also treat S as a set of active links and
write l ∈ S if Sl = 1. We further call a feasible schedule as
maximal if no more nodes in CG can be added without violating
the interference constraint. As maximal schedules represent
extreme points in the space of feasible schedules, we collect
them in the set S. Then, we can define the capacity region Λ
as the convex hull1 of S and L-dimensional all-zero vector,
which will give the upper bound on the achievable link rates
in packets per slot that can be supported by the network under
stability for the given interference model.

Given the topology and the interference model of a wireless
network, we define the scheduling diversity of link l ∈ L as the
number of different maximal schedules ml that link l belongs
to. Then, for a network topology with a complete N -partite
conflict graph2, we have max ml ≤ 1. As another example, a
single-hop wireless network where all links interfere with each
other, we have ml = 1 for all l. Less trivially, a 2 × 2 switch
has 2-partite conflict graph in which each maximal schedule
has only 2 links, and ml = 1 for each l. Roughly speaking,
the scheduling diversity increases as the network diameter3

increases. Such a behavior can be observed directly in a linear
network with L links: for L ≤ 3, ml = 1 for all l; for L ≥ 6,
ml ≥ 2 for all l.

In its simplest form, a scheduler determines a maximal
feasible schedule S[t] ∈ S at each time slot t. This selection
may be influenced by the earlier experiences of each transmitter,
and may be performed through a variety of strategies. Here, we
are not interested in the means of selecting schedules, but in
the eventual selection modeled as a probabilistic function of the
queue-length state of the network. Before we define the class
of randomized schedulers we consider more explicitly, we need
to establish the traffic and the queueing models.

For simplicity4, we assume a per-link traffic model, where
Al[t] arrivals occur to link l in slot t that are independently
distributed over links and identically distributed over time with
mean λl, and Al[t] ≤ K for some K < ∞ 5. Accordingly, a
queue is maintained for each link l ∈ L with Ql[t] denoting its
queue length at the beginning of time slot t. Recall from above
that Sl[t] denotes the number of potential departures at time t.
Further, we let Ul[t] denote the unused service for Queue l in
slot t. If the queue l is empty and is scheduled, then Ul[t] is
equal to 1; otherwise, it is equal to 0. Then, the evolution of

1The convex hull of the set V is the minimal convex set containing set V.
2In a complete N -partite conflict graph, the nodes are partitioned into N

sets such that every node in each partition is connected to all the nodes of the
conflict graph CG which are not contained in that partition.

3Network diameter is the maximum of the shortest hop-count between any
two nodes in the graph.

4This assumption can be relaxed by utilizing backpressure type routing strat-
egy (see, for example, [26]), which is avoided for unnecessary complications.

5We note that the boundedness assumption on the arrival process simplifies
the technical arguments, but can be relaxed (see, for example, [5]) to the less
strict assumption of E[A2

l (t)] < ∞.
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the Queue l is described as follows:

Ql[t + 1] = Ql[t] + Al[t]− Sl[t] + Ul[t], ∀l ∈ L. (1)

We say that Queue l is f -stable for a non-negative val-
ued, non-decreasing and divergent function f if it satisfies
lim supT→∞

1
T

∑T−1
t=0 E[f(Ql[t])] < ∞. We note that this is an

extended form of the more traditional strong stability condition
(see [6]) that coincide when f(x) = x. Moreover, it is easy to
show that f -stability implies strong stability when f is also a
convex function. We say that the network is f -stable if all its
queues are f -stable. Accordingly, we say that a scheduler is f -
throughput-optimal if it achieves f -stability of the network for
any arrival rate vector λ = (λl)l∈L that lies strictly inside the
capacity region Λ. Again, in the special case of f(x) = x,
the notion of f -throughput-optimality reduces to traditional
throughput-optimality, and when f is convex, f -throughput-
optimality implies throughput-optimality.

Starting with the seminal work [26], there is a vast literature
on the design of throughput-optimal schedulers that utilize
queue-length information in the selection of the schedules (e.g.,
[6], [23]). Of special interest in this class of throughput-optimal
schedulers are those that employ probabilistic assignments
(e.g., [25], [14], [15], [8], [19], [4]). This is not only because
they model possible errors in the scheduling process, but also
because they allow significant flexibilities in the development
of low-complexity and distributed implementations. Yet, ran-
domization causes inaccurate operation and may be hurtful if
not performed within limitations.

The aim of this work is to identify the limitations of random-
ization for a wide class of randomized dynamic schedulers that
utilize functions of queue-lengths to schedule transmissions.
To that end, we identify three classes of randomized schedulers
that differ in the operation of the functional forms used in them.
Before we describe them, let us define a basic set of functions
we consider:
F := set of non-negative, nondecreasing and differentiable

functions f(·) : R+ → R+ with lim
x→∞

f(x) = ∞.

Definition 1 (RSOF Scheduler): For a given f ∈ F and
queue-length vector Q at the beginning of a slot, the Ratio-of-
Sum-of-Functions (RSOF) Scheduler picks a schedule S ∈ S
in that slot such that

PS(Q) :=
∑

i∈S f(Qi)∑
{S′:S′∈S}

∑
j∈S′ f(Qj)

, for all S ∈ S (2)

Definition 2 (RMOF Scheduler): For a given f ∈ F and
queue-length vector Q at the beginning of a slot, the Ratio-of-
Multiplication-of-Functions (RMOF) Scheduler picks a sched-
ule S ∈ S in that slot such that

υS(Q) :=
∏

i∈S f(Qi)∑
{S′:S′∈S}

∏
j∈S′ f(Qj)

, for all S ∈ S (3)

Definition 3 (RFOS Scheduler): For a given f ∈ F and
queue-length vector Q at the beginning of a slot, the Ratio-of-
Function-of-Sums (RFOS) Scheduler picks a schedule S ∈ S

in that slot such that

πS(Q) :=
f(

∑
i∈S Qi)∑

{S′:S′∈S} f(
∑

j∈S′ Qj)
, for all S ∈ S (4)

Note that all the RSOF, RMOF and RFOS Schedulers are more
likely to pick a schedule with the larger queue length, but with
different distributions based on their form and the form of f ∈
F . In particular, the steepness of the function f determines
the weight given to the heavily loaded link in both RSOF and
RMOF Schedulers and the heavily loaded schedule in the RFOS
Scheduler. Also, note that the schedulers coincide in single-hop
network topologies and for the following choices of f : when
f(x) = x, RSOF and RFOS Schedulers coincide; when f(x) =
ex, RMOF and RFOS Schedulers coincide. These three classes
cover a wide variety of schedulers including many of existing
throughput-optimal schedulers. For example, when f(x) = ex,
the RMOS and RFOS Schedulers correspond to the throughput-
optimal CSMA policy operating under time-scale separation
assumption that attracted a lot of attention lately (see [8], [19],
[18]). Yet, they also contain a much wider set of schedulers,
one for each f .

It is important to understand the variety of functional forms
that may achieve throughput-optimality since they are likely
to possess differences in their implementation complexity and
distributiveness characteristics. For example, for a given distri-
bution, we can construct a Markov Chain that converges to it by
Metropolis algorithm [16]. Moreover, the RMOF scheduler can
be implemented distributively through the Glauber dynamics
(e.g., [20], [7]).

Next, we identify the three classes of functions with varying
forms and steepness that turn out to be crucial to our investi-
gation.

Definition 4: We consider the following subsets of the set of
functions F :

(a) A := {f ∈ F : ∀ε > 0, lim
x→∞

f(x)
f((1 + ε)x)

= 0}. We call

A as the class of exponential functions.

(b) B := {f ∈ F : lim
x→∞

f(x + a)
f(x)

= 1, for any a ∈ R}.

(c) C := {f ∈ B: there exist K1 and K2 satisfying 0 < K1 ≤
K2 < ∞ such that K1(f(x1) + f(x2)) ≤ f(x1 + x2) ≤
K2(f(x1) + f(x2)), for all x1, x2 ≥ 0}.
We call C as the class of sub-exponential functions.

The key examples of functions with sets A,B, C and their
interrelationship are extensively studied in our technical report
[13]. Instead, Figure 1 concisely demonstrates the most critical
facts: that A and C are non-overlapping classes; while B has
an intersection with A. Furthermore, the example functions are
provided with a variety of forms that justify the names assigned
to A and C : the set A contains rapidly increasing functions
generally with exponential forms; while the set C contains sub-
exponentially increasing polynomial and logarithmic functional
forms. In the study of necessary and sufficient conditions for
throughput-optimality, we shall find that most of the results
depend on which of these three functional classes the functions
belong to.
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Fig. 1: The content of and the relationship between classes A,
B and C.

III. OVERVIEW OF MAIN RESULTS

In this section, we present our main findings and resulting
insights on the throughput-optimality of the RSOF, RMOF and
RFOS Schedulers (see Definitions 1, 2 and 3) with different
functional forms under different network topologies. These re-
sults are rigorously proven in Sections IV and V. To facilitate an
accessible figurative presentation, in the horizontal dimension,
we conceptually order functions in F in increasing level of
steepness starting from f(x) = (log(x + 1))α and f(x) = xα

for any α > 0 that belong to C, followed by f(x) = 1
xβ exα

for any 0 < α < 1 and any β ≥ 0 that belongs to B⋂A,
and finishing with f(x) = 1

xβ exα

for any α ≥ 1 and any
β ≥ 0 that belongs to A. In the vertical dimension, we
use the scheduling diversity (ml)l∈L introduced in Section II
to distinguish different topological and interference scenarios.
Recall that since ml denotes the number of different maximal
schedules that link l belongs to, it is a rough measure of
the multi-hop nature of the network. Then, the main results
for RSOF and RFOS Schedulers are presented in Figures 2
and 3, respectively. In these figures, besides proven results,
we also include several conjectures that are validated through
simulations in Section VI.
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Fig. 2: The throughput performance of the RSOF Scheduler.

From Figure 2, we see that the RSOF Scheduler with the
function f ∈ B is f -throughput-optimal when maxl∈Lml ≤ 1.
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Fig. 3: The throughput performance of the RFOS Scheduler.

Also, the RSOF Scheduler with the function f ∈ A \ B is
throughput-optimal in single-hop networks since RSOF and
RFOS Schedulers have the same probability distribution over
schedules in such networks. However, if minl∈Lml ≥ 2,
the RSOF Scheduler with any function f ∈ F cannot be
throughput-optimal. Thus, roughly speaking, the RSOF Sched-
uler is non-throughput-optimal for the network with high
scheduling diversity, while the RSOF Scheduler with the
function f ∈ B is f -throughput-optimal for low scheduling
diversity. We note that although the throughput performance of
RSOF Scheduler with some exponential functions f ∈ A \ B
(i.e. f(x) = 1

xβ exα

, α ≥ 1 and β ≥ 0) is not yet explored
in general topologies with maxl∈Lml ≤ 1, we conjecture
that it is f -throughput-optimal in this region, since the RSOF
Scheduler with such functions reacts much more quickly to
the queue length difference between schedules than that with
sub-exponential functions, especially under asymmetric arrival
patterns. We validate this conjecture through simulations in
Section VI.

The horizontal unknown region corresponds to network
topologies where some links have scheduling diversity 1 and
other links have scheduling diversity at least 2. The vertical
unknown region corresponds to randomized schedulers with
functions f that are not in the functional classes A, B and C. In
Figure 3, we observe that the RFOS Scheduler with the function
f ∈ A is throughput-optimal under any network topology. Also,
the RFOS Scheduler with the function f ∈ C is f -throughput-
optimal in single-hop networks where RFOS and RSOF Sched-
ulers have the same probability distribution over schedulers.
Also, when the function f is linear, the RFOS Scheduler has
the same probability form with the RSOF Scheduler and thus is
f -throughput-optimal when maxl∈L ≤ 1. However, the RFOS
Scheduler with the function f ∈ C is not throughput-optimal
when minl∈Lml ≥ 2. Roughly speaking, the network with
higher scheduling diversity requires much steeper functions
(e.g., exponential functions) for the throughput-optimality of
the RFOS Scheduler. While the throughput performance of
RFOS Scheduler with the function f ∈ C \ {linear functions}
for general network topologies with maxl∈Lml ≤ 1 is part of
our ongoing work, we conjecture that it is f -throughput-optimal
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in those topologies since both RFOS and RSOF Schedulers
with sub-exponential functions have almost the same reaction
speed to the queue length difference between schedules. We
also validate this conjecture via simulations in Section VI.

The RMOF Scheduler with the function f satisfying log f ∈
B and f(0) ≥ 1 is (log f )-throughput-optimal under any net-
work topology. This result together with the RFOS Scheduler
with the function f ∈ A extends the throughput-optimality of
CSMA schedulers (e.g. [8], [18]) to a wider class of functional
forms. While this result proves a weaker form of throughput-
optimality than f -throughput-optimality for the RMOF Sched-
uler, we note that RMOF Scheduler generally outperforms
RFOS and RSOF Schedulers in our numerical investigations.
Hence, we leave it to future research to strengthen this result.

Collectively these results not only highlight the strengths
and weaknesses of the three functional randomized schedulers,
they also reveal the interrelation between the steepness of the
functions and the scheduling diversity of the underlying wire-
less networks. This extensive understanding of the limitations
of randomization may motivate the network designers to use
or avoid certain types of probabilistic scheduling strategies
depending on the topological characteristics of the network.

IV. SUFFICIENT CONDITIONS

In this section, we study the sufficient conditions on the
network’s topological characteristics and the functions used in
RSOF, RMOF and RFOS Schedulers to achieve throughput-
optimality.

A. f -Throughput-Optimality of RSOF Scheduler

We study the throughput performance of the RSOF Scheduler
for a network topology with maxl∈Lml ≤ 1. In such a
network, each link only belongs to one maximal schedule.

Lemma 1: If
∑N

i=1 λi < 1, λi > 0 and ai ≥ 0, for i =
1, ..., N , then there exists a δ > 0 such that

N∑

i=1

a2
i

λi
> (

N∑

i=1

ai)2(1 + δ) (5)

Proof: See our technical report [13] for the proof.
Theorem 1: In a network topology with maxl∈Lml ≤ 1,

the RSOF Scheduler with the function f ∈ B is f -throughput-
optimal.

Proof: Without loss of generality, we assume that there are
only N available maximal schedules Si (i = 1, ..., N ). Since
each link belongs to one maximal schedule, we can denote the
queues, arrivals, and scheduling statistics in terms of maximal
schedules for easier exposition. To that end, we let Qi

l , λi
l and

P i
l (i = 1, ..., N, l = 1, ..., |Si|) denote the queue-length of

link l ∈ Si, the average arrival rate for the link l ∈ Si and
probability of serving the link l ∈ Si, respectively. In addition,
Ai

l[t], Si
l [t] and U i

l [t] denote the number of arrivals to link
l ∈ Si at time slot t, the number of potential departures of link
l ∈ Si in slot t and the unused service for link l ∈ Si at time

slot t, respectively. The capacity region for such network is

CN := {λ :
N∑

i=1

λi
li < 1,∀i = 1, ...N, li = 1, ..., |Si|} (6)

Under the above notation, the RSOF Scheduler becomes :

PSi =
∑|Si|

l=1 f(Qi
l)∑N

k=1

∑|Sk|
l=1 f(Qk

l )
, i = 1, ..., N. (7)

Note that P i
l = PSi , for i = 1, ..., N , l = 1, ..., |Si|. If λi

l = 0
for some i and l, then no arrivals occur in the link l ∈ Si.
Thus, we don’t need to consider such links. Follows we assume
λi

l > 0 (i = 1, ..., N , l = 1, ..., |Si|). Consider the Lyapunov
function V (Q) :=

∑N
i=1

∑|Si|
l=1

h(Qi
l)

λi
l

, where h′(x) = f(x).
Then

∆V : = E [V (Q[t + 1])− V (Q[t])|Q[t] = Q]

=
N∑

i=1

|Si|∑

l=1

E
[

1
λi

l

(h(Qi
l[t + 1])− h(Qi

l[t]))|Q[t] = Q
]

By the mean-value theorem, we have h(Qi
l[t+1])−h(Qi

l[t]) =
f(Ri

l [t])(Q
i
l[t + 1] − Qi

l[t]) = f(Ri
l [t])(A

i
l[t] − Si

l [t] + U i
l [t]),

where Ri
l [t] lies between Qi

l[t] and Qi
l[t + 1]. Hence, we get

∆V =
N∑

i=1

|Si|∑

l=1

E
[

1
λi

l

f(Ri
l [t])(A

l
l[t]− Si

l [t] + U i
l [t])|Q[t] = Q

]

=
N∑

i=1

|Si|∑

l=1

E
[

1
λi

l

f(Ri
l [t])U

i
l [t]|Q[t] = Q

]

︸ ︷︷ ︸
=:∆V1

+

N∑

i=1

|Si|∑

l=1

E
[

1
λi

l

f(Ri
l [t])(A

i
l[t]− Si

l [t])|Q[t] = Q
]

︸ ︷︷ ︸
=:∆V2

For ∆V1, if Qi
l[t] = Qi

l > 0, then U i
l [t] = 0. If Qi

l[t] = Qi
l = 0,

then U i
l [t] may be equal to 1. But in this case, Qi

l[t + 1] ≤ K
(since Ai

l[t] ≤ K). Hence, f(Ri
l [t]) ≤ f(K) < ∞. Thus,

∆V1 =
N∑

i=1

|Si|∑

l=1

E
[

1
λi

l

f(Ri
l [t])U

i
l [t]|Q[t] = Q

]
1{Qi

l=0}

≤
N∑

i=1

|Si|∑

l=1

1
λi

l

f(K) ≤ D
N∑

i=1

|Si|∑

l=1

f(K) (8)

Where D := 1
min{λi

l}
< ∞ and 1{·} is the indicator function.

Next, let’s focus on ∆V2. We know that f(Ri
l [t]) = f(Qi

l[t]+
ai

l) (|ai
l| ≤ K). According to the definition of function f ∈ B,

given ε > 0, there exists M > 0, such that for any Qi
l[t] =

Qi
l > M , we have

∣∣∣ f(Ri
l [t])

f(Qi
l)
− 1

∣∣∣ < ε, that is,

(1− ε)f(Qi
l) < f(Ri

l [t]) < (1 + ε)f(Qi
l) (9)
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Thus, we have

f(Ri
l [t])(A

i
l[t]− Si

l [t])

=f(Ri
l [t])

[
(Ai

l[t]− Si
l [t])+ − (Ai

l[t]− Si
l [t])−

]

<(1 + ε)f(Qi
l)(A

i
l[t]− Si

l [t])+ − (1− ε)f(Qi
l)(A

i
l[t]− Si

l [t])−
=f(Qi

l)(A
i
l[t]− Si

l [t]) + εf(Qi
l)

∣∣Ai
l[t]− Si

l [t]
∣∣

≤f(Qi
l)(A

i
l[t]− Si

l [t]) + Kεf(Qi
l) (10)

Where (x)+ = max{x, 0}, (x)− = −min{x, 0} and |Ai
l[t] −

Si
l [t]| ≤ |Ai

l[t]| ≤ K. Thus, we divide ∆V2 into two parts:

∆V2 =

N∑
i=1

|Si|∑

l=1

E
[

1

λi
l

f(Ri
l [t])(A

i
l[t]− Si

l [t])|Q[t] = Q

]
1{Qi

l
>M}

︸ ︷︷ ︸
=:∆V3

+

N∑
i=1

|Si|∑

l=1

E
[

1

λi
l

f(Ri
l [t])(A

i
l[t]− Si

l [t])|Q[t] = Q

]
1{Qi

l
≤M}

︸ ︷︷ ︸
=:∆V4

For ∆V3, by using (10), we have

∆V3 ≤
N∑

i=1

|Si|∑

l=1

E
[

1

λi
l

f(Q
i
l)(A

i
l [t]− S

i
l [t])|Q[t] = Q

]
1{Qi

l
>M}

+
N∑

i=1

|Si|∑

l=1

1

λi
l

Kεf(Q
i
l)1{Qi

l
>M}

≤
N∑

i=1

|Si|∑

l=1

1

λi
l

f(Q
i
l)(λ

i
l − P

i
l )1{Qi

l
>M} + DKε

N∑

i=1

|Si|∑

l=1

f(Q
i
l)1{Qi

l
>M}

where P i
l = E

[
Si

l [t]|Q[t] = Q
]

=
∑|Si|

l=1 f(Qi
l)∑N

k=1
∑|Sk|

l=1 f(Qk
l )

. Con-

sider the term
∑N

i=1

∑|Si|
l=1

1
λi

l

f(Qi
l)(λ

i
l − P i

l ),

N∑

i=1

|Si|∑

l=1

1
λi

l

f(Qi
l)(λ

i
l − P i

l )

=
N∑

i=1

|Si|∑

l=1

f(Qi
l)−

N∑

i=1

|Si|∑

l=1

f(Qi
l)

λi
l

∑|Si|
l=1 f(Qi

l)∑N
k=1

∑|Sk|
l=1 f(Qk

l )

=
(
∑N

i=1

∑|Si|
l=1 f(Qi

l))
2 −∑N

i=1(
∑|Si|

l=1
f(Qi

l)

λi
l

)(
∑|Si|

l=1 f(Qi
l))

∑N
i=1

∑|Si|
l=1 f(Qi

l)

Since

N∑

i=1

(
|Si|∑

l=1

f(Qi
l)

λi
l

)(
|Si|∑

l=1

f(Qi
l)) >

N∑

i=1

1
λi

(
|Si|∑

l=1

f(Qi
l))

2

where λi = max{l=1,...,|Si|} λi
l , and by Lemma 1, there exists

a δ > 0 such that

N∑

i=1

1
λi

(
|Si|∑

l=1

f(Qi
l))

2 > (
N∑

i=1

|Si|∑

l=1

f(Qi
l))

2(1 + δ) (11)

we have

N∑

i=1

(
|Si|∑

l=1

f(Qi
l)

λi
l

)(
|Si|∑

l=1

f(Qi
l)) > (

N∑

i=1

|Si|∑

l=1

f(Qi
l))

2(1 + δ)

Thus, we get

N∑

i=1

|Si|∑

l=1

1
λi

l

f(Qi
l)(λ

i
l − P i

l ) < −δ

N∑

i=1

|Si|∑

l=1

f(Qi
l) (12)

Hence,

N∑

i=1

|Si|∑

l=1

1
λi

l

f(Qi
l)(λ

i
l − P i

l )1{Qi
l>M}

<− δ
N∑

i=1

|Si|∑

l=1

f(Qi
l)1{Qi

l>M} − δ
N∑

i=1

|Si|∑

l=1

f(Qi
l)1{Qi

l≤M}−

N∑

i=1

|Si|∑

l=1

1
λl

f(Qi
l)(λ

i
l − P i

l )1{Qi
l≤M}

<− δ
N∑

i=1

|Si|∑

l=1

f(Qi
l)1{Qi

l>M} +
N∑

i=1

|Si|∑

l=1

1
λi

l

f(Qi
l)P

i
l 1{Qi

l≤M}

≤− δ
N∑

i=1

|Si|∑

l=1

f(Qi
l)1{Qi

l>M} + D
N∑

i=1

|Si|∑

l=1

f(M) (13)

Thus, we can choose ε small enough such that γ = δ−DKε >
0 and thus we have

∆V3 < −γ
N∑

i=1

|Si|∑

l=1

f(Qi
l)1{Qi

l>M} + D
N∑

i=1

|Si|∑

l=1

f(M)

For ∆V4, we have

∆V4 ≤
N∑

i=1

|Si|∑

l=1

E
[

1
λi

l

f(Ri
l [t])|Ai

l[t]− Si
l [t]||Q[t] = Q

]
1{Qi

l≤M}

≤
N∑

i=1

|Si|∑

l=1

1
λi

l

Kf(M + K) ≤ DK

N∑

i=1

|Si|∑

l=1

f(M + K)

Thus, we get

∆V < −γ
N∑

i=1

|Si|∑

l=1

f(Qi
l)1{Qi

l>M} + C (14)

where C := D
∑N

i=1

∑|Si|
l=1 f(M) + DK

∑N
i=1

∑|Si|
l=1 f(M +

K)+D
∑N

i=1

∑|Si|
l=1 f(K) < ∞. By Foster-Lyapunov theorem

[1], equation (14) implies f -throughput-optimality of the RSOF
Scheduler for any f ∈ B.

B. Throughput-Optimality of RMOF and RFOS Schedulers
In this subsection, we investigate the sufficient condition for

the throughput-optimality of RMOF and RFOS Schedulers.
Theorem 2: (i) The RMOF Scheduler with the function

f ∈ F satisfying log f ∈ B and f(0) ≥ 1 is (log f )-throughput-
optimal under any network topology;
(ii) The RFOS Scheduler with the function f ∈ A is
throughput-optimal under any network topology.

Proof: To prove this, we use a similar approach as in
[18] that uses the following result from [5]: for a scheduling
algorithm, if given any 0 ≤ ε, δ < 1, there exists a M > 0 such
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that the scheduling algorithm satisfies the following condition:
in any time slot t, with probability greater than 1 − δ, the
scheduling algorithm chooses a schedule x(t) ∈ S that satisfies:

∑

l∈x(t)

w(Ql(t)) ≥ (1− ε)max
x∈S

∑

l∈x(t)

w(Ql(t)) (15)

whenever ‖ Q(t) ‖> M , where Q(t) := (Ql(t) : l ∈ L) and
w ∈ B. Then the scheduling algorithm is w-throughput-optimal.
(i) Given any ε and δ such that 0 ≤ ε, δ < 1. Let

X := {x ∈ S :
∑

l∈x

log f(Ql(t)) < (1− ε)W ∗} (16)

Where W ∗ := maxx∈S
∑

l∈x log f(Ql(t)) and x∗ :=
arg maxx∈S

∑
l∈x log f(Ql(t)). Then

υ(X ) =
∑

x∈X
υx =

∑

x∈X

∏
l∈x f(Ql(t))∑

x′∈S
∏

l∈x′ f(Ql(t))

=

∑
x∈X exp

[∑
l∈x log f(Ql(t))

]
∑

x∈S exp
[∑

l∈x log f(Ql(t))
] <

|X | exp [(1− ε)W∗]∑
x∈S exp

[∑
l∈x log f(Ql(t))

]

Since
∑

x∈S exp
[∑

l∈x log f(Ql(t))
] ≥ exp(W ∗), then we

have

υ(X ) <
|X | exp [(1− ε)W ∗]

exp(W ∗)
=

|X |
exp(εW ∗)

(17)

Thus if some queue lengths increase to infinity, then W ∗ →∞
and thus we have υ(X ) → 0. Hence the RMOF Scheduler
with the function f ∈ F satisfying log f ∈ B and f(0) ≥ 1 is
log f -throughput-optimal under any topology.
(ii) Given any ε and δ such that 0 ≤ ε, δ < 1. Let Q∗(t) :=
maxx∈S

∑
l∈x Ql(t) and x∗ := arg maxx∈S

∑
l∈x Ql(t). Let

X := {x ∈ S :
∑

l∈x Ql(t) < (1 − ε)Q∗(t)}. Then, using the
same technique as in (i), we can prove that RFOS Scheduler
with the function f ∈ A is throughput-optimal under any
topology.

V. NECESSARY CONDITIONS

So far, we have shown that the RSOF Scheduler with
the function f ∈ B is f -throughput-optimal in the network
topology with maxl∈Lml ≤ 1, the RMOF Scheduler with
the function f ∈ F satisfying log f ∈ B and f(0) ≥ 1 is
(log f )-throughput-optimal in general network topologies and
the RFOS Scheduler with the function f ∈ A is throughput-
optimal under arbitrary network topologies. However, the next
result establishes that in network topologies where each link
belongs to two or more schedules (i.e. when minl∈Lml ≥ 2),
the RSOF Scheduler with any function f ∈ F and RFOS
Scheduler with the function f ∈ C cannot be throughput-
optimal.

Theorem 3: If the network is such that minl∈Lml ≥ 2, then
(i) RSOF Scheduler is not throughput-optimal for any f ∈ F ;
(ii) RFOS Scheduler is not throughput-optimal for any f ∈ C.

Proof: We prove these claims constructively by consider-
ing an arrival process that is inside the capacity region, but is
not supportable by the randomized schedulers for the given
functional forms. To that end, let us consider any maximal
schedule S0 ∈ S and index its links as {1, 2, ..., n} for

convenience. We assume that arrivals only happen to those n
links at rates λ1, · · · , λn with the constraint that λi ∈ [0, 1)
for all i = 1, · · · , n, which is clearly supportable by a simple
scheduling policy that always serves the schedule S0. Thus,
setting λi arbitrarily close to one for each i, this simple policy
can achieve a sum rate of

∑n
i=1 λi < n.

We define M = {S ∈ S : S
⋂

S0 6= ∅}, K = S \ M,
H = M\ {S0} and T = S \ {S0}. In the rest of the proof,
we use |A| to denote the cardinality of the set A and AB to
denote the intersection of A and B.

Given this construction, we next prove the following state-
ments for the RSOF and RFOS Schedulers respectively:
(1) If

∑n
i=1 λi ≥ n− 1

2 , the RSOF Scheduler with any function
f ∈ F is unstable.
(2) If

∑n
i=1 λi ≥ n − K1

2K2
, where K1 ≤ K2 are positive

constants described in Definition 4(c), the RFOS Scheduler with
the associated function f ∈ C is unstable.

Since the aforementioned simple scheduler can stabilize the
sum rate

∑n
i=1 λi < n, the RSOF Scheduler with any function

f ∈ F and RFOS Scheduler with the associated function f ∈ C
are not throughput-optimal. We next prove these claims that
complete the proof of Theorem 3.
(1) Under the above model, the RSOF Scheduler becomes

PS =

∑
l∈SS0

f(Ql) + |S \ S0|f(0)∑
S′:S′∈S(

∑
l∈S′S0

f(Ql) + |S′ \ S0|f(0))

Let Pl denote the probability that link l ∈ S0 is served, then
n∑

l=1

Pl =
n∑

l=1

∑

S∈M:l∈SS0

PS

=

∑n
l=1

∑
S∈M:l∈SS0

(
∑

i∈SS0
f(Qi) + |S \ S0|f(0))∑

S:S∈S
∑

l∈SS0
f(Ql) +

∑
S:S∈S |S \ S0|f(0)

Since
∑

S:S∈S
∑

l∈SS0
f(Ql) =

∑n
l=1 f(Ql)

∑
S∈M:l∈SS0

1,∑n
l=1

∑
S∈M:l∈SS0

|S \S0|f(0) =
∑

S:S∈S |SS0||S \S0|f(0)
and

n∑

l=1

∑

S∈M:l∈SS0

∑

i∈SS0

f(Qi) =
∑

S:S∈M

∑

l∈SS0

∑

i∈SS0

f(Qi)

=
∑

S:S∈M
|SS0|

∑

i∈SS0

f(Qi) =
n∑

l=1

f(Ql)
∑

S∈M:l∈SS0

|SS0|

we can extend the above ratio as follows:
n∑

l=1

Pl =

∑n
l=1 f(Ql)

∑
S∈M:l∈SS0

|SS0|+
∑

S:S∈S |SS0||S \ S0|f(0)
∑n

l=1 f(Ql)
∑

S∈M:l∈SS0
1 +

∑
S:S∈S |S \ S0|f(0)

=

∑n
l=1 f(Ql)(n +

∑
H∈H:l∈HS0

|HS0|) +
∑

T:T∈T |TS0||T \ S0|f(0)
∑n

l=1 f(Ql)(1 +
∑

H∈H:l∈HS0
1) +

∑
T:T∈T |T \ S0|f(0)

=n−
∑n

l=1 f(Ql)
∑

H∈H:l∈HS0
(n− |HS0|) +

∑
T:T∈T (n− |TS0|)|T \ S0|f(0)

∑n
l=1 f(Ql)(1 +

∑
H∈H:l∈HS0

1) +
∑

T:T∈T |T \ S0|f(0)

Note that |HS0| ≤ n − 1, for ∀H ∈ H and |TS0| ≤ n − 1,
for ∀T ∈ T . Now, since ml =

∑
S∈S:l∈S 1 ≥ 2,∀l ∈ S0, we

have
∑

H∈H:l∈HS0
1 ≥ 1,∀l ∈ S0. Then, we get

n∑

l=1

Pl ≤ n−
∑n

l=1 f(Ql)
∑

H∈H:l∈HS0
1 +

∑
T:T∈T |T \ S0|f(0)

2
∑n

l=1 f(Ql)
∑

H∈H:l∈HS0
1 + 2

∑
T:T∈T |T \ S0|f(0)

= n− 1

2
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Consider the Lyapunov function L(Q) :=
∑n

i=1 Qi, then

∆L(Q) := E [L(Q[t + 1])− L(Q[t])|Q[t] = Q]

= E

[
n∑

i=1

(Qi[t] + Ai[t]− Si[t] + Ui[t]−Qi[t])|Q[t] = Q

]

≥ E
[

n∑

i=1

(Ai[t]− Si[t])|Q[t] = Q

]
=

n∑

i=1

λi −
n∑

i=1

Pi

For topologies in which each link belongs to two or more
schedules, that is, ml =

∑
S∈S:l∈S 1 ≥ 2,∀l ∈ S0, if∑n

i=1 λi ≥ n − 1
2 , then ∆L(Q) ≥ 0 for any Q. Hence,

by Theorem 20 of [11], the RSOF Scheduler is unstable if∑n
i=1 λi ≥ n− 1

2 under such topologies.

(2) With the same model, the RFOS Scheduler becomes

πS =
f(

∑
l∈SS0

Ql)∑
S:S∈M f(

∑
l∈SS0

Ql) +
∑

S:S∈K f(0)
(18)

Then,
n∑

l=1

Pl =
n∑

l=1

∑

S∈M:l∈SS0

πs =

∑n
l=1

∑
S∈M:l∈SS0

f(
∑

i∈SS0
Qi)∑

S:S∈M f(
∑

l∈SS0
Ql) +

∑
S:S∈K f(0)

Since
n∑

l=1

∑

S∈M:l∈SS0

f(
∑

i∈SS0

Qi) =
∑

S:S∈M
|SS0|f(

∑

i∈SS0

Qi)

we have
n∑

l=1

Pl =

∑
S:S∈M |SS0|f(

∑
l∈SS0

Ql)∑
S:S∈M f(

∑
l∈SS0

Ql) +
∑

S:S∈K f(0)

=
nf(

∑n
l=1 Ql) +

∑
H:H∈H |HS0|f(

∑
l∈HS0

Ql)
f(

∑n
l=1 Ql) +

∑
H:H∈H f(

∑
l∈HS0

Ql) +
∑

S:S∈K f(0)

=n−
∑

H:H∈H(n− |HS0|)f(
∑

l∈HS0
Ql) + n

∑
S:S∈K f(0)

f(
∑n

l=1 Ql) +
∑

H:H∈H f(
∑

l∈HS0
Ql) +

∑
S:S∈K f(0)

The fact that f ∈ C implies that there exist K1 and K2
satisfying 0 < K1 ≤ K2 < ∞ such that K1

∑m
i=1 f(xi) ≤

f(
∑m

i=1 Qi) ≤ K2

∑m
i=1 f(Qi), for ∀m = 1, ..., n, where

Qi ≥ 0, i = 1, ..., m, which follows from induction. Then,
we have

n∑

l=1

Pl

≤n− K1

K2
·

∑
H:H∈H(n− |HS0|)

∑
l∈HS0

f(Ql) + n
∑

S:S∈K f(0)
∑n

l=1 f(Ql) +
∑

H:H∈H
∑

l∈HS0
f(Ql) +

∑
S:S∈K f(0)

=n− K1

K2
·

∑n
l=1 f(Ql)

∑
H∈H:l∈HS0

(n− |HS0|) + n
∑

S:S∈K f(0)
∑n

l=1 f(Ql) +
∑n

l=1 f(Ql)
∑

H∈H:l∈HS0
1 +

∑
S:S∈K f(0)

Note that |HS0| ≤ n − 1, for ∀H ∈ H and that ml =∑
S∈S:l∈S 1 ≥ 2,∀l ∈ S0, implies that

∑
H∈H:l∈HS0

1 ≥
1,∀l ∈ S0. Then, we get

n∑

l=1

Pl ≤ n− K1

K2
·

∑n
l=1 f(Ql)

∑
S∈M′:l∈SS0

1 +
∑

S:S∈N f(0)

2
∑n

l=1 f(Ql)
∑

S∈M′:l∈SS0
1 + 2

∑
S:S∈N f(0)

≤ n− K1

2K2
(19)

This shows that when minl∈S0 ml ≥ 2 and
∑n

i=1 λi ≥ n −
K1
2K2

, we have ∆L(Q) ≥ 0 for any Q. Hence, by Theorem 20

in paper [11], the RFOS Scheduler is unstable.

VI. SIMULATION RESULTS

In this section, we perform numerical studies to validate the
throughput performance of the proposed randomized schedulers
with different functions in 2 × 2 and 3 × 3 switch topologies.
In a 2 × 2 switch, the scheduling diversity of each link is 1
and thus all proposed randomized schedulers are proven to be
throughput-optimal. In a 3× 3 switch, the scheduling diversity
of each link is 2, for which the RFOS Scheduler needs to
carefully choose the functional form to preserve the throughput
optimality while the RSOF Scheduler is not f -throughput-
optimal with any function f ∈ F

In a 2 × 2 switch, we consider arrival rate vector λ = ρH,
where H = [Hij ] is a doubly-stochastic matrix with Hij

denoting the fraction of the total rate from input port i that
is destined to output port j. Then, ρ ∈ (0, 1) represents the
average arrival intensity, where the larger the ρ, the more
heavily loaded the switch is. We present two cases: symmetric
arrival process (H1 = [0.5 0.5; 0.5 0.5]) and asymmetric arrival
process (H2 = [0.1 0.9; 0.9 0.1]) under high arrival intensity
ρ = 0.99.

From Figures 4(a) and 4(b), we can observe that all ran-
domized schedulers can stabilize the system under symmetric
and asymmetric arrival traffics. So, there is a wide class of
choices under which the randomized scheduling can guarantee
the throughput performance in the 2 × 2 switch. In addition,
we can see that RSOF Scheduler with exponential function and
RFOS Scheduler with square function are also stable in both
symmetric and asymmetric arrival processes, which support our
conjecture in Section III that RSOF Scheduler with the function
f ∈ A and RFOS Scheduler with the function f ∈ B are f -
throughput optimal in network topologies with maxl ml ≤ 1.

In a 3 × 3 switch, we consider arrival rate vector λ =
[0.95 0 0; 0 0.95 0; 0 0 0.95], where RSOF Scheduler with any
function f ∈ F and RFOS Scheduler with any function f ∈ C
cannot stabilize. The evolution of average queue length per link
over time for different schedulers with different functions are
shown in figures 4(c). From Figure 4(c), we can observe that the
average queue lengths of RSOF Schedulers with linear function,
square function and even exponential function increase very
fast, which validates our theoretical result that RSOF Scheduler
with any function f ∈ F cannot be throughput-optimal in
network topologies with maxl ml ≥ 2. In addition, we can
see that the average queue lengths of RFOS Schedulers with
linear function and square function grow quickly while the
RFOS Scheduler with exponential function always keeps low
queue length level, which demonstrates that the steepness of
functional form needs to be high enough for RFOS Scheduler
to keep throughput optimality in general network topologies.
Even though our result indicates that RMOF Scheduler with
any function f satisfying log f ∈ B and f(0) ≥ 1 is (log f )-
throughput-optimal in general network topologies, we can see
that RMOF Scheduler is still stable even with linear function.
This validates that our conjecture that RMOF Scheduler with
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Fig. 4: (a) Symmetric Arrivals in 2× 2 Switch (b) Asymmetric Arrivals in 2× 2 Switch (c) 3× 3 Switch

any function f ∈ F can be f -throughput-optimal in general
network topologies.

VII. CONCLUSIONS

We explored the limitations of randomization in the
throughput-optimal scheduler design in a generic framework
under the time-scale separation assumption. We identified three
important functional forms of queue-length-based schedulers
that covers a vast number of dynamic schedulers of interest.
These forms differ fundamentally in whether they work with
the queue-length of individual links or whole schedules.

For all of these functional forms, we established necessary
and sufficient conditions on the network topology and the
functional forms for their throughput-optimality. We also pro-
vided numerical results to validate our theoretical results and
conjectures, which will be further studied in our future work.
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