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Abstract—The deployment of drone small cells has emerged as
a promising solution to agile provisioning of Internet backbone
access for Internet of Things (IoT) devices, and many other
types of users/devices. In this paper, we consider the problem
of deploying a set of drone cells operating on multiple chan-
nels in a target area to provide access to the backbone/core
network, which is formulated as a combinatorial network utility
maximization problem. Since an offline and centralized solution
to such a problem is not feasible, a low-complexity and dis-
tributed online algorithm is highly desired. Therefore, we propose
a measurement-aided dynamic planning (MAD-P) algorithm,
where the dispatched drones perform position and channel
configurations autonomously on the fly based on the real-time
measurement of network throughput to solve the problem in a
distributed fashion during flight with minimal centralized control.
We prove that the proposed MAD-P algorithm is asymptotically
optimal, and investigate how long it takes for the convergence
to stationarity under the MAD-P algorithm by giving a mixing
time analysis. We also derive an upper bound of the performance
gap in presence of measurement errors. Simulation results are
provided to validate our analytic results and demonstrate the
effectiveness of our algorithm.

Index Terms—Unmanned Aerial Vehicles, drone small cell,
Internet of Things, optimal dynamic planning, distributed al-
gorithm, Markov approximation.

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs), commonly known as

drones, have gained rapid development in both military and

civilian domains. Recently, substantial interest has been at-

tracted in the development of drone-based airborne communi-

cation networks for applications such as harvesting data from

sensors deployed in hardly accessible areas [1]–[6], enhancing

coverage of cellular networks [7], aiding communications

between the reader and RFIDs (Radio Frequency Identifiers) in

battery-free networks [8], and among others. Particularly, re-

cent research [9] has demonstrated the feasibility of mounting

a small cell base station (sBS) on a flying drone to extend the

last-mile connectivity to ground users/IoT devices that require

accessing the backbone/core network in a region of interest.
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Unlike deployment of fixed access infrastructure which

typically requires time-consuming network plannings taking

factors such as propagation, geographic limitations, and traffic

distribution (e.g., [10], [11]) into considerations, and is diffi-

cult to change or to optimize over time, the main advantage

of leveraging drone sBSs is that their deployment can be

agile and readily reconfigurable due to the flexible mobility of

drones. For example, a cluster of drone sBSs can be quickly

launched regardless of geographical terrain; the position of

drones can be adjusted in response to variations of wireless

connectivity; and the cluster of operating drone sBSs can

scale up and down in response to the change of network

traffic demand. This has emerged as a promising solution

to agile cellular/ Internet service provisioning in many ap-

plication scenarios (e.g., coverage and capacity enhancement

of 5G/Beyond 5G cellular networks during temporary events

[12], [13], offloading the computation-intensive tasks onto the

cloud from mobile IoT devices [14], [15], etc.).

A. The Drone Small Cells Planning Problem

In this paper, we consider the deployment of a set of drone

sBSs in a target area of multiple cells and over multiple

communication channels to serve the data traffic demand in the

target area (i.e., a model of providing access to the backbone

network), as shown in Fig. 1. The data traffic demand in

each cell is assumed unknown (before deployment) and time-

invariant but varies across cells.

1) The key question to answer: The question we would like

to answer is that what is the best deployment (configuration)

of drone sBSs such that the most data traffic demand can be

served? This is not trivial because different configurations of

drone sBSs in terms of cell placement and channel assignment

may yield different system capacity and therefore the system

throughput (i.e., the total demand being served). This is mainly

due to the mutual interference generated under a certain

configuration. For example, intuitively, we intend to send three

drones (all we have) to the three most demanding cells so

that we could fully utilize the capacity. However, it happens

that the three cells are very close to each other geographically

and there is only one communication channel available (in

an extreme case) such that the total serving capacity might

be very limited and less that the total traffic demand of the

three cells due to the strong mutual interference. This would

lead to a sub-optimal configuration, and there may exist other

configurations that can provide higher system throughput.
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Fig. 1: A network of drone sSBs serving a target area.

2) The planning problem: The goal of the planning is to

dispatch drone sBSs to cells and assign channels to drones

such that the maximum system throughput is achieved. It

can be seen that the planning process is essentially a joint

cell placement (trying to assign drones to serve the most

demanding cells) and channel assignment (trying to distribute

drones evenly over channels and cells to minimize interference

so as to maximize the total serving capacity) process given the

data traffic demand of all cells (unknown before deployment).

We further generalize the system throughput (the total demand

being served) maximization problem to a utility maximization

problem where the utility is a concave and increasing function

of the throughput, representing a certain utility of interest (e.g.,

service satisfaction).

3) The need of low-complexity implementation: The drone

sBSs planning problem is essentially a combinatorial opti-

mization problem, i.e., finding an optimal configuration from

the set of all possible configurations. However, since the data

traffic demand is unknown before deployment (which is often

the case in real-world scenarios), an offline and centralized

solution (e.g., exhaustive search) is not feasible, and a low-

complexity online solution is desired.

4) The need of distributed implementation: The desired

planning algorithm should also be amenable to distributed

implementations, such that computation is distributed over

drones without having to be centralized at the backhaul gate-

way. Moreover, distributed implementations tend to be more

scalable than centralized solutions. Also, due to the flexible

mobility of drone sBSs, reconfiguration (moving to a different

cell or switching to a different channel) can be agile and

autonomous.

Therefore, we aim at solving the drone sBSs planning

problem in a low-complexity and distributed way. In this

paper, we propose an online measurement-aided dynamic

planning (MAD-P) algorithm, where the dispatched drones

perform self-configurations on the fly regarding the cell being

located and the channel being used, based on the real-time

measurement of network throughput. The proposed planning

process is autonomous, and no prior knowledge of data traffic

demand in the target area is required. The main contributions

of this paper are highlighted as follows.

• The proposed algorithm leads to a joint planning of

cell placement and channel selection, solves the un-

derlining utility maximization problem by using the

Markov approximation techniques, and is amenable to

low-complexity and distributed implementation. In ad-

dition, we introduce a design parameter to control the

preference of the exploration of cells over the exploration

of channels.

• We prove the asymptotic optimality of the proposed

algorithm. To understand how long it takes for the con-

vergence to stationarity under the MAD-P algorithm, we

derive an upper bound of the mixing time that captures

the speed of convergence of the resulting Markov chain.

We also show that the performance gap in presence of

measurement errors is upper bounded.

B. Literature Review

The deployment of drone sBSs also faces great challenges.

Key implementation issues have been investigated by recent

studies, such as: (i) due to the lack of fiber-based connectivity,

a viable wireless backhauling/fronthauling solution should be

in place. The state-of-the-art solutions resort to different radio

technologies including millimeter wave [16]–[18], satellite

links [19], and free-space optics [20], each of which has

its own pros and cons; and (ii) due to the short endurance

of drones on a single charge, it is crucial to prolong the

service duration or even provide persistent service during the

mission via advanced charging technologies. The state-of-the-

art solutions include equipping drones with solar panels [21],

charging the battery during flight by using a high energy

laser beam [22], and charging the battery by more powerful

fixed-wing UAVs via wireless power transfer [23]. Moreover,

some theoretical perspectives on efficient deployment of drone
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sBSs have also been provided in the literature: (i) in [24], the

optimal altitude of deployment is derived in maximizing the

ground coverage; (ii) the service time maximization consider-

ing the travelling time of mobile small cells is given in [25];

(iii) dynamic repositioning of drone sBSs is considered in [26]

to improve the spectral efficiency; (iv) the optimal placement

of drone BSs considering energy efficiency is given in [27];

(v) algorithms for improving the communication throughput

of a UAV network are proposed (e.g., [28], [29]); and (vi)

channel assignment, or generally radio resource allocation, is

considered in [30] and [31]. However, despite these advances,

a joint cell placement and channel assignment planning pro-

cess towards system throughput maximization has not been

considered. Moreover, a low-complexity and distributed online

algorithm relying on dynamic and autonomous configurations

of drone sBSs should be in place towards the optimal planning,

which has not been reported in existing research works either.

The remainder of the paper is organized as follows. Section

II introduces the system model. The problem formulation is

given in Section III. Section IV presents the proposed dynamic

drone cell planning algorithm, followed by the performance

analysis in Section V. In Section VI, we provide the simulation

results and Section VII concludes the paper.

II. SYSTEM MODEL

We consider deploying a set of drone sBSs, denoted by

{1, 2, . . . , N} � [N ], to a rectangular target area consisting of

L×W square cells, each of which is r2 in size. Each square

cell, indexed by (l, w), where l ∈ {1, 2, . . . , L} � [L] and

w ∈ {1, 2, . . . ,W} � [W ], can be fully covered by a drone

sBS at a given height H . Let Q denote the set of L × W
distinct cells, i.e., Q = {(l, w) : l ∈ [L], w ∈ [W ]}, and

qn = (ln, wn) denote the cell where drone sBS n is deployed,

where ln ∈ [L] and wn ∈ [W ]. We consider that a cell is at

most served by one drone sBS, and hence multiple drone sBSs

are not allowed to be coexisting in one cell. All drone sBSs

are assumed directly connected to a central station via point-

to-multipoint microwave/mmWave backhauling with sufficient

bandwidth. The central station serves as a gateway to the

backbone network and a hub for exchanging messages among

drone sBSs, as shown in Fig. 1. For simplicity, we consider

that each drone can be replaced in time to maintain system

operation. A drone will monitor its battery status periodically.

If the battery level is lower than a preset threshold, the drone

will send a message to the control station to schedule a fully

charged drone for replacement.

A multi-channel system is considered to reduce the co-

channel interference among ground-air links in different cells.

we consider that each drone sBS can select a channel to

operate on from a set of M non-overlapping channels of equal

bandwidth, denoted by {1, 2, . . . ,M} � [M ]. The channel

selected by drone sBS n can be represented as cn, where

cn ∈ [M ]. Moreover, we consider that the number of channels

is limited and no more than the number of dispatched drones,

i.e., M < N . Since each drone sBS is functioning in a certain

cell under a certain channel at any given time, we represent by

the drone cell planning process {ψ(t)}t>0. At any time t, ψ(t)

takes a value f from a finite set F , where f � ((qn, cn))n∈[N ]

represents a certain planning/configuration of all drone sBSs in

the system and F denotes the set of all possible configurations.

We assume that a number of long-lived data flows are dis-

tributed in the target area unevenly, leading to heterogeneous

data traffic demand in cells. Each long-lived data flow is a

traffic stream that is always in the network and continually

generates bits at a certain rate. The data traffic demand in the

target area is denoted by D = (dl,w)l∈[L],w∈[W ], where dl,w
is the aggregate rate generated from all data traffic flows in

cell (l, w). In this work, the data traffic demand matrix D
is assumed time-invariant. However, as what we will discuss

in detail in Section IV-D, the optimality of the proposed

algorithm remains if D changes slowly with time.

Given the drone cell planning ψ(t) at time t, a certain

capacity vector S(t) = (s
ψ(t)
n )n∈[N ] is obtained, where s

ψ(t)
n

is the maximum data rate at which the data traffic demand

is served by drone sBS n, and is determined by the inter-

ference pattern under ψ(t) assuming a uniform ground-air

transmission power over all cells. Therefore, the actual data

demand served by (i.e., the ground-air throughput of) drone

sBS n under ψ(t) is given by γ
ψ(t)
n = min{sψ(t)

n , dln,wn},

i.e., the throughput of a drone cell is the minimum of the

traffic demand and service capacity, and we denote the ground-

air throughput vector by Γ(t) = (γ
ψ(t)
n )n∈[N ]. Note that the

unserved traffic demand will be either ignored or delivered by

other network infrastructures (e.g., cellular macro cells and

satellite) if available. Also note that γ
ψ(t)
n can be measured

by drone sBS n in real time. That is the reason why the prior

knowledge of D is not required for our algorithm design. We

will discuss the affect of measurement errors on the proposed

algorithm in Section V.

III. PROBLEM FORMULATION

The drone cell planning process {ψ(t)}t>0 is essentially a

joint cell placement and channel assignment process for all

drone sBSs over time. The object of the planning process

is to choose a configuration f from F given D such that

the maximum system throughput is achieved, i.e., maximizing

‖Γ(t)‖1, where ‖ · ‖1 stands for the l1 norm. However, we

generalize the problem to a utility maximization problem in

terms of Γ(t). Specifically, we consider the problem of finding

the optimal drone cell planning ψ(t) for all t to maximize

the system-wide normalized utility, which is formulated as

follows:

DDP : max
f∈F

1

N

∑
n∈[N ]

Θn

(
γf
n

)
,

where Θn(γ
f
n) is the utility obtained with respect to through-

put γf
n by drone sBS n under configuration f . The utility

functions Θn for all n are assumed to be twice differentiable,

strictly increasing and concave, and bounded by finite con-

stants Θmin and Θmax, i.e.,

Θmin ≤ Θn(γ
f
n) ≤ Θmax, ∀ n ∈ [N ] and f ∈ F .

As it can be seen, a planning policy (static) that selecting

f∗ by solving the combinatorial problem DDP is optimal.



4

However, such a policy tends to be computationally prohibitive

since the size of F grows exponentially fast as the number

of dispatched drones increases. The computational complexity

of such a planning policy also depends on the number of

available channels and the size of the target region. Therefore,

our goal is to design a planning policy such that (i) the

computational complexity is significantly reduced, and (ii)

drone sBSs make planning decisions distributedly without the

centralized coordination.

IV. DYNAMIC DRONE CELL PLANNING

In this section, we first propose a Markov approximation

to the original combinatorial optimization problem such that

a static time-sharing policy is obtained. Then, we design a

dynamic and distributed algorithm to implement the time-

sharing policy by constructing a continuous time-reversible

Markov Chain over all possible configurations.

A. Markov Approximation

Considering that the original problem DDP is hard to

solve, inspired by [32], we obtain the following optimization

problem by applying the Markov approximation techniques to

the original problem:

DDP−MA : max
p≥0

pf
N

∑
n∈[N ]

Θn

(
γf
n

)− 1

β

∑
f∈F

pf log pf

subject to
∑
f∈F

pf = 1,

where p = (pf )f∈F and pf represents the fraction of time

that configuration f is being used in the process {ψ(t)}t>0; β
is a positive constant and will be discussed later. The optimal

solution p∗ to this problem is given by

p∗f =
exp

(
β
N

∑
n∈[N ] Θn(γ

f
n)

)
∑

f ′∈F exp
(

β
N

∑
n∈[N ] Θn(γ

f ′
n )

) , ∀f ∈ F . (1)

This corresponds to a time-sharing policy where each

configuration f is selected according to its time fraction

p∗f . Intuitively, a configuration f that leads to the maximum

system-wide normalized utility is being used most often as it

has the largest time fraction among all configurations, and the

performance gap between such a time-sharing policy and the

optimal static policy would be closed as β tends to infinity. It

is worth noting that solving both DDP and DDP−MA
problems require the knowledge of the throughput vector

Γ(f) = (γf
n)n∈[N ] for each f , which depends on the ac-

curate modeling of the capacity vector S(f) = (sfn)n∈[N ]

under a certain configuration f and a prior knowledge of D.

This could be very difficult and computationally infeasible

especially when D becomes time-variant. Considering that

the throughput vector under a certain configuration can be

obtained by the real-time measurement, we design an online

measurement-based algorithm to implement the time-sharing

policy given by (1) in a distributed manner.

B. Distributed Algorithm Design in General

The idea of distributed algorithm design is that we first

construct a continuous time reversible Markov chain with the

state space being F and the desired stationary distribution

given by (1); secondly, we design a distributed algorithm to

realize the state transitions that drive the Markov Chain. Next,

we will present the proposed Measurement-Aided Dynamic

Planning (MAD-P) algorithm.

In the proposed algorithm design, a drone sBS may change

its configuration by moving to a new cell or hopping to a

new channel. Note that we do not consider the traveling time

of drones which is negligible compared to the time scale

where reconfigurations occur (e.g., at a time scale of minutes)1.

Further, we assume the channel switching time (e.g., a few

milliseconds) is negligible as well. Note that there is energy

cost (due to movements) and slightly performance reduction

(due to service discontinuity during cell reconfiguration) of

repositioning drones. That could be carefully modeled and

quantified. However, considering the cost of repositioning

drones brings an additional layer of complexity in the algo-

rithm design. It would be more moderate to consider it in our

future works.

Since changing either the cell placement or the channel

assignment of a single drone sBS out of N is sufficient

to lead to a new configuration, with the MAD-P algorithm

employed, a configuration f of drone sBSs may change to

another configuration f ′ at time t by having only one of drone

sBSs either moving to a new cell or hopping to a new channel.

Given an f ∈ F , the cell placement and channel assignment

of drone sBS n can be represented as qfn and cfn respectively,

where qfn = (lfn, w
f
n), l

f
n ∈ [L], wf

n ∈ [W ], and cfn ∈ [M ]. It is

possible to change configuration f to some other configuration

f ′ if there exists an n1, such that regarding the following

conditions,

c1: qfn1
= qf

′
n1

and cfn1
�= cf

′
n1

;

c2: qfn1
�= qf

′
n1

and cfn1
= cf

′
n1

;

c3: ∀n2 ∈ [N ] \ n1, qf
′

n1
�= qfn2

;

c4: ∀n2 ∈ [N ] \ n1, qfn2
= qf

′
n2

and cfn2
= cf

′
n2

,

either c1 and c4 hold (corresponding to a single drone sBS

hopping to a new channel) or c2, c3, and c4 hold (corre-

sponding to a single drone sBS moving to a new cell that

is not being occupied/served).

We denote by Qf
n the set of cells that drone sBS n could

possibly move to under current configuration f , which is

dependent only on f and n. In the general design, we consider

an arbitrary mobility pattern, where Qf
n for each f and each

n is an arbitrary set of unoccupied cells under f as long as

the following two constraints hold:

c5: For each f and each n, ∀q′ ∈ Qf
n, if f ′ is due to that

n moves from cell q to q′, then q ∈ Qf ′
n ;

c6: Q(N) ⊂ {{qfn}n∈[N ]}f∈F ,

where Q(N) is the set containing all N -combination sets2 of

Q. c5 states that it is always possible for each drone to move

directly back to the old cell after moving to the new cell; while

1We consider later to limit the mobility of drones for minimizing the impact
of traveling time.

2A k-combination of a set S is a subset of k distinct elements of S.
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c6 states that the set of cell configurations of N drones due to

some arbitrary mobility pattern should include all possible cell

configurations, each of which is a set of N distinct cells chosen

from Q. Note that {{qfn}n∈[N ]}f∈F may contain permutations

of one or more N -combination sets of Q. We consider that

all permutations of the same N -combination set of Q with

exactly the same channel configuration of drones lead to the

same system utility, given that all drones are identical.

Moreover, let Cf
n be the set of channels that are not used by

drone sBS n under current configuration f , i.e., Cf
n = [M ] \

cfn. With the MAD-P algorithm employed, at a certain time

instant, one of drone sBSs, say n, under configuration f would

either move to a new cell in Qf
n or hop to a new channel in

Cf
n probabilistically, leading to a transition from f to a new

configuration, say f ′. The MAD-P algorithm is described in

Algorithm 1.

In the proposed algorithm, we introduce a fixed parameter

ζ ∈ (0, 1) to control the transitions between configurations.

Clearly, increasing ζ increases the chance of seeing a cell

reconfiguration; while decreasing ζ increases the chance of

seeing a channel hopping. Under different system settings, we

may want to choose different values of ζ. For example, in

the case where we have M ≈ N 	 L × W , a value of

ζ approaching one is preferable to explore the target area as

much as possible to identify the most demanding cells to serve.

In the extreme case where ζ = 1, our algorithm reduces to a

pure cell placement algorithm; while in the extreme case where

ζ = 0, our algorithm reduces to a pure channel assignment

algorithm. Therefore, the MAD-P algorithm is considered as

a randomized algorithm unifying both cell placement and

channel assignment processes.

Proposition 1: With the MAD-P algorithm employed, the
drone cell planning process {ψ(t)}t>0 is a continuous-time
time-reversible ergodic Markov chain with the stationary dis-
tribution given by (1).

Proof: It can be seen that {ψ(t)}t>0 is a continuous-

time homogeneous Markov chain since the amount of time the

planning process stays in configuration/state f is exponentially

distributed and dependent only on state f , and the transition

probabilities are independent of time. Moreover, {ψ(t)}t>0

is irreducible since it is always possible to transit from state

f to any other state f ′ in some finite time (either directly

or indirectly with F being finite and due to c5). Therefore,

{ψ(t)}t>0 has a unique stationary distribution from [33].

Next, we will show that {ψ(t)}t>0 is time-reversible such that

according to [34] the stationary distribution of {ψ(t)}t>0 is

given by (1).

To do so, it suffices to show that for any f ∈ F and any

f ′ that f could possibly transit to, under Algorithm 1, the

detailed balance equation holds, i.e.,

p∗fλ(f → f ′) = p∗f ′λ(f ′ → f) (3)

where λ(f → f ′) and λ(f ′ → f) are positive transition rates

between state f and f ′.
In Algorithm 1, since each drone sBS n counts down

independently with a rate
α(ζ|Qf

n|+(1−ζ)|Cf
n|)

exp( β
N

∑
n∈[N] Θn(γ

f
n))

, denoted by

Algorithm 1 MAD-P Algorithm

Input: The set of drone sBSs [N ], the set of cells

((l, w))l∈[L],w∈[W ], the set of channels [M ], the utility

functions Θn for all n ∈ [N ], and predefined parameters

ζ ∈ (0, 1), α > 0, β > 0, and H .

Output: Drone cell planning process {ψ(t)}t>t0 .

1: initialization:
2: At t = t0, arbitrarily dispatch N drones to N distinct cells

at the given height H and each drone randomly and uni-

formly selects a channel to operate on. This leads to an ini-

tialized configuration f0 ∈ F . Each drone sBS n obtains

its ground-air throughput γf0
n via measurement and in-

forms the central station of (qf0n , cf0n ) and Θn(γ
f0
n ). Then,

the central station broadcasts f0 and (Θn(γ
f0
n ))n∈[N ] to

all drone sBSs. We have {ψ(t) = f0}t0<t≤t1 , where t1 is

the time when the 1st reconfiguration occurs.

3: while i > 0 (ith reconfiguration) do
4: for n ∈ [N ] do
5: As soon as drone sBS n receives fi−1 and

(Θn(γ
fi−1
n ))n∈[N ] from the central station, it finds

Qfi−1
n and Cfi−1

n , and counts down according to

a generated random number from an exponential

distribution with mean equal to

exp
(

β
N

∑
n∈[N ] Θn(γ

fi−1
n )

)
α
(
ζ|Qfi−1

n |+ (1− ζ)|Cfi−1
n |

) ; (2)

6: end for
7: At t = ti, the countdown of drone sBS n∗ expires

first among all drone sBSs. Drone sBS n∗ immediately

informs other drones via the central station to terminate

their countdown processes, and does the following:

8: With probability
ζ|Qfi−1

n∗ |
ζ|Qfi−1

n∗ |+(1−ζ)|Cfi−1
n∗ |

, drone n∗ ran-

domly and uniformly moves to one of the cells in

Qfi−1

n∗ ; while with probability
(1−ζ)|Cfi−1

n∗ |
ζ|Qfi−1

n∗ |+(1−ζ)|Cfi−1
n∗ |

,

drone n∗ randomly and uniformly switches to one of

the channels in Cfi−1

n∗ .

9: for n ∈ [N ] do
10: With the new configuration fi, drone sBS n obtains

its ground-air throughput γfi
n via measurement and

informs the central station of (qfin , cfin ) and Θn(γ
fi
n ).

11: end for
12: The central station immediately broadcasts fi and

(Θn(γ
fi
n ))n∈[N ] to all drone sBSs.

13: Let i ← i+ 1, and we have {ψ(t) = fi−1}ti−1<t≤ti .

14: end while

λf
n, in state f , the drone cell planning process will leave

state f upon one of countdown processes expires at a rate

of
∑

n∈[N ] λ
f
n. Without loss of generality, we assume that

the countdown process of drone sBS n∗ expires first among

all drone sBSs, i.e., the transition from f to f ′ is due to

that drone sBS n∗ either moves to a new cell or hops to

a new channel. Since the length of each countdown process

follows an individual exponential distribution, the probability
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that the countdown of drone sBS n∗ expires first is given by
λf
n∗∑

n∈[N] λ
f
n

. Considering the case where f and f ′ differ only

on the cell configuration of drone sBS n∗ and it can be seen

from Algorithm 1 that under f drone sBS n∗ moves to qf
′

n∗ in

Qf
n∗ with probability

ζ|Qf
n∗ |

ζ|Qf
n∗ |+(1−ζ)|Cf

n∗ |
· 1

|Qf
n∗ |

, we have

p∗fλ(f → f ′)

=
exp

(
β
N

∑
n∈[N ] Θn(γ

f
n)

)
∑

f ′′∈F exp
(

β
N

∑
n∈[N ] Θn(γ

f ′′
n )

)
⎛⎝ ∑

n∈[N ]

λf
n

⎞⎠
·
(

λf
n∗∑

n∈[N ] λ
f
n

)
ζ

ζ|Qf
n∗ |+ (1− ζ)|Cf

n∗ |
=

αζ∑
f ′′∈F exp

(
β
N

∑
n∈[N ] Θn(γ

f ′′
n )

) . (4)

Since state f ′ transits to state f by changing qf
′

n∗ to qfn∗ ,

similarly, we have

p∗f ′λ(f ′ → f) =
αζ∑

f ′′∈F exp
(

β
N

∑
n∈[N ] Θn(γ

f ′′
n )

) . (5)

By (4) and (5), we have (3). Now consider the case where f

transits to f ′ by changing cfn∗ to cf
′

n∗ , and f ′ transits to f by

changing cf
′

n∗ to cfn∗ . Similarly, we can prove that

p∗fλ(f → f ′) = p∗f ′λ(f ′ → f)

=
α(1− ζ)∑

f ′′∈F exp
(

β
N

∑
n∈[N ] Θn(γ

f ′′
n )

) . (6)

Proposition 1 shows that with the MAD-P algorithm, we

achieve the desired stationary distribution over configurations

such that the time-sharing policy according to (1) is im-

plemented in a distributed manner where each drone sBS

makes the decision locally on activating either a channel

reconfiguration or a cell reconfiguration.

C. Two Special Designs

Next, we propose two special designs based on the MAD-

P algorithm by specifying the mobility pattern of drones

whenever they reconfig their cell locations.

1) Maximum Mobility: In this special design, at any time

a drone needs to change its cell placement, the drone can

reach any unserved cell in the target area. Specifically, we

consider that for each configuration f and each drone sBS n,

Qf
n contains all unoccupied cells, i.e., Qf

n = {q : q ∈ Q, q �=
qfn′ , ∀n′ ∈ [N ]}, which leads to the MAD-P algorithm with

Maximum Mobility, called the MAD-P/MM algorithm. Note

that actually given a configuration f , all drone sBSs have the

same Qf
n, denoted by Qf , and we have |Qf | = LW −N .

2) Limited Mobility: In this special design, at any time a

drone needs to change its cell placement, the drone can only

move to one of the unoccupied adjacent cells. Specifically,

we consider that for each configuration f and each drone

sBS n, Qf
n = {q = (l, w) : |l − lfn| + |w − wf

n| = 1, q ∈

Q, q �= qfn′ , ∀n′ ∈ [N ]}, such that each drone randomly and

uniformly walks to one of the unoccupied adjacent cells (at

most four) with a travelling distance of r. This gives us the

MAD-P algorithm with limited mobility, called the MAD-

P/LM algorithm. Limiting the mobility of drones is one way

of minimizing the impact of traveling time since a drone sBS

only needs to move to one of the neighboring cells (unserved)

if the cell configuration needs to be changed.

D. Discussion on Implementations

1) Exploration vs. Exploitation: In the MAD-P algorithm,

the time spent in a certain configuration f is exponentially

distributed with a rate equal to∑
n∈[N ]

λf
n =

ζ
∑

n∈[N ] |Qf
n|+ (1− ζ)

∑
n∈[N ] |Cf

n|
1
α exp

(
β
N

∑
n∈[N ] Θn(γ

f
n)

) . (7)

As it can be seen, the configuration that leads to a larger

system-wide normalized utility tends to stay longer before

it transits to other configurations. We can even prolong the

sojourn time of a configuration (on average) by decreasing α
such that we could potentially exploit a good configuration

as much as possible when it occurs. We can also increase

α to speed up the transitions among configurations. This

particularly works for the scenario where the data traffic

demand varies a lot across different cells since the algorithm

should be able to identify the most demanding cells very

quickly (i.e., the more exploration, the better). It is worth

noting that tuning α does not change the stationary distribution

of the planning process, and only affects the transition rates.

As discussed before, the stationary distribution can be adjusted

by changing β (from (1)). For example, we can simply increase

the value of β to increase the time fraction that the system

spent in the optimal configuration f∗. However, this could

slow down the exploration over configurations according to

(7). In a nutshell, the parameters α and β are used to tune

the short-run tradeoff between exploration and exploitation of

configurations in the planning process.
2) Message Passing: Note that the proposed algorithm

depends on message passing among drone sBSs with the

central station involved. It is associated with state transitions

and is necessary to facilitate the decision making process

at each drone sBS. The overhead of message passing will

be reduced in terms of messages per unit time if we slow

down the state transitions in the planning process by tuning

the parameters. In real-world implementations, the overhead

introduced by message passing can be further reduced via the

proper design of communication protocols.
3) Time-Varying Traffic Demand: The data traffic demand

matrix D is assumed time-invariant. However, the optimal-

ity of the proposed algorithm can remain if D changes

slowly with time. In addtion, we need to choose an in-

creasing function g(·) and reformulate the DDP prob-

lem as maxf∈F g( 1
N

∑
n∈[N ] Θn(γ

f
n)). For example, g(·) =

log log(·). Allowing D changes slowly actually corresponds

to the relaxation of time-scale separation assumption in the

research of queue-length based CSMA algorithm, which has

been well studied in the literature (e.g., [35]).
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V. PERFORMANCE ANALYSIS

In this section, we first prove that the proposed MAD-

P algorithm is asymptotically optimal to the original DDP
problem. Then, we will consider the problem of bounding

the time taken by the planning process {ψ(t)}t>0 to reach

the desired stationary distribution under the MAD-P/MM

algorithm. We leave the mixing time analysis for the MAD-

P/LM algorithm and the general MAD-P algorithm for future

works. Finally, we will discuss the impact of measurement

errors on the algorithm performance.

A. Asymptotic Optimality

Theorem 1: The MAD-P algorithm is asymptotically utility-
optimal to the DDP problem, i.e., for any ε ∈ (0, 1), δ ∈
(0, 1), there exists a constant C > 0, such that whenever
U(f∗) > C, we have

Pr{U(f) > (1− ε)U(f∗)} > 1− δ, (8)

where U(f) = β
N

∑
n∈[N ] Θn(γ

f
n) is the weighted system-

wide normalized utility under configuration f at time t and
U(f∗) = maxf∈F U(f).

Proof: Let I denote the set of configurations that gen-

erate a weighted system-wide normalized utility less than

(1− ε)U(f∗), i.e.,

I = {f ∈ F : U(f) < (1− ε)U(f∗)}
Recall that p∗f is the probability that configuration f is being

used in steady state under the proposed MAD-P algorithm.

Let Z =
∑

f∈F exp (U(f)). Then, we have

Pr{U(f) < (1− ε)U(f∗)}
=

∑
f∈I

p∗f =
∑
f∈I

1

Z
exp(U(f))

≤|I|
Z

exp ((1− ε)U(f∗))

<|I| exp(−εU(f∗))

<
(LW )!

(LW −N)!
MN exp(−εU(f∗))

where the last two inequities are due to the fact that

exp(U(f∗)) < Z and I < |F| ≤ (LW )!
(LW−N)!M

N , respectively.

As it can be seen, if we let C = 1
ε (N lnM + ln (LW )!

(LW−N)! +

ln 1
δ ), and whenever U(f∗) > C, we have (8). Hence, the

theorem holds.

Note that in theory Theorem 1 also provides a guideline

for the design of utility functions (Θn)n∈[N ] for drone sBSs.

Once parameters ε and δ are fixed, the constant C can be

figured out such that (Θn)n∈[N ] can be designed wisely to

ensure U(f∗) > C under the optimal configuration f∗. In

practice, it is difficult to obtain U(f∗) before we actually run

the algorithm since the ground-air throughput vector Γ(f) =
(γf

n)n∈[N ] needs to be measured on the go. Furthermore, we

do not have the knowledge that which configuration is optimal

until all the configurations in F have been explored. One prac-

tical strategy is that we can run the algorithm for a short period

of time T , find out fmax = argmaxψ(t),t∈(0,T ] U(ψ(t)),

adjust (Θn)n∈[N ] to have U(fmax) > C, and then rerun the

algorithm. As a result of doing this, we must have U(f∗) > C.

On the other hand, since U(f) ≥ βΘmin, ∀f ∈ F , we could

simply have Θmin > C/β when we design (Θn)n∈[N ].

B. Speed of Convergence to Stationarity

The time sharing among configurations according to (1) is

achieved once the resulting Markov chain enters its steady

state (or equivalently, reaches its stationary distribution p∗).

Therefore, it is important to understand how long it takes

for the convergence to stationarity under the MAD-P/MM

algorithm, and how different parameters affect the convergence

behavior. Thus, we provide an upper bound of the mixing time

that captures the speed of convergence of the resulting Markov

chain {ψ(t)}t>0 under the MAD-P/MM algorithm.

The mixing time (convergence time) of {ψ(t)}t>0 is defined

as follows:

τmix(ε) � inf

{
t ≥ 0 : max

f∈F
dTV (Pf,·(t),p∗) ≤ ε

}
,

where dTV(·, ·) denotes the total variation distance of two prob-

ability distributions, and Pf,·(t) is the probability distribution

of ψ(t) over F at time t given that the initial state is f .

1) Uniformization: To facilitate the mixing time analysis,

motivated by [32], we follow the technique of uniformization
in [36] to obtain a uniformization version of the continuous-

time Markov chain {ψ(t)}t>0, which is characterized by

an embedded discrete-time Markov chain Ψ and a Poisson

process with rate ρ. By Theorem 3.4 in [36], the original

Markov chain and its uniformization version have the same

transition rates between states.

We denote by Q = (Qff ′)|F|×|F| 3 the transition rate

matrix of {ψ(t)}t>0. Let P̂ = (P̂ff ′)|F|×|F| denote the one-

step transition matrix of Ψ. By the uniformization technique,

we have

P̂ = I+ ρ−1Q, (9)

where I is the identity matrix. Recall that the time required

to make a transition from configuration f has an exponential

distribution with rate given by (7). With the MAD-P/MM

algorithm employed, ζ
∑

n∈[N ] |Qf
n| + (1 − ζ)

∑
n∈[N ] |Cf

n|
in (7) is equal to N · R for any configuration f , where

R � ζ(LW −N) + (1− ζ)(M − 1) . Then, we choose

ρ = αNR
∑
f∈F

exp(−U(f)).

From Algorithm 1, it can be obtained that Qcell
ff ′ =

αζ exp(−U(f)), where Qcell
ff ′ denotes the transition rate from

f to some different f ′ due to one of the drone sBSs moving to

a new cell; Qchannel
ff ′ = α(1−ζ) exp(−U(f)), where Qchannel

ff ′ de-

notes the transition rate from f to some different f ′ due to one

of the drone sBSs hopping to a new channel. Accordingly, we

have P̂ cell
ff ′ = αζ exp(−U(f))

ρ and P̂ channel
ff ′ = α(1−ζ) exp(−U(f))

ρ

for any f ′ that f could possibly transit to.

3With a slight abuse of notation, we also use f to denote the index of
configuration f in the transition rate matrix.
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Next, we construct the Markov chain Ψ as follows according

to (9). When the current state of Ψ is f :

1. Choose a drone sBS n∗ from [N ] uniformly at random

(i.e., with probability 1
N );

2. With probability
αNR exp(−U(f))

ρ , it is allowed to change

state; otherwise, n∗ remains its configuration.

3. When it is allowed to change state, do the following: with

probability
ζ(LW−N)

R , drone n∗ randomly and uniformly

moves to one of the cells in Qf
n∗ ; otherwise, drone n∗

randomly and uniformly switches to one of the channels

in Cf
n∗ .

As it can be seen, by the above process, we indeed have a

Markov chain Ψ according to (9). Next, we bound the mixing

time of {ψ(t)}t>0 through the mixing time analysis of Ψ
given that {ψ(t)}t>0 is represented directly as a discrete-time

Markov chain Ψ with transitions governed by an independent

Poisson process with rate ρ.
2) Coupling: We now apply the path coupling techniques

[32], [37] to construct a coupling of Ψ for the mixing time

analysis. A coupling of the Markov chain Ψ on the state space

F is a pair process (Ψt, Ψ̃t) on F × F , such that (i) each of

(Ψt, ·) and (·, Ψ̃t), viewed separately, is a faithful copy of

the Markov chain Ψ, and (ii) if Ψt = Ψ̃t, we have Ψt+1 =
Ψ̃t+1. By the path coupling techniques in [37], we only need

to construct a one-step coupling starting with any two adjacent

states on a path, i.e., to construct (Ψ0, Ψ̃0) → (Ψ1, Ψ̃1), where

Ψ0 can make a transition to Ψ̃0 in one step.

Next, we define the Hamming distance H(f, f ′) between

any two states f and f ′ in F , which is simply the number of

drone sBSs n ∈ [N ] such that (qfn, c
f
n) �= (qf

′
n , cf

′
n )4. Initially,

we have H(Ψ0, Ψ̃0) = 1, where Ψ0 and Ψ̃0 are two adjacent

states on a path, i.e., they only differ by the cell configurations

or the channel configurations of the same drone sBS. With path

coupling, the following lemma shows that the Hamming dis-

tance between Ψ1 and Ψ̃1 decreases in expectation compared

to H(Ψ0, Ψ̃0), i.e., E[H(Ψ1, Ψ̃1)|Ψ0, Ψ̃0] < H(Ψ0, Ψ̃0).

Lemma 1: With path coupling under the MAD-P/MM algo-
rithm, for any pair of Ψ0 and Ψ̃0 (adjacent states) on F ×F ,
we have

E
[
H(Ψ1, Ψ̃1)|Ψ0, Ψ̃0

]
≤ (1−B)H(Ψ0, Ψ̃0),

where 0 < B < 1, specifically,

B =
(N − 1) [1 + κ− exp (2β(Θmax −Θmin))]

N |F| exp (β(Θmax −Θmin))
,

given that κ = min
{

ζ(LW−2N+2)
(N−1)R , (1−ζ)M

(N−1)R

}
, 0 < β <

ln(1+κ)
2(Θmax−Θmin)

, and N < LW
2 + 1.

Proof: See Appendix for the details.

Theorem 2: (Rapid Mixing) Under the MAD-P/MM algo-
rithm, the mixing time of the planning process {ψ(t)}t>0 is
upper bounded as follows:

τmix(ε) ≤
1

αR exp (β(2Θmax −Θmin)) ln
2N
ε

(N − 1) [1 + κ− exp (2β(Θmax −Θmin))]
,

4We have (qfn, c
f
n) �= (qf

′
n , cf

′
n ) if qfn �= qf

′
n or cfn �= cf

′
n or both.

given that κ = min
{

ζ(LW−2N+2)
(N−1)R , (1−ζ)M

(N−1)R

}
, 0 < β <

ln(1+κ)
2(Θmax−Θmin)

, and N < LW
2 + 1.

Proof: For any (Ψt, Ψ̃t) ∈ F × F , applying Lemma 1

iteratively, we have

Pr{Ψt �= Ψ̃t} = Pr{H(Ψt, Ψ̃t) ≥ 1}
≤ E

[
H(Ψt, Ψ̃t)

]
≤ (1−B)t · diam(F),

where diam(F) is the diameter of F , i.e., the maximum of

the minimum number of transitions required to go from Ψ to

Ψ′ over all pairs of positive-recurrent states Ψ,Ψ′ ∈ F . Under

the MAD-P/MM algorithm, diam(F) ≤ 2N .

Therefore, for the Markov chain Ψ according to (9) and

followed by the coupling lemma in [37] (Lemma 1), we have

dTV

(
P̂t(Ψ0, ·), P̂t(Ψ̃0, ·)

)
≤ Pr{Ψt �= Ψ̃t} ≤ 2N(1−B)t,

where P̂t(Ψ0, ·) (P̂t(Ψ̃0, ·)) denotes the t-step transition prob-

ability distribution starting from Ψ0 (Ψ̃0).

Consider the Markov chain {ψ(t)}t>0. Recall that Pf,·(t)
the probability distribution over F at time t given that the

initial state is f , and p∗ = (p∗f )f∈F given by (1). Hence,

dTV (Pf,·(t),p∗)

= dTV

( ∞∑
k=0

P̂k(f, ·)exp(−ρt)(ρt)k

k!
,p∗

)
(a)

≤
∞∑
k=0

exp(−ρt)(ρt)k

k!
dTV

(
P̂k(f, ·),p∗

)
≤ 2N

∞∑
k=0

exp(−ρt)(ρ(1−B)t)k

k!

= 2N exp(−ρBt)

where (a) is due to Jensen’s inequality. Therefore, we have

τmix(ε) ≤
ln 2N

ε

ρB
≤

1
αR exp (β(2Θmax −Θmin)) ln

2N
ε

(N − 1) [1 + κ− exp (2β(Θmax −Θmin))]
,

where κ = min
{

ζ(LW−2N+2)
(N−1)R , (1−ζ)M

(N−1)R

}
.

From Theorem 2, it can be seen that the mixing time

decreases with the increase of α. In other words, the plan-

ning process {ψ(t)}t>0 rapidly converges to its stationary

distribution if α goes large. This is because, as discussed

before, increasing α can speed up the transitions among

configurations. Note that we require N < LW
2 + 1 to have

the rapid mixing of {ψ(t)}t>0. Intuitively, compared to the

total number of cells LW , if N is relatively large, it typically

takes longer to transit between non-adjacent configurations

since drones do not have much freedom to move.

C. Effects of Measurement Error

In the MAD-P algorithm, the ground-air throughput (γf
n , for

any drone sBS n under any configuration f ) should be mea-

sured in real time, based on which the transition rates that drive

the planning process can be determined (see (2)). However,

measurements of ground-air throughput could be inaccurate

so that the algorithm would compute the planning based on a
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different set of transition rates, leading to a performance gap

towards the optimal solution p∗. It is important to understand

how measurement errors affect the algorithm performance and

hence further characterize the performance gap. For simplicity,

based on the throughput measurements from all drone sBSs

under f , the broadcasted weighted system-wide normalized

utility Û(f) by the central station undergoes random errors in

a bounded region [−δf , δf ] compared to the true utility U(f),
where δf is positive and dependent only on f . Hence, we have

Û(f) ∈ [U(f)−δf , U(f)+δf ]. Further, we assume that Û(f)
takes only 2nf + 1 discrete values, i.e.,[
U(f)− δf , U(f)− nf − 1

nf
δf , . . . , U(f)− 1

nf
δf , U(f),

U(f) +
1

nf
δf , . . . , U(f) +

nf − 1

nf
δf , U(f) + δf

]
,

following certain probability distribution perror
f , where nf is a

positive integer only dependent on f . With the above mod-

eling, the performance gap in the presence of measurement

errors is bounded by the following theorem.

Theorem 3: Under the MAD-P algorithm, the performance
gap on the expected system utility in the presence of measure-
ment errors is given by

∣∣p̄UT − p∗UT
∣∣ =

∣∣∣∣∣∣
∑
f∈F

(p̄f − p∗f )U(f)

∣∣∣∣∣∣
≤ 2Θmax

(
1− exp(−2βδmax)

)
,

where p̄ = (p̄f )f∈F denotes the stationary distribution
of {ψ(t)}t>0 in the present of measurement errors, U =
(U(f))f∈F denotes the vector of weighted system-wide nor-
malized utilities, and δmax = maxf∈F δf .

The proof of Theorem 3 is omitted here since it is almost

the same to the proof given by [38]. From Theorem 3, it can

be seen that the performance gap decreases exponentially fast

as the measurement errors diminish.

VI. SIMULATION RESULTS

In this section, we present three sets of simulations to

demonstrate the performance of the proposed MAD-P algo-

rithm, and how different design parameters (ζ, α, and β) and

measurement errors affect its performance.

In the first set of simulations, we consider a target area

consisting of 4 × 3 square cells, each of which is 100 × 100
m2 in size. There are N = 4 drone sBSs dispatched to

the target area with a height of 150 m, and there are three

channels available for use, each of 15 MHz bandwidth. We

consider that a fixed number of long-lived data flows are

distributed in the target area, and the data traffic demand does

not change over time but can be very different across cells.

To compute the capacity vector of drone sBSs, a uniform

ground-air transmission power of 20dbm is used. In addition,

we consider a logarithmic function as the utility function, and

we set ζ = 0.5.

The impact of design parameters α and β on the algorithm

performance is shown in Fig. 2. The performance ratio of

system utility, defined as the ratio of the running average

system-wide normalized utility under the MAD-P algorithm

and the optimal system-wide normalized utility obtained by

the exhaustive search, is plotted with respect to the number

of reconfiguration run in the simulation. As it can be seen in

Fig. 2a and Fig. 2b, with the increase of β, the performance

ratio improves (i.e., the gap to the optimality is reduced)

since the time fraction that the system spent in the “better”

configurations increases according to (1). In Fig. 2c, it is

shown that under the MAD-P/LM algorithm the number of

reconfigurations required before convergence can be large

when α is small. In other words, as shown by the analytic

results (Theorem 2), the convergence of the system-wide

normalized utility speeds up as α goes large.
To see how ζ affects the algorithm performance, in the

second set of simulations, we consider a scenario where L = 6,

W = 5, M = 3, N = 4, α = 1, and β = 15, with all other

parameters same to those in the first set of simulations. In

this particular scenario, since the number of dispatched drone

sBSs is close to the number of available channels, but much

less than the number of cells in the target area, it will be

more rewarding to explore the cells as much as possible so

as to identify the most demanding cells very quickly. Fig. 3a

and Fig. 3b show that the convergence of the system-wide

normalized utility speeds up by selecting a value of ζ that is

close to one (i.e., more cell explorations).
We perform the third set of simulations to evaluate the

impact of measurement errors on the algorithm performance,

where the setting is the same to that in the first set of simu-

lations with α = 1 and β = 15. In addition, we introduce a

uniformly generated random error when the throughput vector

is measured. Fig. 4a and Fig. 4b show the performance ratio

of system utility in presence of measurement errors under two

algorithms, respectively. As it can be seen, the measurement

errors lead to an increase of utility gap. However, from the

analytic results (Theorem 3), it is clear that the performance

gap is upper bounded.

VII. CONCLUSION

In this paper, we considered the problem of planning a

set of drone small cells operating on multiple channels in a

target area to provide access to the backbone/core network. We

have formulated the drone cell planning to a combinatorial

network utility maximization problem, and then proposed

a measurement-aided dynamic planning (MAD-P) algorithm

to solve the problem in a distributed fashion during flight

with minimal centralized control. We proved that the MAD-P

algorithm is asymptotic optimal, and derived an upper bound

of the mixing time that captures the speed of convergence

of the dynamic planning process. We also derived an upper

bound of the performance gap in presence of measurement

errors. Simulation results have validated our analytical results

and demonstrated the effectiveness of our algorithm.

APPENDIX

PROOF OF LEMMA 1

Denote Ψ0 = f0 = (q0n, c
0
n)n∈[N ] and Ψ̃0 = f̃0 =

(q̃0n, c̃
0
n)n∈[N ], and we first assume Ψ0 and Ψ̃0 (adjacent states)
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(a) MAD-P/MM, α = 1 (b) MAD-P/LM, α = 1 (c) MAD-P/LM, β = 15

Fig. 2: Impact of α and β on the algorithm performance

.

(a) MAD-P/MM

.

(b) MAD-P/LM

Fig. 3: Impact of ζ on the algorithm performance

(a) MAD-P/MM (b) MAD-P/LM

Fig. 4: Impact of measurement errors on the algorithm perfor-

mance

only differ by the cell configurations of the same drone sBS,

say drone sBS 1 without loss of generality, we first assume Ψ0

and Ψ̃0 (adjacent states) only differ by the cell configurations

of drone sBS 1, i.e., (q0n, c
0
n) = (q̃0n, c̃

0
n), ∀n ∈ [2, N ], q01 �= q̃01

and c01 = c̃01.

Next, we define the coupling at state (Ψ0, Ψ̃0) by choosing

the next state (Ψ1, Ψ̃1) according to the following procedure.

Step 1. Choose drone sBS n∗ from [N ] uniformly at ran-

dom, and both Ψ and Ψ̃ update the same n∗.

Step 2. Do the following if n∗ �= 1, and go to Step 3

otherwise.

According to the way of constructing the Markov chain Ψ,

drone sBS n∗ may remain its configuration in the next step

or move to a new cell or hop to a new channel in the next

step. We define the decision space of n∗ conditional on f0 is

Ω(n∗|f0) = {stay,Qf0

n∗ , Cf0

n∗}, and the probability distribution

pn∗ = (pn∗(ω))ω∈Ω(n∗|f0), where

pn∗(ω) =

⎧⎪⎪⎨⎪⎪⎩
1− αNR exp(−U(f0))

ρ ω = stay,
αζN exp(−U(f0))

ρ ω ∈ Qf0

n∗ ,
α(1−ζ)N exp(−U(f0))

ρ ω ∈ Cf0

n∗ .

Similarly, we define the decision space of n∗ conditional

on f̃0 is Ω(n∗|f̃0) = {stay,Qf̃0

n∗ , C f̃0

n∗}, and the probability

distribution p̃n∗ = (p̃n∗(ω))ω∈Ω(n∗|f̃0), where

p̃n∗(ω) =

⎧⎪⎪⎨⎪⎪⎩
1− αNR exp(−U(f̃0))

ρ ω = stay,
αζN exp(−U(f̃0))

ρ ω ∈ Qf̃0

n∗ ,
α(1−ζ)N exp(−U(f̃0))

ρ ω ∈ C f̃0

n∗ .

Based on pn∗ over Ω(n∗|f0) and p̃n∗ over Ω(n∗|f̃0), we

define p′
n∗ and p̃′

n∗ over the same sample space Ω(n∗) =

Ω(n∗|f0) ∪ Ω(n∗|f̃0) = {stay,Qf0

n∗ ∪ Qf̃0

n∗ , Cf0

n∗}. Note that

Cf0

n∗ = [M ] \ c0n∗ = C f̃0

n∗ = [M ] \ c̃0n∗ since c0n∗ = c̃0n∗ .

Specifically, we have

p′n∗(ω) =

{
pn∗(ω) ∀ω ∈ Ω(n∗|f0);

0 ∀ω ∈ Ω(n∗) \ Ω(n∗|f0).
(10)

p̃′n∗(ω) =

{
p̃n∗(ω) ∀ω ∈ Ω(n∗|f̃0);

0 ∀ω ∈ Ω(n∗) \ Ω(n∗|f̃0).
(11)

We further define the following three probability distribu-

tions over the sample space Ω(n∗):

pmin
n∗ =

(min{p′n∗(ω), p̃′n∗(ω)})ω∈Ω(n∗)

1− dTV(p′
n∗ , p̃′

n∗)
, (12)

p+
n∗ =

(max{0, p′n∗(ω)− p̃′n∗(ω)})ω∈Ω(n∗)

dTV(p′
n∗ , p̃′

n∗)
, (13)

p̃+
n∗ =

(
max{0, p̃′n∗(ω)− p′n∗(ω)})

ω∈Ω(n∗)

dTV(p′
n∗ , p̃′

n∗)
, (14)

Recall that dTV(·, ·) denotes the total variation distance of two

probability distributions.

Now, we are ready to update drone sBSs n∗ in both Markov

chains Ψ and Ψ̃ for (Ψ1, Ψ̃1):
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i With probability 1−dTV(p
′
n∗ , p̃′

n∗), select a configuration

ω from Ω(n∗) according to pmin
n∗ given in (12), and both

Ψ and Ψ̃ update n∗ to the new configuration ω;

ii Otherwise, Ψ and Ψ̃ update n∗ independently. Specifi-

cally, Ψ updates n∗ according to p+
n∗ given in (13), and

Ψ̃ updates n∗ according to p̃+
n∗ given in (14).

Step 3. Given that n∗ = 1, q01 �= q̃01 , and c01 = c̃01, we define

two probability distributions p′
1 and p̃′

1 over the sample space

Ω(1) = {(q01 , c01), (q̃01 , c01),Qf0

1 ∩ Qf̃0

1 , Cf0

1 }. Specifically,

p′1(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1− αNR exp(−U(f0))
ρ ω = (q01 , c

0
1),

αζN exp(−U(f0))
ρ ω = (q̃01 , c

0
1),

αζN exp(−U(f0))
ρ ω ∈ Qf0

1 ∩ Qf̃0

1 ,
α(1−ζ)N exp(−U(f0))

ρ ω ∈ Cf0

1 ,

0 otherwise.

p̃′1(ω) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1− αNR exp(−U(f̃0))
ρ ω = (q̃01 , c

0
1),

αζN exp(−U(f̃0))
ρ ω = (q01 , c

0
1),

αζN exp(−U(f̃0))
ρ ω ∈ Qf0

1 ∩ Qf̃0

1 ,
α(1−ζ)N exp(−U(f̃0))

ρ ω ∈ Cf0

1 ,

0 otherwise.

Similarly, we further define the following three probability

distributions over the sample space Ω(1):

pmin
1 =

(min{p′1(ω), p̃′1(ω)})ω∈Ω(1)

1− dTV(p′
1, p̃

′
1)

, (15)

p+
1 =

(max{0, p′1(ω)− p̃′1(ω)})ω∈Ω(1)

dTV(p′
1, p̃

′
1)

, (16)

p̃+
1 =

(
max{0, p̃′1(ω)− p′1(ω)}

)
ω∈Ω(1)

dTV(p′
1, p̃

′
1)

, (17)

Now, we are ready to update drone sBSs n∗ in both Markov

chains Ψ and Ψ̃ for (Ψ1, Ψ̃1):

i With probability 1 − dTV(p
′
1, p̃

′
1), select a configuration

ω from Ω(1) according to pmin
1 given in (15), and both

Ψ and Ψ̃ update drone sBS 1 to the new configuration ω;

ii Otherwise, Ψ and Ψ̃ update drone sBS 1 independently.

Specifically, Ψ updates drone sBS 1 according to p+
1

given in (16), and Ψ̃ updates drone sBS 1 according to

p̃+
1 given in (17).

It is not hard to show that the above procedure leads to a

valid coupling. Initially, we have H(Ψ0, Ψ̃0) = 1. With path

coupling, we next show that the Hamming distance between

Ψ1 and Ψ̃1 decreases in expectation compared to H(Ψ0, Ψ̃0),
i.e., E[H(Ψ1, Ψ̃1)|Ψ0, Ψ̃0] < H(Ψ0, Ψ̃0).

By the above coupling procedure, it can be seen that when

n∗ = 1, we have Ψ1 = Ψ̃1 if drone sBS 1 remains its

configuration from Ψ0 to Ψ1 and moves from q̃01 (Ψ̃0) to

q01 (Ψ̃1)); or drone sBS 1 remains its configuration from Ψ̃0

to Ψ̃1 and moves from q01 (Ψ0) to q̃01 (Ψ1); or both chains

update drone sBS 1 to a new cell in Qf0

1 ∩ Qf̃0

1 . Note that

|Qf0

1 ∩ Qf̃0

1 | = LW −N − 1. Hence, we have

E
[
H(Ψ1, Ψ̃1)− 1|Ψ0, Ψ̃0, n

∗ = 1
]

= −
∑

ω∈Ω(1)\Cf0

1

(
1− dTV(p

′
1, p̃

′
1)

)
pmin
1 (ω)

= −
∑

ω∈Ω(1)\Cf0

1

min{p′1(ω), p̃′1(ω)}

≤ −ζ(LW −N + 1) exp (−β(Θmax −Θmin))

R|F| . (18)

When n∗ ∈ [2, N ], with probability 1 − dTV(p
′
n∗ , p̃′

n∗),
H(Ψ1, Ψ̃1) = 1; otherwise, H(Ψ1, Ψ̃1) = 2. Then, we have,

E
[
H(Ψ1, Ψ̃1)− 1|Ψ0, Ψ̃0, n

∗ ∈ [2, N ]
]

= dTV(p
′
n∗ , p̃′

n∗) = 1−
∑

ω∈Ω(n∗)

min{p′n∗(ω), p̃′n∗(ω)}.

(19)

From the MAD-P/MM algorithm, it can be obtained that for

any n∗ ∈ [2, N ], |Qf0

n∗ | = |Qf̃0

n∗ | = LW − N and |Qf0

n∗ ∩
Qf̃0

n∗ | = LW −N − 1. Therefore,∑
ω∈Ω(n∗)

min{p′n∗(ω), p̃′n∗(ω)}

≥ 1− exp (β(Θmax −Θmin))

|F|
+

ζ(LW −N − 1) exp (−β(Θmax −Θmin))

R|F|
+

(1− ζ)(M − 1) exp (−β(Θmax −Θmin))

R|F|
= 1− exp (−β(Θmax −Θmin))

|F|
·
(
exp (2β(Θmax −Θmin))− R− ζ

R

)
(20)

Here, we assume that

exp (β(Θmax −Θmin)) < |F|, (21)

since 1 − exp(β(Θmax−Θmin))
|F| has to be a valid probability.

However, we will immediately have (21) after we bound β
shortly. By plugging in (18), (19), and (20), we bound the

conditional expected Hamming distance between Ψ1 and Ψ̃1:

E
[
H(Ψ1, Ψ̃1)− 1|Ψ0, Ψ̃0

]
=

∑
n∈[N ]

1

N
E
[
H(Ψ1, Ψ̃1)− 1|Ψ0, Ψ̃0, n

∗ = n
]

≤ 1

N
· 1

|F| (N − 1) exp (−β(Θmax −Θmin))

·
[
exp (2β(Θmax −Θmin))−

(
1 +

ζ(LW − 2N + 2)

(N − 1)R

)]
.

(22)

We further denote the right-hand side of (22) by −B1, i.e.,

B1 �
(N − 1)

[
1 + ζ(LW−2N+2)

(N−1)R − exp (2β(Θmax −Θmin))
]

N |F| exp (β(Θmax −Θmin))
,
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which is positive if the following two conditions hold:

N <
LW

2
+ 1 (23)

0 < β <
1

2(Θmax −Θmin)
ln

(
1 +

ζ(LW − 2N + 2)

(N − 1)R

)
.

(24)

Due to (24), we certainly have (21). Therefore, for any pair

of Ψ0 and Ψ̃0 (adjacent states) only differing by the cell

configurations of the same drone sBS, it follows that

E
[
H(Ψ1, Ψ̃1)|Ψ0, Ψ̃0

]
≤ 1−B1 = (1−B1)H(Ψ0, Ψ̃0),

where 0 < B1 < 1.

Follow the above analysis, similarly, for any pair of Ψ0 and

Ψ̃0 (adjacent states) only differing by the channel configura-

tions of the same drone sBS, we have

E
[
H(Ψ1, Ψ̃1)|Ψ0, Ψ̃0

]
≤ 1−B2 = (1−B2)H(Ψ0, Ψ̃0),

where

B2 �
(N − 1)

[
1 + (1−ζ)M

(N−1)R − exp (2β(Θmax −Θmin))
]

N |F| exp (β(Θmax −Θmin))
,

which is positive when

0 < β <
1

2(Θmax −Θmin)
ln

(
1 +

(1− ζ)M

(N − 1)R

)
. (25)

Now, we choose any β which satisfies

0 < β <
ln (1 + κ)

2(Θmax −Θmin)
, (26)

where κ � min
{

ζ(LW−2N+2)
(N−1)R , (1−ζ)M

(N−1)R

}
. We further define

B � min{B1, B2}. From the path coupling theorem in [37],

for any (Ψ0, Ψ̃0) ∈ F × F , we have

E
[
H(Ψ1, Ψ̃1)|Ψ0, Ψ̃0

]
≤ (1−B)H(Ψ0, Ψ̃0), (27)

where 0 < B < 1. Thus, Lemma 1 follows.
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