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Abstract—This paper studies the problem of communications
between aircraft and a control tower for aviation risk monitoring
over wireless channels. The control tower needs to monitor
the state of each aircraft in real time by receiving reports
from the aircraft. Due to limited bandwidth, only a subset of
aircraft can communicate with the control tower at the same
time. This paper focuses on the problem of optimal scheduling
of data transmissions to minimize the risk. We formulate the
problem as learning states of parallel Markov chains where
each Markov chain represents an aircraft, and the objective
is to minimize the information entropy of all the aircraft. We
propose an algorithm based on Whittle’s index and study the
indexability of the problem for both single-state wireless channels
and multi-state wireless channels. Our numerical evaluations
show that our algorithm improves the accuracy of the estimations
compared with the heuristic scheduling methods such as greedy
and Round& Robin.

Index Terms—Whittle’s Index, Restless Multi-Armed Bandit
Problem, Multi-state channel

I. INTRODUCTION

This paper considers the problem of monitoring parallel

Markov chains over wireless networks. The problem is mo-

tivated by risk monitoring in aviation systems where a control

tower needs to communicate with aircraft in its region to

monitor their risk levels. The solution of this problem can also

be applied to other risk monitoring applications. The major

challenge in the problem is that the communication bandwidth

is limited. For example, in aviation, automatic dependent

surveillance – broadcast (ADS-B) is a current surveillance pro-

tocol in which each aircraft broadcasts its position periodically,

enabling it to be tracked. The data bandwidth avaiable for

ADS-B is about 1 Megabit/second. It has been shown in [1],

the channel becomes very congested when multiple aircraft in

an area broadcast their positions through the ADS-B channel,

which lead to significant data loss.

In our problem, the central control needs to maintain an

estimate of the risk level of each aircraft. When a report from

an aircraft is successfully is received, the state of the Markov

chain is know; otherwise, the estimate of the distribution of

the risk level of an aircraft is updated based on a pre-defined

Markov chain. In this paper, we assume simple two-state

Markov chains. Due to limited bandwidth, the controller can

only probe a subset of Markov chains each time. The objective

is to develop a scheduling algorithm to minimize the total

information entropy of the Markov chains.

This optimization problem is then formulated as a Multi-

Armed Bandit (MAB) problem with the capacity of wireless

channels as a hard constraint. The problem is similar to a

restless bandit problem. The key difference is that the objective

is to minimize the total information entropy of all bandits

instead of finiding the optimal bandit. We adopt Whittle’s

Index to solve the problem. Whittle’s Index was first proposed

in [2] for restless bandit problems. Whittl’s index has been

used in wireless communication problems. For example, [3]

consider sa delay minimization problem through a multi-state

channels, and [4] studies the throughput maximization problem

where transmitter in the system has dynamic multi-channel

access.

In this paper, we consider both single-rate wireless channels

and multi-rate wireless channels. We prove that the problem

is indexable for single-rate wireless channels and establish

a sufficient condition under which the problem is indexable

with multi-rate wireless channels. Our numerical evaluations

show that our algorithm outperform other heuristics such as

the greedy policy and Round& Robin policies.

II. PROBLEM FORMULATION

We consider a system consisting of M two-state Markov

chains as shown in Fig.1. For simplicity, we assume that for

the ith Markov chain, p10 = p01 = pi < 0.5.

Fig. 1. A Two-State Markov Chain

We assume the controller can probe at most K (K < M)
of them at each time slot, and each probe succeeds with

probability r < 1. Let Si(t) denote the state of the Markov

chain i at time t, and θi(t) ∈ [0, 1] denotes the probability that
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Markov chain i is in state “1” at time slot t given the most

recent observation received at the controller.

θi(t) =

{
Si(t), if the probe is successful

pi + (1− 2pi)θi(t− 1), otherwise
(1)

Given a Bernoulli distribution with parameter θi(t), the

entropy of the distribution is

ci(t) = −θi(t) log θi(t)− (1− θi(t)) log(1− θi(t)).

The problem we are interested in is to minimize the overall

entropy of the system, i.e.

min
π∈Π

E

[ ∞∑
t=0

βt
M∑
i=1

ci(t)

]

subject to:

M∑
i=1

Aπ
i (t) ≤ K, ∀t,

(2)

where

Aπ
i (t) = �{Markov chain i is probed at time t}

under a scheduling policy π, and Π is the set of all scheduling

policies.

If we view θi(t) as the state of an arm, then the problem is

related to restless bandit problems. A significant difference is

that the reward
∑

i ci(t) depends on the states of all arms.

We use Whittle’s index [2] to solve this problem. We will

see that despite the fundamental difference in the cost function,

the problem is an indexable problem. Following Whittle’s

index approach, we first relax the hard constraint per time slot

to an average constraint, i.e., the number of Markov chains to

be obsrved is at most K on average,

∞∑
t=0

M∑
i=1

βtAπ
i (t) ≤

K

1− β
.

By introducing the Lagrange multiplier v to the problem, we

have the following Lagrangian:

L(v) = min
π∈Π

E

[ ∞∑
t=0

βt
M∑
i=1

ci(t) + v

∞∑
t=0

βt

(
M∑
i=1

Aπ
i (t)−K

)]
(3)

Note that the Lagrange multiplier v can be viewed as the

penalty. Since the term v
∑∞

t=0 β
tK is a constant in the

optimization problem, for a fixed v, the relaxed problem can be

de-coupled into sub-problems associate with each individual

Markov chain. In particular, we have

min
π∈Π

E

[ ∞∑
t=0

βtci(t) + v

∞∑
t=0

βtAπ
i (t)

]
. (4)

Note that while we replace the hard constraint, the algorithm

implemented can only probe K Markov chains. The Whittle

index approach is to index the M Markov chains and then the

algorithm picks the K ones with the highest indices.

The Whittle’s Index Policy is a low-complexity heuristic

that has been extensively used in the literature and performs

well in practice.The challenge is that problems are not always

indexable. In the following sections, we will prove the index-

ability and the conditioned indexability, i.e. Whittle’s index is

well defined.

III. WHITTLE’S INDEX APPROACH

To solve the sub-problem Eq.(4) for each Markov chain. We

consider the following Bellman equation:

Vi(θi; v) = min
{
ci(θi) + βVi

(
pi + (1− 2p)θi; v

)
, v+

ci(θi) + β
[
rθiVi(1; v) + r(1− θi)Vi(0; v)+

(1− r)Vi (pi + (1− 2pi)θi; v)
]} (5)

where Vi(θ, v) is the value function of the ith Markov chain

starting from state θi(t), and r is the message delivery ratio.

The Whittle index in this problem is v∗(θi, r), the smallest

value of v in the Eq. (4) that makes it equally desirable to

observe and not to observe when the ith Markov chain is in

state θi. The fundamental question in Whittle’s index whether

the problem is indexable. We will analyze the indexability in

two different cases.

A. Single State Channels

We first consider the case the message delivery ratio r
remains the same at all time, and have the following lemma.

Lemma 1. Vi(θi; v) is a concave function in θi.

The proof of this lemma can be found in the appendix [5].

Letting the two terms in the minimization equal to each

other, we obtain

ci(θi(t)) + βVi

(
pi + (1− 2pi)θi(t); v

)
= v + ci(θi(t))

βrθi(t)Vi(1; v) + βr(1− θi(t))Vi(0; v)+

β(1− r)Vi (p+ (1− 2pi)θi(t); v) .

(6)

Since the cost entropy function is symmetric in θ, we know

that Vi(0; v) = Vi(1; v), which yields

βrVi

(
pi + (1− 2pi)θi(t); v

)
= v + βrVi(0; v). (7)

We next show that the problem is indexable when r is given.

Let Di(v) be the set of values of θi for which Markov chain

i will not be probed under the v-penalty policy, i.e.

Di(v) = {θ ∈ [0, 1] : βrVi

(
pi+(1−2pi)θ; v

)
<v+βrVi(0; v)}.

The problem is indexable if Di(v) increases monotonically

from ∅ to the universe set as v increasing from 0 to ∞, as

established in the following theorem.

Theorem 1. The Markov chains are indexable.

Proof. The indexable condition is equivalent to that Equation

(7) has a unique solution v∗(θ) for each state θ. Because of

the symmetry of the cost function, we know that Vi(0; v) =
Vi(1; v). Based on the concavity of Vi(θ; v), we have

Vi

(
pi + (1− 2pi)θi; v

)
> Vi(0; v)
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because for every θ ∈ (0, 1), the point (θ, Vi(θ; v)) on the

graph of Vi(θ; v) is above the straight line joining the points

(0, Vi(0; v)) and (1, Vi(1; v)), as shown in Fig. 2. So when

v = 0, Di(0) = ∅.

On the other hand, we know that Vi(θ, v) is upper bounded

by
− log(0.5)

1−β , which is the discounted total cost when the state

stays as θ = 0.5, which occurs if no probing occurs. As a

result, when v > − log(0.5)
1−β , Di(v) = {θi : θi ∈ [0, 1]}.

Next we prove the monotonicity of Di(v). We know that

the LHS of Equation (7) is a concave function in θi. So the

LHS and RHS can be plotted as in Fig. 2. From the symmetry

Fig. 2. LHS and RHS of Eq.(7)

of the cost function, we know that Vi(θi; v) = Vi(1−θi; v), so

in the remaining part of the proof, we assume that θi ∈ [0, 0.5]
for simplicity.

According to Fig. 2, when θi ∈ [0, α(v)), the LHS is smaller

than the RHS of Equation (7), Di(v) = {[0, α(v))}. Let

g1(θi(t), v) = βrVi

(
pi + (1− 2pi)θi(t); v

)
g2(θi(t), v) = v + βrVi(0; v).

We can prove the indexability by proving

∂g2
∂v

− ∂g1
∂v

≥ 0

for any θi ∈ [0, α(v)). In other words, for fixed θ, as v
increases, g2 increases faster than g1 if θ ∈ D(v). The

condition can be written as:

1 + βr
∂Vi(0; v)

∂v
− βr

∂Vi(pi + (1− 2pi)θi; v)

∂v
≥ 0 (8)

for any θi ∈ Di(v).
Here we point out that V (θ; v) is not differentiable for some

v. In particular, the function is not differentiable when

βrVi

(
pi + (1− 2pi)θ; v

)
= v + βrVi(0; v),

i.e. when θ is on the boundary of D(v). When Vi(θ; v) =
g1(θ, v) = g2(θ, v), probe or not does not make any difference,

but the derivative of the two terms in the Bellman equation

Equation (5) may be different. Since a boundary point is not

included in D(v) According to its definition, so we consider

the derivative of the second term when it is not differentiable

and defines it to be
∂V (θ;v)

∂v here, because if Eq.(8) holds for

all the differentiable points, it also holds for both left and right

hand derivative at the non-differentiable points. For the non-

differentiable point of V (0; v), right hand derivative will be

considered.
Let

h0(θ) = θ,

and

ht(θ) = pi + (1− 2pi)h
t−1(θ)

for t ≥ 1, represents the t step state transition without probe.

For any θ ∈ Di(v), let

k = argmax
k

{hk(θ) ∈ Di(v)}.
So for θ ∈ Di(v) we have:

Vi(g
t(θ); v) =

t∑
i=0

ci(h
i(θ)) + βt+1Vi(h

t+1(θ); v) (9)

when 0 ≤ t ≤ k. The costs ci(θi) are independent with v, so

we have:

∂Vi(θ; v)

∂v
= βk+1 ∂Vi(h

k+1(θ); v)

∂v
(10)

As a complement, we also point out that k is an integer related

to v,
∂Vi(h

k+1(θ);v)
∂v is not differentiable when hk+1(θ) lies on

the boundary of D(v) for any k ≥ 0. We will prove that

the indexability holds for any k ≥ 0, then both left-hand

derivative and right-hand derivative are under consideration.

So we simply regard k as a constant for all differentiable v.

Next we consider about the term
∂Vi(h

k+1(θ);v)
∂v , we have:

Vi(g
k+t(θ); v) = v + ci(g

k+t(θ))+

βrVi(0; v) + β(1− r)V (gk+t+1(θ); v)
(11)

for any t ≥ 1. Let
∂V (0;v)

∂v = x

∂Vi(g
k+1(θ); v)

∂v
= 1 + βrx+ β(1− r){

1 + βrx+ β(1− r)
(
1 + βrx+ β(1− r) · · ·

)}
=

1 + βrx

1− β(1− r)

so for θ ∈ D(v), we have:

∂Vi(θ; v)

∂v
= βk+1 1 + βrx

1− β(1− r)

and
∂Vi(pi(1− 2pi)θi(t); v)

∂v
= βk 1 + βrx

1− β(1− r)

Then Eq.(8) becomes:

1 + βr

[
x− βk 1 + βrx

1− (1− r)β

]
≥ 0

x− βk 1 + βrx

1− (1− r)β
≥ − 1

βr(
1− βk+1r

1− β + βr

)
x ≥ βk

1− β + βr
− 1

βr
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First it is easy to show that
∂V (θ;v)

∂v > 0, since as the penalty

increase, the discounted total cost can not decrease, so we have

x ≥ 0, and the LHS of above equation is always positive for

any k ≥ 0.

Since βk

1−β+βr < 1
βr , the RHS of the above equation is

always smaller than 0 for any k ≥ 0. So Eq.(8) always holds

when θi(t) ∈ Di(v), and the problem is indexable.

As we mentioned before, Vi(h
k+1(θ), v) is not differen-

tiable in v when hk+1(θ) is on the boundary of D(v), since

k is a piece-wise constant on v. Both of left derivative and

right derivative can be support by Eq.(8), since it holds for

any k ≥ 0.

The value v∗(θi, r) is defined as the penalty on probing to

balance the two terms in the Bellman equation Eq.(5). Whit-

tle’s index based policies are known to have good performance

in practice, see [6] and [3].

We next summarize the calculation of Whittle’s index.

According to Eq.(9) and Eq.(11), θ is on the boundary of

D(v∗(θ)), in other words, D(v∗(θ)) = [0, θ) for any θ > 0.

So we can get:

Vi(0, v
∗(θ)) =

L0∑
j=0

βjci(h
j(0)) + βL0

(
v+

β
[
rVi(0; v

∗(θ)) + (1− r)Vi

(
hL0+2(0); v∗(θ)

) ])

=

L0∑
j=0

βjci(h
j(0)) + βL0

v + βrV (0; v∗(θ))
1− β(1− r)

+
∞∑
j=1

βL0+j(1− r)jc(hL0+j(0)) (12)

where

L0 = argmax
k

{hk(0) ∈ D(v∗(θ))}
= �log1−2pi

(1− 2θ)�.
On the other hand, Eq.(7) holds for v = v∗(θ), we have

βrVi

(
h1(θ); v∗(θ)

)
= v + βr · Vi(0; v

∗(θ))

∞∑
j=1

rβj(1− r)j−1c(hj(θ))+
βrv + β2r2Vi(0; v

∗(θ))
1− β(1− r)

= v + βr · Vi(0; v
∗(θ))

(13)

Combine Eq.(12) and Eq.(13), Whittle’s index v∗(θ) of the ith
aircraft at state θ can be solved.

B. Multi-State Channel

We now consider multi-state channel case, assume that

the channel states of the ith Markov chain ri is an i.i.d.

random variable such that ri ∈ Ri = {ri,1, ri,2, · · · , ri,n}
with ri,1 > ri,2 > · · · > ri,n for any i. Each channel state

occurs with probabilities ρi,1, ρi,2, · · · , ρi,n respectively, and

satisfying
∑

j ρi,j = 1 for any i. Also we assume that the

channel states at current time is known for all Markov chains,

but the future channel states are unknown. This setting is

similar to the multi-state channel in [3].

In Multi-State channel, for the ith Markov chain, the tuple

(θi, ri) where θi ∈ [0, 1], and ri ∈ Ri consists the state, since

decision depends on both θi and ri, and the state space is

[0, 1] ×Ri. Still, let Di(v) be the set of states where the ith
Markov chain would not to be probed under v-penalty policy.

The Bellman Equation (5) becomes:

Vi(θi(t), ri;v) = min
{
ci(θi(t))+βV i

(
pi + (1− 2pi)θi(t);v

)
,

v + ci(θi(t)) + βriV i(0; v) + β(1− ri)·
V i (pi + (1− 2pi)θi(t); v)

}
(14)

where V i (θi; v) = Eri [Vi (θi, ri; v)] is the expected value over

ri, that is:

V i(θi(t);v) =Eri

[
min

{
ci(θi(t))+βV i

(
pi+(1−2pi)θi(t);v

)
,

v + βriV i(0; v) + β(1− ri)V i (pi+(1−2pi)θi(t);v)
}]

(15)

Similarly, because of the symmetric property of the Markov

process, we only consider about θ ∈ [0, 0.5]. From the previous

section, we know that the concavity still holds. Let the two

terms in the minimum are equal to each other, we have:

βriV i

(
pi + (1− 2pi)θi(t); v

)
= v + βriV i(0; v) (16)

For agent i, the space of θi can be divided into n + 1 parts

{Φi,l} where l = 0, 1, 2, · · · , n, and Φi,0 satisfying:

βri,jV i

(
pi+(1−2pi)θi; v

)
<v+βri,jV i(0; v) for all ri,j ∈Ri

Φi,1 satisfies:⎧⎪⎨
⎪⎩
βri,1V i

(
pi + (1− 2pi)θi; v

) ≥ v + βri,1V i(0; v)

βri,jV i

(
pi + (1− 2pi)θi; v

)
< v + βri,jV i(0; v)

for all j > 1

Φi,l satisfies:⎧⎪⎪⎪⎨
⎪⎪⎪⎩
βri,jV i

(
pi+(1− 2pi)θi; v

)
≥ v + βri,jV i(0; v)

for all j ≤ l

βri,jV i

(
pi+(1− 2pi)θi; v

)
< v + βri,jV i(0; v)

for all j > l

Φi,n satisfies:

βri,jV i

(
pi(1−2pi)θi; v

) ≥ v+βri,jV i(0; v) for all ri,j ∈ Ri

From the concave property, we have V i

(
pi(1 − 2pi)θi; v

)
>

V i(0; v) for any θi, by moving the βri,jV (0, v) term to the

left, it is easy to show that any θi ∈ Φi,l−1 is smaller than θ′i ∈
Φi,l. Then the rested set Di(v) of the ith Markov chain can

be described as Di(v) = {(θi, ri) : θi ∈ Φi,0, ri ∈ Ri or θi ∈
Φi,l, ri < ri,l for 0 < l ≤ n}.
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Similarly, to prove the indexability of iid situation, we need

to prove

1 + βri
∂V i(0; v)

∂v
− βri

∂V i(pi + (1− 2pi)θi; v)

∂v
≥ 0 (17)

holds for any (θi, ri) ∈ Di(v) for any i.

Theorem 2. The mult-state channel Markov chains are index-
able when

β <
1

1 + (1− ρi,1)ri,1
, (18)

holds for all i.

The proof of this Theorem can be found in the appendix.

[5]

Similarly, the we would choose to probe the K Markov

chains with higher indexes. However the indexes now depend

on both state estimation θi(t) and channel state ri. In multi-

state channel, the explicit format of v∗i (θ, ri) is hard to solve,

especially when the number of state of channel is large.

However, we can use binary search to get an approximation.

As for an example, we will show brief process to derive the

two-state channel index as an example.

For the ith Markov chain, to solve the index v∗(θ, ri,1), let

v∗ = v∗(θ, ri,1) = v∗(θ′, ri,2) (0 < θ < θ′ < 0.5), and θ′ is

temporarily unknown. From the proof above, let V i(0, v
∗) =

x, (θ, ri,1) and (θ′, ri,2) is on the boundary of Di(v
∗), we

have the following equations:

βri,1V i(pi + (1− 2pi)θ; v
∗) = v∗ + βri,1x (19)

βri,2V i(pi + (1− 2pi)θ
′; v∗) = v∗ + βri,2x (20)

On the other hand, x = V i(0, v
∗) can be expressed as:

x =

L0∑
j=0

βjci(h
j
i (0)) +

L1−1∑
j=0

βL0+1+j(1− ρ1r1)
j

(
ci(h

L0+1+j
i (0)) + ρi,1v

∗ + βρi,1ri,1x
)
�{L1 > 0}+

∞∑
j=0

βL0+L1+1+j(1− ρi,1ri,1)
L1(1− ri)

j

(
ci(h

L0+L1+1+j
i (0)) + v∗ + βrix

)
(21)

where L0 = maxk{hk
i (0) < θ}, and L1 = maxk{hk(0) <

θ′} − k0. Combine Eq.(19)(20)(21) the index value of v∗, θ′,
V i(0, v

∗) for the ith Markov chain can be estimated by using

binary search.

IV. SIMULATIONS

We consider a scenario where a control tower is monitoring

aircrafts in the area. Each aircraft has two states: “low risk”

and “high risk”. The transition probability p from one state to

another is assumed to be 0.05.

We assume that there are 500 aircrafts in the system,

based on the channel bandwidth, the control tower can require

information from 150 of them at each time slot. Assume that

there are two types of aircraft, each types has 250 aircrafts.

The first one has transition probability p1 = 0.05, and has

transmission success probability r1 = 0.5. The second type of

aircraft has transition probability p2 = 0.02 and transmission

success probability r2 = 0.7.
We can plot the index of these two types of aircraft as in

Fig.3. We compare the Whittle’s index approach with a greedy
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Fig. 3. Index of two types of aircraft

method that aircraft with larger c(θ) will be selected, and

the Round Robin method, where all the aircrafts are selected

periodically with same frequency. And the simulation results

of total information entropy of all these 500 aircrafts are shown

in Fig.4. As we can see, the information entropy level of

Whittle’s Index Approach is lower than both the greedy or

Round & Robin methods.
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Fig. 4. Information Entropy Simulation

We next consider multi-state channels such that Pr(r =
0.9) = 0.4, Pr(r = 0.7) = 0.3, and Pr(r = 0.5) = 0.3.

The simulation results are plotted in Fig.5. Again we can

observe that the Whittle’s index outperforms the other two

algorithms.
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Fig. 5. Index of three states channel aircraft

V. CONCLUSION

In the paper, we studied the problem of learning the states of

parallel Markov chains over unreliable wireless networks. The

solution to this problem has applications in risk monitoring

such as monitoring the states of aircrafts (or UAVs) from a

control tower. We first proved that for single state wireless

channels, the problem based on Whittle’s index is indexable,

and the index can be derived explicitly. For multi-state chan-

nels, the indexability can be proved under a sufficient condi-

tion, and the index value can be calculated numerically. And

simulation shows that the proposed Whittle’s index approach

can have better performance than greedy policy and Round &

Robin policy.
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