
Distributed Channel Probing for Efficient Transmission
Scheduling in Wireless Networks

Bin Li and Atilla Eryilmaz

Abstract—It is energy-consuming and operationally cumber-
some for all users to continuously estimate the channel quality
before each transmission decision in opportunistic scheduling over
wireless fading channels. This observation motivates us to under-
stand whether and how opportunistic gains can still be achieved
with significant reductions in channel probing requirements and
without centralized coordination amongst the competing users. To
that end, we first study a basic scenario with symmetric arrivals
to explicitly characterize the maximum achievable throughput
as a function of the allowable probing rates in symmetric and
independent ON-OFF fading channels. This result provides two
insights: (i) almost the same opportunistic gains can be realized
with significant reductions in probing rates when the number of
users is large; (ii) a natural randomized strategy for distributed
implementation cannot exploit the full opportunistic gains.

These insights motivate us to consider the general fading
scenario and develop probing and transmission schemes that
are amenable to distributed implementation. After characterizing
the maximum achievable throughput region under the probing
constraints, we provide an optimal probing algorithm. Noting the
difficulties in the implementation of the centralized solution, we
develop a novel Sequential Greedy Probing (SGP) algorithm by
using the maximum-minimums identity, which is naturally well-
suited for physical implementation and distributed operation. We
show that the SGP algorithm is optimal in the important scenario
of symmetric and independent ON-OFF fading channels. Then, we
study a variant of the SGP algorithm in general fading channels
to obtain its efficiency ratio as an explicit function of the channel
statistics and rates, and note its tightness in the symmetric and
independent ON-OFF fading scenario. We further expand on the
distributed implementation of these greedy solutions by using the
Fast-CSMA technique.

I. INTRODUCTION

Opportunistic scheduling has long been observed (e.g., [12],
[11]) to improve communication performance in wireless fading
systems by selectively transmitting over channels that are in
good condition. This presumes the knowledge of channel state
information (CSI) at the outset of each transmission decision.
However, in the presence of many contending users that utilize
the time-varying channel, acquiring CSI per user is not only
energy-consuming, but, more importantly, operationally diffi-
cult since it typically requires non-overlapping pilot training
phases to obtain reliable channel quality estimates. Moreover,
such persistent probing is likely unnecessary given that only
few of them may be allowed to transmit due to the interference
constraints. Yet, opportunistic gains from multi-user diversity
cannot be realized if sufficient CSI is not present. This implies
a natural tradeoff between exploring the multi-user diversity
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and energy consumption for channel acquisition, and raises a
fundamental question on the design of opportunistic scheduling
towards the determination of which subset of users to probe the
channel given limited average probing rates.

The seminal works of Tassiulas and Ephremides (e.g., [22],
[23] and [21]) have showed the throughput-optimality of the
opportunistic scheduling, which prioritizes activation of links
with the largest product of backlog awaiting service and cor-
responding channel rate given the full knowledge of CSI, also
called Maximum Weight Scheduling (MWS). Recently, there
has been an increasing understanding on efficient scheduling
with limited CSI (e.g., [6], [10], [2], [17]). In [6], the authors
propose a two-stage throughput-optimal MWS-type algorithm
given partial CSI under the assumption that only users with
known channel states can contend for the channel. However,
they do not answer how to select a subset of users to probe the
channel. In [10], the authors also develop a similar MWS-type
algorithm that minimizes the energy consumption. However,
the resulting decision space being exponentially increasing with
the number of users appears to limit its applicability in multi-
user environments. In fact, existing works in the design of
joint probing and transmission strategies assume centralized
controllers that utilize all state information, and hence are
not suitable for distributed operation in large-scale networks.
However, as we shall point out, the design for distributed
probing strategies generates difficult challenges that require
novel techniques beyond existing approaches discussed next.

In an exciting thread of work, it has been shown that Carrier
Sense Multiple Access (CSMA) based distributed scheduling
strategies (e.g., [7], [16], [5], [18]) can maximize long-term
average throughput for general non-fading wireless topologies.
Yet, the design of distributed schedulers in a fading environment
has been observed to be much more difficult. Nevertheless,
when CSI is available, a distributed Fast-CSMA (FCSMA) al-
gorithm has also been developed [8] that guarantees throughput-
optimal scheduling over wireless fading channels in a fully-
connected network topology. Yet, to the best of our knowledge,
there does not exist a distributed solution that also accounts for
the energy and operational limitations in the CSI acquisition.

With this motivation, in this work, we address the problem
of distributed joint probing and transmission scheduling when
users have heterogeneous loads, probing rate constraints, and
channel statistics. The following items list our main contribu-
tions along with references on where they appear in the text:
• In Section III, we study an important basic setup with

many users sharing a common resource that motivates the rest
of the work by illustrating that a small probing rate is sufficient
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to achieve almost the same performance as the case when all
users continuously probe their channels. Yet, it is also observed
that simplistic randomized solutions will under-perform, thus
motivating more sophisticated distributed solutions.
• In Section IV, we first characterize the capacity region

given the allowable probing rate for general fading channels.
Then, we develop a throughput-optimal joint probing and
transmission algorithm assuming a centralized controller. This
algorithm, while impractical as is, forms the basis for the
subsequent design of algorithms that are suitable for distributed
operation.
• In Section V, based on the maximum-minimums identity

[20], we first develop a novel Sequential Greedy Probing
(SGP) algorithm where users probe the channel sequentially.
Then, we show that the SGP algorithm can get the optimal
probing schedule, leading to throughput-optimal performance
over symmetric and independent ON-OFF fading channels.
• In Section VI, we introduce and analyze a Modified SGP

(MSGP) algorithm that is adapted to general fading channels,
and explicitly characterize the efficiency ratio that it achieves
as an explicit function of the channel statistics and rates. The
efficiency ratio is tight for symmetric and independent ON-OFF
channels.
• In Section VII, we utilize the FCSMA strategy [8] to

develop distributed implementations of proposed greedy algo-
rithms, and analyze the performance of the resulting algorithm.

II. SYSTEM MODEL

We consider a system where a set of N users contend for data
transmission over wireless fading channels. We assume that the
channel for each user has M+1 possible rates c0, c1, c2, ..., cM ,
where c0 < c1 < c2 < ... < cM and c0 = 0. Let Ci[t]
denote the maximum amount of service available in slot t if
user i is scheduled. We assume that C[t] = (Ci[t])

N
i=1 are

independently and identically distributed (i.i.d.) over time, with
pij , Pr{Ci[t] = cj},∀i = 1, ..., N ; j = 0, 1, ...,M . Let C be
the collection of possible global channel states. We reasonably
assume that the channel for each user is unavailable with a
strictly positive probability1, that is, pi0 > 0,∀i. In the rest of
paper, we also use C to denote the fading channel.

In order to get CSI, each user needs to probe the channel
by transmitting small control packets. Users cannot probe the
channel at the same time due to the interference constraints. We
denote the probing schedule as X = (Xi)

N
i=1, where Xi = 1

if user i probes the channel and Xi = 0 otherwise. We also
treat X as a set of probing users. Let X be the collection of
probing schedules. Due to the interference constraints, at most
one user can transmit in each slot. We call a schedule where
at most one user is active in each slot as a feasible schedule
and denote it as S = (Si)

N
i=1, where Si = 1 if user i grabs the

1In practice, the probing packets and data packets are transmitted in low-
rate (e.g., 1Mbps in IEEE 802.11b) and high-rate (e.g., 2/5.5/11Mbps in
IEEE 802.11b) respectively, which implies that the transmission of probing
packets requires lower signal-to-noise-ratio than that of data packets. Thus, it
is reasonable to assume that when the channel is very poor, the user can still
probe the channel but cannot transmit the data packets.

channel at slot t and Si = 0 otherwise. We use S to denote the
collection of feasible schedules.

If the user does not probe the channel at the beginning of
each time slot, it may underestimate the channel rate or may
even fail to transmit due to a bad channel condition. Thus, it
is reasonable to assume (as in [6]) that each user will not start
a transmission if it does not observe the channel state at the
beginning of each time slot. We denote the allowable probing
rate for each user i as mi ∈ (0, 1],∀i, which puts an upper
bound on the average number of probing operations that each
user is allowed to make, i.e., lim supT→∞

1
T

∑T
t=1 E[Xi[t]] ≤

mi, ∀i. This bound, as noted in the introduction, may be due
to energy or operational constraints associated with the channel
estimation operation.

We assume that each user i serves its own traffic load and
maintains them in a data queue with Qi[t] denoting its queue
length at the beginning of slot t. Let Ai[t] denote the number
of packets arriving at user i in slot t that are i.i.d. over time
with E[Ai[t]] = λi, and E[A2

i [t]] < Amax for some Amax <∞.
Then, the evolution of data queue i is described as follows.

Qi[t+ 1] = (Qi[t] +Ai[t]−Xi[t]Si[t]Ci[t])
+,∀i. (1)

Our goal is to find an efficient joint probing and transmission
schedule {X[t],S[t]}t≥1 under the scheduling constraint that at
most one user can be scheduled at each time slot and probing
constraint that the average probing rate of each user should not
be greater than its allowable probing rate. A key difficulty in
the solution of this problem is that the information available
at the transmission scheduling decision S[t] critically depends
on the previously made probing decision X[t], which in turn
must be performed distributively with only local information.
We will address the problem of optimal centralized control, and
then return to the distributiveness challenge.

We say that data queue i is strongly stable if it satisfies
limsupT→∞

1
T

∑T
t=1 E[Qi[t]] <∞. The system is stable if all

data queues are strongly stable. We define the capacity region
as a maximum set of arrival rate vectors λ = (λi)

N
i=1 for which

the system is stable and the average probing rate of each user
is no greater than its allowable probing rate under any policy.
We call an algorithm optimal if it can make the system stable
for any arrival rate vector that lies strictly inside the capacity
region. An algorithm can achieve the efficiency ratio ρ if it can
stabilize the system for any λ strictly within a fraction ρ of the
capacity region. Next, we study a basic setup that motivates
further investigations.

III. A MOTIVATING SCENARIO

Here, we consider symmetric and independent ON-OFF
fading channels with probability p of each channel being ON
to support a unit rate in each time slot. Assume that each user
has a uniform arrival rate λ and uniform allowable probing
rate m ∈ (0, 1]. Thus, all users should be expected to have the
same maximum achievable rate, which is denoted by λmax(m).
The next proposition explicitly characterizes λmax(m) under
any strategy with a long-term average as a piece-wise linear
function of m.
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Proposition 1: For the above setup, the maximum support-
able arrival rate under any policy with a well-defined long term
average is characterized as follows:

λmax(m) = mp, if 0 ≤ m ≤ 1

N
;

λmax(m) =
1

N
+ (m− i

N
)p(1− p)i − 1

N
(1− p)i,

if
i

N
≤ m ≤ i+ 1

N
, i = 1, ..., N − 1.

Proof: See Appendix A for the proof.
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Fig. 1: Maximum throughput under different number of users

Figure 1 illustrates λmax(m) as a function of the allowable
probing rate m for a range of the number of users, N , when p =
0.8. An interesting observation is that when the number of users
increases a small probing rate appears enough to achieve almost
the same maximum achievable rate as the case when all users
always probe their channels, i.e., when m = 1. This observation
can be accurately captured in the following corollary.

Corollary 1: The maximum achievable throughput λmax(m)

approaches the upper limit λmax(1) asymptotically as N
increases as long as the scaled probing rate mN diverges,
however slowly. More explicitly, we have

lim
N→∞

λmax( bh(N)c
N )

λmax(1)
= 1, (2)

where h is any non-negative and non-decreasing function with
h(x) ≤ x, ∀x, and lim

x→∞
h(x) = ∞, and byc is the maximum

integer that cannot be greater than y.
Proof: From Proposition 1, we get λmax( bh(N)c

N ) =
1−(1−p)bh(N)c

N . Then, we have

lim
N→∞

λmax( bh(N)c
N )

λmax(1)
= lim
N→∞

1− (1− p)bh(N)c

1− (1− p)N
= 1.

Note that h(x) can be log x or log log x. Thus, when the num-
ber of users is large, the probing rate bh(N)c

N , however small, is
enough to guarantee the good performance. In practice, we are
interested in the design of a distributed probing and scheduling
algorithm that can support the maximum achievable rate. One
may be inclined to suggest a natural Randomized Probing
(RP) policy whereby each user independently probes the chan-

nel with probability m. From [23], the maximum achievable
throughput of RP policy is given by 1

N

(
1− (1−mp)N

)
.

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

m

M
ax

im
um

 T
hr

ou
gh

pu
t

 

 

Theoretical Maximum Throughput
Randomized Probing Policy

Fig. 2: The throughput performance of RP policy

Figure 2 compares this rate to the maximum achievable rate
by any policy to demonstrate that the RP policy falls short
of reaching the maximum achievable rate, especially for small
allowable probing rates. This motivates us in the rest of the
work to develop more sophisticated algorithms that can support
the maximum achievable rates.

IV. OPTIMAL CENTRALIZED PROBING AND TRANSMISSION

In this section, we first study the capacity region given the
allowable probing rate in a general fading channel. Then, we
propose a centralized probing and transmission algorithm that
supports any throughput in it.

A. Characterization of the Capacity Region

The next lemma gives the capacity region Λ(m,C) under
the allowable probing rate vector m = (mi)

N
i=1 in a general

fading channel C.
Lemma 1: The capacity region Λ(m,C) is a set of arrival

rate vectors λ = (λi)
N
i=1 such that there exist non-negative

numbers α(x) and β(x, c; s) satisfying

λi ≤
∑
x∈X

α(x)
∑
c∈C

Pr{C[t] = c}
∑
s∈S

β(x, c; s)xicisi,∀i, (3)∑
s∈S

β(x, c; s) = 1,∀x, c, (4)∑
x∈X

α(x) = 1, (5)∑
x∈X

α(x)xi ≤ mi,∀i, (6)

where α(x) and β(x, c, s) denote the probability that selects
the probing schedule x and the feasible schedule s given the
probing schedule x and channel state c, respectively.

Proof: See Appendix B for the proof.
In (3), the right-hand-side (RHS) is the total average service

provided for each user and the left-hand-side (LHS) is just the
average arrival rate. Thus, to stabilize the data queue, (3) should
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be satisfied. In (6), the LHS is the average probing rate for each
user and the RHS is the allowable probing rate for each user.
To meet the constraint of allowable probing rates, (6) should
be satisfied.

Next, we characterize the equivalent capacity region for ON-
OFF fading channels, which will be useful in the performance
analysis of the algorithm proposed in the next section in general
fading channels.

Lemma 2: For the case of ON-OFF fading channels, the
capacity region Λ(m,C) is equivalent to the following region
Γ(m,C) which is a set of arrival rate vectors λ such that
there exist non-negative numbers α(x) satisfying: for any
A ⊆ N , {1, 2, · · · , N},∑
i∈A

λi ≤ 1−
∑
x

α(x)
∑
c

Pr{C[t] = c}1{xici=0,∀i∈A}, (7)∑
x

α(x)xi ≤ mi,∀i, (8)∑
x

α(x) = 1. (9)

where 1{·} is the indicator function.
Remark: If a random probing schedule X = (Xi)

N
i=1 has the

probability distribution α(x), then∑
x

α(x)
∑
c

Pr{C[t] = c}1{xici=0,∀i∈A}

= Pr{XiCi[t] = 0,∀i ∈ A} (10)

In addition, since

E[max
i∈A

XiCi[t]] = 1− Pr{XiCi[t] = 0,∀i ∈ A}, (11)

(7) is equivalent to∑
i∈A

λi ≤ E[max
i∈A

XiCi[t]], ∀A ⊆ N. (12)

Proof: See Appendix C for the proof.

B. An Optimal Joint Probing and Transmission Algorithm

To obtain the optimal centralized joint probing and trans-
mission algorithm, we use the standard technique in [13] to
introduce and guarantee stability of a virtual queue for each
user that conveniently measures the degree of violation of the
average probing constraint. Specifically, we let Ui[t] denote
the virtual queue length for user i at the beginning of slot
t. The number of packets entering the virtual queue i at slot
t is just Xi[t]. We use Ii[t] to denote the service for virtual
queue i at slot t that are i.i.d. over time with E[Ii[t]] = mi,
and E[I2i [t]] ≤ Imax for some Imax < ∞. Then, the evolution
of the virtual queue i is as follows:

Ui[t+ 1] = (Ui[t] +Xi[t]− Ii[t])+,∀i. (13)

We say that virtual queue i is mean rate stable if it satisfies
limT→∞

E[Ui[T ]]
T = 0. If the virtual queue i is mean rate stable,

then, by using Theorem 2.5 in [13], the average probing rate
constraint of user i is automatically satisfied. Thus, we aim to
design a joint probing and transmission policy that provides

strong stability for data queues and mean rate stability for
virtual queues under any arrival rate vector strictly within the
capacity region Λ(m,C).

Joint Probing and Transmission (JPT) Algorithm:
In each slot t, given (Q[t],U[t]), perform:
(1) Probing Decision: select the probing vector X∗[t] as

X∗[t] ∈ arg max
X

(
E
[
max

i
Qi[t]XiCi[t]

]
−

N∑
i=1

Ui[t]Xi

)
, (14)

(2) Transmission Scheduling Decision: After the channel states
of the selected users are probed, schedule the transmission of
user i∗[t] that satisfies

i∗[t] ∈ arg max
i

Qi[t]X
∗
i [t]Ci[t]. (15)

Remark: Since at most one user can be scheduled at each
time slot, we can also interpret i∗ as the index such that S∗i∗ [t] =
1, where

S∗[t] ∈ arg max
S∈S

N∑
i=1

Qi[t]X
∗
i [t]Ci[t]Si[t].

In the JPT algorithm, we first need to solve the optimization
problem (14) to get the optimal probing schedule X∗[t] in the
probing stage at slot t. Then, we need to solve the optimization
problem (15) to get the optimal transmission schedule in the
transmission stage given the optimal probing schedule X∗[t]
and the observed channel states. Next, we will show that the
JPT algorithm is optimal in the sense that it can stabilize the
system for any arrival rate vector strictly within the capacity
region. Let Int(R) denotes the set of interior points of the region
R.

Proposition 2: The JPT algorithm is optimal, i.e., for any
arrival rate λ ∈ Int(Λ(m,C)), the JPT algorithm stabilizes the
system subject to the average probing rate constraints.

Proof: See Appendix D for the proof.
Even though the JPT algorithm is optimal, it cannot directly

be applied in practice due to the complexity of computing an
optimal probing schedule and the need of centralized coor-
dination. In [8], the authors proposed a distributed FCSMA
algorithm over a wireless fading channel in a fully-connected
network topology. We can use a similar technique as in [8]
to solve transmission scheduling component (15) of the JPT
algorithm distributively if we know the optimal probing sched-
ule. However, how to reduce the complexity of computing an
efficient probing schedule and implement it in a distributed way
still remains an open question. Next, we develop a sequential
greedy algorithm that is well-suited for distributed computation
of (14) and analyze its performance. From now on, we always
use the well-known MWS algorithm or its distributed variants
(e.g., the FCSMA algorithm) in the transmission stage.

V. SEQUENTIAL GREEDY PROBING POLICY AND ANALYSIS

In this section, we propose a sequential greedy algorithm
for the probing component of the JPT algorithm, which can be
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implemented distributively as we will explain in Section VII.
Then, we show that it can get an optimal probing schedule in
a symmetric and independent ON-OFF fading channel.

A. A Sequential Greedy Probing Algorithm

We need to establish some new notations to introduce our
proposed algorithm. For any non-empty set E ⊆ N (recall that
N = {1, 2, · · · , N}), we define the function f(E, e) as follows:

f(E, e) , E[max
i∈E

min{QiCi, QeCe}], (16)

where e /∈ E. Appendix E explores some properties of f(E, e)
over a symmetric and independent ON-OFF fading channel.
Here, it is worth noting that, by using the maximum-minimums
identity [20], f(E, e) can be computed recursively.

Also, let φi , E[QiCi] − Ui,∀i ∈ N, and consider a set
F ⊆ N of probing users and r ∈ N\F. By using the maximum-
minimums identity, we have the key relationship:

E
[

max
i∈F

⋃
{r}

QiCi

]
−

∑
i∈F

⋃
{r}

Ui

=

(
E[max

i∈F
QiCi]−

∑
i∈F

Ui

)
+ φr − f(F, r). (17)

For the derivation of this identity, please see Appendix F for
details. Based on the iterative equation (17), we can define a
directed graph G, where each probing schedule X denotes a
node with an associated value of E[maxi∈XQiCi]−

∑
i∈X Ui.

Thus, X also represents the collection of all nodes. Since each
node is a binary vector of N dimensions, we have |X | = 2N ,
where | · | denotes the cardinality of the set. For two nodes X1

and X2, there is a directed link from node X1 to node X2 if
and only if X1 is a subset of X2 with the cardinality |X2|−1.
Let q = X2 \X1. We define the weight of a link from node
X1 to node X2 as φq − f(X1, q). Let E be the collection of
edges, and let node X0 denote the all-zero probing schedule
where no user probes the channel, and thus the value of node
X0 is 0. We say node X is in level |X| in the directed graph
G = (X , E). Finally, let I = {i ∈ N : φi > 0}. Figure 3 shows
the directed graph for N = 3.

Given the directed graph G, the optimization problem (14)
is equivalent to finding a path with the largest total weight
emanating from node X0. By noting that the directed graph
is acyclic, if we negate the weight of edges, the optimization
problem (14) is also equivalent to finding a shortest path
from node X0 in the directed graph, which can be solved by
Bellman-Ford algorithm [3]. However, Bellman-Ford algorithm
always goes back and forth to find a shortest path, which is
not allowed in the probing problem since once a node probes
its channel its energy is consumed. More importantly, the
complexity of Bellman-Ford algorithm is O(|X ||E|) and thus
increases exponentially with the number of users. Fortunately,
the weights of edges are highly correlated with each other
through the queue lengths. Thus, it is possible to design a
sequential greedy probing algorithm as follows that can still
yield good performance.

(1,0,0) (0,1,0) (0,0,1)

(1,1,0) (1,0,1) (0,1,1)

(0,0,0)

(1,1,1)

1 2
3

2 f({1},2)
3 f({1},3)

1 f({2},1)

3 f({2},3)

1 f({3},1)

2 f({3},2)

f({1,2},3)

2 f({1,3},2)

1 f({2,3},1)

Fig. 3: The directed graph G = (X , E) when N = 3

We first divide each time slot into a control slot and a data
slot. The purpose of the control slot is to determine the probing
schedule to get the channel state used for data transmission in
the data slot. To achieve this goal, we further subdivide the
control slot into N mini-slots.

Sequential Greedy Probing (SGP) Algorithm:
(1) In the first mini-slot, select user i1 such that i1 ∈
arg maxi∈I φi, where I = {i ∈ N : φi > 0} and we recall
that φi , E[QiCi] − Ui,∀i ∈ N. User i1 probes the channel
while also announcing its queue-length. If no users probe the
channel, then all users keep silent in the rest of current slot and
restarts in the next time slot.
(2) In the kth (1 < k ≤ N ) mini-slot, select user ik such that

ik ∈ arg max
i∈I\{i1,...,ik−1}

(φi − f ({i1, ..., ik−1}, i)) . (18)

If φik > f ({i1, ..., ik−1}, ik), then user ik probes the channel
while also announcing its queue length. Otherwise, all users
stop probing and all probing users with non-zero channel states
are candidates for transmission scheduling as dictated in (15).

Remark: In the SGP algorithm, we require that each probing
user announces its queue-length information, which may cause
the heavy message exchange overhead. Motivating by [24] that
utilizes the delayed queue length information to provide the fair
resource allocation, we may only allow the transmitting user
to announce its queue-length information, and all users utilize
this delayed queue length information to calculate the probing
schedule. Our simulation results indicate that this modified
version of the SGP algorithm does not degrade the system
performance.

B. Optimality of the SGP Algorithm for Symmetric Channels

In this subsection, we will show that the SGP algorithm can
achieve the optimal value of the maximization problem (14) for
symmetric and independent ON-OFF fading channels. The next
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lemma and subsequent corollaries pave the path to this result
by establishing a key property of the directed graph G.

Lemma 3: For symmetric and independent ON-OFF fading
channels with an ON probability p, if node A∗ is the unique
node with maximum value in level |A∗| in graph G, then all
nodes with maximum value in level |A∗|−1 belong to a subset
of nodes A∗, where a subset of nodes X means a set of nodes
with edge ending with node X, and the value of node X is
defined as E[maxi∈XQiCi]−

∑
i∈X Ui.

Proof: Let A be the class of the nodes in level |A∗|; D
be the class of nodes in level |A∗| − 1; and B be the class of
nodes that are a subset of node A∗ in level |A∗|−1. Thus, we
need to show that ∃B∗ ∈ B such that

B∗ ∈ arg max
D∈D

(
E[max

i∈D
QiCi]−

∑
i∈D

Ui

)
. (19)

We prove it by contradiction. Suppose there exists a D∗ ∈ D\B
such that

D∗ ∈ arg max
D∈D

(
E[max

i∈D
QiCi]−

∑
i∈D

Ui

)
. (20)

Let d ∈ arg mini∈A∗\D∗ Qi and B , A∗ \ {d}. Since A∗ is
the unique node with the maximum value in level |A∗|, node
D∗
⋃
{d} ∈ A does not have the maximum value in level |A∗|

and thus we have

E[ max
i∈D∗

⋃
{d}

QiCi]−
∑

i∈D∗
⋃
{d}

Ui < E[max
i∈A∗

QiCi]−
∑
i∈A∗

Ui.

According to the iterative equation (17), we have

E[max
i∈D∗

QiCi]−
∑
i∈D∗

Ui + φd − f(D∗, d)

< E[max
i∈B

QiCi]−
∑
i∈B

Ui + φd − f(B, d). (21)

Since D∗ is one of the optimal solutions to (20), we have

E[max
i∈D∗

QiCi]−
∑
i∈D∗

Ui ≥ E[max
i∈B

QiCi]−
∑
i∈B

Ui. (22)

Hence, to let (21) hold, we should have f(D∗, d) > f(B, d).
To arrive at a contradiction, we need to show that f(D∗, d) ≤
f(B, d), which is not at all obvious and requires a challenging
investigation. Please see Appendix G for details.

Corollary 2: For symmetric and independent ON-OFF fad-
ing channels, let A∗ be one of nodes with maximum value in
level |A∗| in the directed graph G, then the node with maximum
value in level |A∗| − 1 should be in the union of subsets of
nodes with maximum value in level |A∗|.

Proof: The proof is exactly the same as in the proof for
Lemma 3 except that B denotes the class of nodes in level
|A∗| − 1 that are the subset of all nodes with maximum value
in level |A∗|.

Corollary 3: For symmetric and independent ON-OFF fad-
ing channels, if node A∗ has the maximum value in level |A∗|,
then there exists a node with maximum value in level |A∗|+ 1
that is the superset of node A∗.

Proof: If there is only one node with maximum value in
level |A∗| + 1, then the result directly follows from Lemma
3. If there are multiple nodes with maximum value in level
|A∗|+ 1, then the result follows from Corollary 2.

It is important to note that Lemma 3 and its corollaries
hold regardless of whether the edge weights are positive or
negative valued. This property will be crucial in the proof of
the following main result of this subsection.

Proposition 3: The SGP algorithm can achieve the optimal
value of the maximization problem (14) in symmetric and
independent ON-OFF fading channels.

Proof: If there are multiple nodes with optimal value in the
directed graph G, then we just consider the nodes with optimal
value in the lowest level, say level K. Thus, for any node with
the level lower than K, its value is strictly less than that of the
nodes with optimal value in level K. Next, we first assume that
the SGP algorithm can continue to work even when it picks
an edge with a non-positive weight. Under this assumption,
we can show that the SGP algorithm sequentially selects users
i1, i2, ..., iK to get to the node A∗ = {i1, i2, ..., iK}, which
has the optimal value in the directed graph G. Finally, we will
show that all edges in a path leading to node A∗ have a strictly
positive weight and the SGP algorithm will stop at node A∗.

Note that the proposed SGP algorithm first picks the user
i1, where the node {i1} has the maximum value in level 1. By
corollary 3, there exists a node with maximum value in level
2 that is a superset of node {i1}. Since the SGP algorithm
picks an edge with maximum weight φi2−f({i1}, i2), the node
{i1, i2} has the maximum value in level 2. By using similar
argument, we can see that the SGP algorithm sequentially
selects users i1, i2, ..., iK to get to the node A∗ in level K,
where the node {i1, ..., ij} has the maximum value in level j
for each j = 1, ...,K. Since node A∗ has the maximum value
in level K and the node with optimal value is in level K, node
A∗ has the optimal value in the directed graph G.

Let G(A∗) be the subgraph of G that includes all subsets of
the node A∗ and their corresponding edges. Since node A∗ has
the optimal value, we have φi − f(A∗ \ {i}, i) > 0,∀i ∈ A∗.
Indeed, if φk − f(A∗ \ {k}, k) ≤ 0 for some k ∈ A∗, then
according to the iterative equation (17), we have

E[max
j∈A∗

QjCj ]−
∑
j∈A∗

Uj ≤ E[ max
j∈A∗\{k}

QjCj ]−
∑

j∈A∗\{k}

Uj ,

which contradicts that the value of a node with the level less
than K is strictly smaller than that of node A∗. According to
the definition of the function f (see equation (16)), it is easy
to see that if E ⊆ F, then f(E, e) ≤ f(F, e), where e /∈ F.
Thus, for any given i ∈ A∗ and any H ⊆ A∗ \ {i}, we have

φi − f(H, i) ≥ φi − f(A∗ \ {i}, i) > 0. (23)

Thus, all edges in the subgraph G(A∗) have the strictly posi-
tive weight. Hence, there always exists an edge with strictly
positive weight from node {i1, ..., ik} in level k to node
{i1, ..., ik, ik+1} in level k + 1 (k = 1, 2, ...,K − 1).
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In addition, there is no edge with strictly positive weight
from node A∗ in level K. Indeed, if there is an edge with
strictly positive weight from node A∗ in level K to a node in
level K + 1, say node J, then node J should have the value
larger than the optimal value, which contradicts that node A∗

has the optimal value in the directed graph G. Thus, when the
SGP algorithm reaches node A∗, it stops.

In a general wireless fading channel, the SGP algorithm
cannot always find the optimal value of (14) as in the above
symmetric setup, and thus its performance is unclear. Instead,
we consider a Modified SGP (MSGP) algorithm in the next
subsection to show that the MSGP algorithm combined with
MWS algorithm in the transmission stage can at least achieve
a constant efficiency ratio.

VI. THE MODIFIED SGP POLICY AND ANALYSIS

In this section, we consider the more general fading channels
and introduce a slightly modified version of the SGP algorithm
studied in the previous section. Then, we explicitly characterize
the efficiency ratio that this modified algorithm is guaranteed
to achieve as a function of the channel statistics and rates.

We assume that the general fading channels satisfy the
following assumption.

Assumption 1: The general fading channels are i.i.d. over
time and the events that the channels have zero rate are
independent, that is,

Pr{Ci[t] = 0,∀i ∈ A} =
∏
i∈A

Pr{Ci[t] = 0},∀A ⊆ N. (24)

Remark: If fading channels are independently over users, then
condition (24) trivially holds.

To introduce the proposed algorithm, we first let pmin ,
1−maxj pj0 and pmax , 1−minj pj0 to denote the non-zero
rate probability of the worst and the best channel, respectively.
Then, we define two identical and independent ON-OFF fading
channels Cmin[t] = (Cmin

i [t])Ni=1 and Cmax[t] = (Cmax
i [t])Ni=1

satisfying:

Pr{Cmin
i [t] = 0} = 1− pmin, Pr{Cmin

i [t] = c1} = pmin, ∀i;

Pr{Cmax
i [t] = 0} = 1−pmax, Pr{Cmax

i [t] = cM} = pmax,∀i,

where we recall that c1 and cM are, respectively, the smallest
and largest transmission rates achievable for any user.

Modified SGP (MSGP) Algorithm:
MSGP algorithm operates exactly the same as the SGP

algorithm, except that steps are computed assuming the
identical and independent ON-OFF fading channels Cmin.

Remark: The MSGP algorithm differs from the SGP algorithm
only in the assumed channel statistics and rates.

The following lemma gives the key relationship between
the general fading channels under Assumption 1 and two con-
structed identical and independent ON-OFF fading channels.

Lemma 4: For general fading channels under Assumption 1,
the following relationship

E[max
i
aiC

min
i [t]] ≤ E[max

i
aiCi[t]] ≤ E[max

i
aiC

max
i [t]], ∀t, (25)

holds for any constants ai ≥ 0,∀i.
Proof: See Appendix H for the proof.

In the following lemma, we give the relationship of the capacity
region for fading channels satisfying condition (25).

Lemma 5: Let CI [t] = (CIi [t])Ni=1 and CII [t] = (CIIi [t])Ni=1

represent two fading channels. If

E[max
i
aiC

I
i [t]] ≤ E[max

i
aiC

II
i [t]],∀t, (26)

holds for any constants ai ≥ 0,∀i, then, we have

Λ(m,CI) ⊆ Λ(m,CII). (27)

Proof: See Appendix I for the proof.
The following lemma reveals an interesting monotonicity

property of the mean of the maximum of a set of binary random
variables, and will be used in the subsequent main result.

Lemma 6: Let A ⊆ N and X = (X1, ..., X|A|) be a zero-
one random vector. Zi,∀i = 1, ..., |A|, are independent and
identical Bernoulli random variables with parameter p. Then,
h(p) , 1

pE[maxi∈AXiZi] is a non-increasing function.
Proof: See Appendix J for the proof.

Proposition 4: The MSGP algorithm combined with the
MWS algorithm in the transmission stage (see equation (15))
can at least achieve an efficiency ratio ρ , pmin

pmax

c1
cM

in general
fading channels under Assumption 1.

Proof: See Appendix K for the proof.
Remarks: (1) In symmetric and independent ON-OFF channels,
the MSGP algorithm can achieve the full capacity region, which
matches the result in Proposition 3.

(2) Even though the efficiency ratio is low in highly asym-
metric fading channels, the MSGP algorithm still performs well
in practice as we can see in the simulation section.

VII. DISTRIBUTED IMPLEMENTATION WITH FAST CSMA
Here, we expand on the distributed implementation of the

greedy sequential algorithms developed in the previous two
sections by using the FCSMA technique developed in [8].
Since the MSGP algorithm has the same performance as the
SGP Algorithm in the special case of symmetric ON-OFF
channels, we focus on the distributed implementation of the
MSGP Algorithm in the control slot.

Distributed MSGP (DMSGP) Algorithm:
In the first mini-slot, each user i with φi > 0 independently

generates an exponentially distributed random variable with rate
exp(Gφi) (G > 0), and starts transmitting a small probing
packet after this random duration unless it senses another
transmission before. The user that grabs the channel transmits
its probing packet until the end of the mini-slot. After probing,
all other users know the queue length of the current probing
user. If no users transmit the probing packet during this mini-
slot, then all users keep silent in the rest of current slot and
restarts in the next time slot.
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In the kth (1 < k ≤ N ) mini-slot, the remaining non-
probing user i with φi − f ({i1, ..., ik−1}, i) > 0 generates an
exponential distributed random variable with rate exp(G(φi −
f ({i1, ..., ik−1}, i))) and uses the same produce as in the first
mini-slot to probe the channel. If no users probe the channel
in the current mini-slot or the control slot is over, then all the
probing users with the available channel state start to contend
for data transmission.

Remark: Here, we assume that the sensing is instantaneous and
the backoff time is continuous, which excludes the possible
collisions. Yet, in practice, the sensing time is non-zero and
the backoff time is typically a multiple of time units, where a
time unit is equal to the time required to detect the transmission
from other links. Thus, we should use the discrete-time version
of the FCSMA algorithm, whose performance is close to its
continuous counterpart as shown in [8].

The above procedure leads to a probing schedule XDMSGP

by the end of the control slot, where each selected probing
user i knows its channel state Ci. Then, to determine the one
that transmits the data packet each probing user i distributively
runs the FCSMA algorithm as described in [8] with parameter
exp(QiCi). This is known to solve the transmission decision
(15) if the queue-lengths are large enough. In order to establish
the performance of such a distributed probing and transmission
algorithm, we need an additional assumption.

Assumption 2: The channel rates and their corresponding
probability for each user, i.e., cj ,∀j = 1, ...,M and pij ,∀i =
1, ..., N, j = 0, ...,M , are rational numbers.

Proposition 5: For any ζ > 0 and arrival rate vector λ
satisfying λ + ζ ∈ ρInt(Λ(m,C)), with the efficiency ratio ρ
given in Proposition 4, there exists a design parameter G > 0
such that the DMSGP algorithm, combined with the FCSMA
algorithm in the transmission stage, can support λ subject to
the given probing rate constraints m in general fading channels
under Assumptions 1 and 2.

Proof: See Appendix L for the proof.

VIII. SIMULATION RESULTS

In this section, we first study the impact of iterative steps
and using the delayed queue length information (i.e., only
the transmitting user broadcasts its queue length informa-
tion) on the performance of the SGP algorithm. Then, we
compare the performance between the SGP algorithm and
the MSGP algorithm in asymmetric ON-OFF fading channels
and symmetric general fading channels. In the simulation,
we consider three different fading models that are i.i.d. over
time and independently distributed over users: symmetric and
independent ON-OFF channels with probability p = 0.8 that
the channel is available in each time slot; asymmetric ON-
OFF channels that one user has channel availability probability
of 0.1 and all others have probability of 0.9 and symmetric
general fading channels available to each user with rates 0, 1, 10
and corresponding probability 0.1, 0.2, 0.7. All users have the
same arrival rate and require that the allowable probing rate
cannot exceed m = 0.4. Without loss of generality, we use

arrival process where the number of arrivals in each slot
follows Bernoulli distribution and Poisson distribution when we
consider ON-OFF fading channels and general fading channels
respectively.

A. The impact of iterative steps

In this subsection, we study the impact of iterative steps
on the performance of the SGP algorithm. We consider N =
20 users over a symmetric and independent ON-OFF fading
channel. Under this setup, we can use Proposition 1 to get the
capacity region Γ = {λ : λ < 0.05}. We use K to denote the
maximum allowable number of iterative steps.
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Fig. 4: Impact of iterative steps

From Figure 4a and 4b, we observe that the SGP algorithm
with unlimited iterative steps can achieve full capacity. In
addition, as K increases, the performance of the SGP algorithm
improves. Especially, we can see that four iterative steps are
enough to reach almost optimal performance. This implies that
while the original algorithm may be defined over more steps,
in practice, we can limit the iterative steps to a small number
virtually without hurting the throughput.

B. The impact of using delayed queue length information

In this subsection, we study the impact of using the delayed
queue length information (i.e., each user only have the queue
length information of the transmitting user) on the performance
of the SGP algorithm. Figure 5a and 5a compare the per-
formance between the SGP algorithm and the SGP algorithm
using the delayed queue length information in the network of
N = 5 users over symmetric ON-OFF fading channels. We
can observe that using the delayed queue length information
does not affect the system performance of the SGP algorithm.
This promising property allows us to significantly reduce the
overhead of exchanging queue length information under the
SGP algorithm.

C. The performance of the greedy probing algorithms

In this subsection, we compare the performance among the
SGP algorithm, the MSGP algorithm and the JPT algorithm.
We consider N = 5 users. Figure 6 and Figure 7 compare the
performance among the SGP algorithm, the MSGP algorithm
and the JPT algorithm under an asymmetric ON-OFF channel
and a symmetric general fading channel, respectively. From
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Fig. 5: Impact of using delayed queue length information

Figure 6 and 7, we can see that these algorithms have almost the
same throughput performance. Noting that the JPT algorithm
is throughput-optimal, both SGP and MSGP algorithm are
probably throughput-optimal in general fading channels. We
will investigate whether these greedy algorithms can achieve
maximum throughput in general setups.

In addition, we can observe from Figure 6 that the SGP
algorithm is insensitive to the channel statistics. Furthermore,
from Figure 7, we can observe that the MSGP algorithm has the
smallest average actual queue length and virtual queue length.
Thus, while the throughput performance of the SGP algorithm
is not sensitive to the channel rates, its delay performance may
be significantly affected by the channel rates.
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Fig. 6: Impact of asymmetric channel statistics
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Fig. 7: Impact of asymmetric channel rates

IX. CONCLUSION

In this paper, we considered the distributed channel probing
for opportunistic scheduling under heterogeneous allowable
probing rate constraints. We first analyzed a basic scenario
with symmetric arrivals and uniform allowable probing rate
to express the maximum achievable throughput as a function
of the allowable probing rate in symmetric and independent
ON-OFF fading channels. This result not only indicates that
almost the same opportunistic gains can be achieved with
significant reductions in probing rates when the number of
users is relatively large, but also points out that a simplistic
randomized policy cannot achieve the full opportunistic gains.

Then, we characterized the capacity region under the het-
erogeneous probing constraints and provided the centralized
throughput-optimal JPT algorithm. Realizing the operational
difficulty of centralized solution, we put effort in developing
a novel SGP algorithm based on the maximum-minimums
identity, which is easy for distributed implementation. Also, we
showed that the SGP algorithm is optimal in the crucial scenario
of symmetric and independent ON-OFF fading channels. In
the case of more general fading channels, we analyzed a more
tractable variant of the SGP algorithm to obtain its efficient ratio
as an explicit function of the channel statistics and rates and
show that this ratio is tight in the symmetric and independent
ON-OFF fading scenario. Finally, we discussed the distributed
implementation of these greedy probing algorithms by using
the FCSMA technique.

APPENDIX A
PROOF FOR PROPOSITION 1

Proof: To characterize the capacity region, similar to [23],
[21], [14], [10], it is enough to consider a class of stationary
randomized policies (see Lemma 1), where the probing decision
in each slot is made randomly. Let Ri and θj be the rate that
ith user can achieve and the probability that j users probe the
channel, respectively, where i = 1, 2, ..., N and j = 0, 1, ..., N .
Then, we can get the average probing rate as follows:

1

N
E

[
N∑
i=1

Xi

]
=

1

N

N∑
i=1

iθi, (28)

where we use the fact that
∑N
i=1Xi = j with probability of

θj .
When j users probe the channel, by recalling our assumption

that only probing users are allowed to transmit, we have∑N
i=1Ri = 1 − (1 − p)j . Thus, the average achievable rate

can be expressed as follows:

1

N
E

[
N∑
i=1

Ri

]
=

1

N

N∑
i=1

θi
(
1− (1− p)i

)
. (29)

We want to select a probability distribution {θi}Ni=0 such that
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the average achievable rate is maximized.

max
θ=(θi)Ni=1

1

N

N∑
i=1

θi
(
1− (1− p)i

)
(30)

Subject to
N∑
i=1

θi ≤ 1 (31)

N∑
i=1

iθi ≤ Nm (32)

θi ≥ 0,∀i = 1, ..., N, (33)

where (31) is true since
∑N
i=0 θi = 1 and θ0 ≥ 0, and (32)

holds since the average probing rate is not greater than m.
By associating Lagrangian Multipliers µ1 ≥ 0 and µ2 ≥ 0
with constraints (31) and (32) respectively, we get the following
partial Lagrangian function L(θ, µ1, µ2):

L(θ, µ1, µ2)

=
1

N

N∑
i=1

θi
(
1− (1− p)i

)
− µ1

(
N∑
i=1

θi − 1

)
− µ2

(
N∑
i=1

iθi −Nm

)

=

N∑
i=1

(
1

N

(
1− (1− p)i

)
− µ1 − µ2i

)
θi + µ1 + µ2Nm.

Then, the dual function q(µ1, µ2) can be expressed as follows:

q(µ1, µ2) = sup
θ≥0

L(θ, µ1, µ2)

=

 µ1 + µ2Nm , if 1
N

(
1− (1− p)i

)
≤ µ1 + µ2i

∀i = 1, ..., N ;
+∞ , otherwise.

Since the original optimization problem is just a linear pro-
gramming, there is no duality gap and thus it is equivalent to
solve the following dual problem:

min
µ1≥0,µ2≥0

µ1 + µ2Nm (34)

Subject to µ1 + µ2i ≥
1

N

(
1− (1− p)i

)
,∀i = 1, ..., N.

Since the objective function and constraint function are
linear functions representing lines in R2, we call the objective
function and constraint function as the objective line and
constraint line respectively. Note that the normal vector of
the objective line is [1, Nm]T and the normal vector of the
constraint line i is [1, i]T , where the notation a = [a1, a2]
represents a vector with the first and second components being
a1 and a2, respectively, and aT denotes the transpose of the
vector a. If 0 ≤ Nm ≤ 1, by the optimality condition, the
optimal objective line should pass the point (0, pN ), and thus the
maximum achievable rate is 0+ p

NNm = mp, see figure 8a for
the case when N = 3; if i ≤ Nm ≤ i+1 (i = 1, ..., N−1), the
optimal objective line should pass the intersection point of two
constraint lines µ1 + µ2i = 1

N

(
1− (1− p)i

)
and µ1 + µ2(i+

1) = 1
N

(
1− (1− p)i+1

)
, which is

(
1−(1+ip)(1−p)i

N , p(1−p)
i

N

)
,

and hence the maximum achievable rate i 1−(1+ip)(1−p)
i

N +

p(1−p)i
N Nm = 1

N +
(
m− i

N

)
p(1−p)i− 1

N (1−p)i, see figures
8b and 8c for the case when N = 3.
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(a) 0 ≤ Nm ≤ 1: the optimal objective line should pass point P1
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(b) 1 ≤ Nm ≤ 2: the optimal objective line should pass point P2
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(c) 2 ≤ Nm ≤ 3: the optimal objective line should pass point P3

Fig. 8: The optimal solution when N = 3

APPENDIX B
PROOF FOR LEMMA 1

Proof: (1) (Necessity) Suppose all data queues are strongly
stable and each user satisfies its allowable probing rate con-
straint under some policy Φ which determines the probing
schedule X[t] and the transmission schedule S[t] in every slot
t. For some positive integer number M , we define µi(M) ,
1
M

∑M
τ=1Xi(τ)Ci(τ)Si(τ) and pi(M) , 1

MXi(τ) as the
empirical average service rate and probing rate for user i,
respectively.

Let Tx
M be the set of slots in [1,M ] in which the probing

schedule is x, and Tx
M (c) be the set of slots in Tx

M in which
the channel state vector is c. First, we consider the empirical
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average service rate µi(M).

µi(M) =
1

M

M∑
τ=1

Xi(τ)Ci(τ)Si(τ)

=
1

M

∑
x∈X

∑
c

∑
τ∈Tx

M (c)

xiciSi(τ)

=
∑
x∈X

|Tx
M |
M

∑
c

|Tx
M (c)|
|Tx

M |
· 1

|Tx
M (c)|

∑
τ∈Tx

M (c)

xiciSi(τ)

=
∑
x∈X

αM (x)
∑
c

σM (c)yM (x, c), (35)

where αM (x) , |Tx
M |
M , σM (c) , |Tx

M (c)|
|Tx

M |
and yM (x, c) ,

1
|Tx

M (c)|
∑
τ∈Tx

M (c) xiciSi(τ).

Observe that yM (x, c) is a convex combination of
the set {0, xici}. By Caratheodory’s theorem, there ex-
ists a non-negative real sequence {βM (x, c; s)}s∈S with∑

s∈S βM (x, c; s) = 1, such that yM (x, c) can be rewritten
as

yM (x, c) =
∑
s∈S

βM (x, c; s)xicisi. (36)

Hence, we have

µi(M) =
∑
x∈X

αM (x)
∑
c

σM (c)
∑
s∈S

βM (x, c; s)xicisi. (37)

Next, we consider the empirical average probing rate pi(M).

pi(M) =
1

M

M∑
τ=1

Xi(τ)

=
1

M

∑
x∈X

∑
τ∈Tx

M

xi

=
∑
x∈X

|Tx
M |
M

xi

=
∑
x∈X

αM (x)xi. (38)

For each positive integer number M , the number of αM (x)
and βM (x, c; s) is bounded. By compactness, we can find
a subsequence of integers {Mk} such that Mk → ∞, and
such that there exist limiting probabilities α(x) and β(x, c; s)
satisfying:

αMk
(x)→ α(x),∀x ∈ X ,

βMk
(x, c; s)→ β(x, c, s),∀x ∈ X , c.

In addition, channel states are i.i.d. over time, we have

σMk
(c)→ Pr{C[t] = c}. (39)

Hence, the sequences {µi(Mk)} and {pi(Mk)} converge to∑
x∈X

α(x)
∑
c

Pr{C[t] = c}
∑
s∈S

xicisi

and
∑

x∈X α(x)xi, respectively.

Since the policy Φ makes all data queues strongly stable, by
Lemma 1 in [15], the arrival rate to each queue should be no
greater than its service rate, i.e.,

λi ≤
∑
x∈X

α(x)
∑
c

Pr{C[t] = c}
∑
s∈S

xicisi. (40)

Also, each user satisfies the allowable probing rate constraint
under policy Φ, which implies that∑

x∈X
α(x)xi ≤ mi. (41)

(2) (Sufficiency) We will show that any arrival rate vector
λ strictly inside Λ(m,C) can be supported by a simple ran-
domized probing and transmission policy that selects probing
schedule X with probability α(X) and chooses transmission
schedule S with probability β(X,C;S) at each slot. First, we
should note that the average probing rate of each user under
this policy is not greater than its allowable probing rate, since∑

x α(x)xi ≤ mi,∀i. Next, we will show that all data queues
are strongly stable under this policy.

Consider the Lyapunov function V [t] , V (Q[t]) =
1
2

∑N
i=1Q

2
i [t]. Then, we have

∆V , E[V [t+ 1]− V [t]|Q[t] = Q]

≤1

2

N∑
i=1

E[(Qi[t] +Ai[t]−Xi[t]Si[t]Ci[t])
2 −Q2

i [t]|Q[t]]

=

N∑
i=1

E [Qi[t](Ai[t]−Xi[t]Si[t]Ci[t])|Q[t]] +B1, (42)

where

B1 ,
1

2

N∑
i=1

E[(Ai[t]−Xi[t]Si[t]Ci[t])
2|Q[t]]

≤1

2

N∑
i=1

E[A2
i [t] + C2

i [t]]

≤1

2
N(Amax + c2M ) , B1,max.

Thus, we have

∆V ≤ B1,max

+

N∑
i=1

Qi

(
λi −

∑
x

α(x)
∑
c

P (C[t] = c)
∑
s∈S

β(x, c; s)xicisi

)
.

Since λ is strictly within Λ(m,C), there exists a ε > 0 such
that

λi ≤
∑
x

α(x)
∑
c

P (C[t] = c)
∑
s∈S

β(x, c; s)xicisi − ε,∀i.

Then, by using the above inequality, ∆V becomes

∆V ≤ −ε
N∑
i=1

Qi +B1,max. (43)

By using Theorem 4.1 in [13], all data queues are strongly



12

stable.

APPENDIX C
PROOF FOR LEMMA 2

(1) (Necessity) For any λ ∈ Λ(m,C), there exist non-
negative numbers α(x) and β(x, c; s) satisfying (3), (4), (5)
and (6). Thus, for any set of users A ⊆ N, we have∑

i∈A

λi ≤
∑
x

α(x)
∑
c

P (C[t] = c)
∑
s∈S

β(x, c; s)
∑
i∈A

xicisi. (44)

For any given x and c, since at most one user can be scheduled
at each slot, we have∑

s∈S

β(x, c; s)
∑
i∈A

xicisi

{
= 0, xici = 0, ∀i ∈ A;
≤ 1, otherwise. (45)

By substituting (45) into (44), we get (7).
(2) (Sufficiency) Since λ ∈ Γ(m,C), there exists non-

negative numbers α(x) satisfying (7), (8) and (9). Consider
the following policy: in each slot t, during the probing stage, it
selects the probing schedule XR[t] with probability α(XR[t]);
during the transmission stage, it selects user i∗ satisfying
i∗ ∈ arg maxiQi[t]X

R
i [t]Ci[t]. We first note that each user

satisfies the average probing constraint under this policy. Next,
we will show that this policy can makes all data queues strongly
stable for any arrival rate vector λ strictly inside Γ(m,C).

The following proof is similar to that in [23]. By choosing
the same Lyapunov function and following the same argument
as in Lemma 1, we have

∆V ≤
N∑
i=1

λiQi − E

[
N∑
i=1

Qi[t]X
R
i [t]S∗i [t]Ci[t]|Q[t]

]
+B1,max.

Next, let’s focus on the term E
[∑N

i=1Qi[t]X
R
i [t]S∗i [t]Ci[t]|Q[t]

]
.

Consider a permutation ei, i = 1, ..., N of the integers 1 to
N which is such that Qei ≥ Qei−1

, for i = 2, ..., N , and if
Qei = Qei−1

then ei > ei−1. For any given x and c, we define
the following sets:

R0 , {xici = 0,∀i = 1, 2, ..., N}; (46)

Ri ,{xeicei = 1, xejcej = 0 for N ≥ j > i}
for i = 1, 2, ..., N − 1; (47)

RN , {xeN ceN = 1}; (48)

Ti , {xejcej = 0, for N ≥ j ≥ i},∀i = 1, 2, ..., N. (49)

Thus, we have

E

[
N∑
i=1

Qi[t]X
R
i [t]S∗i [t]Ci[t]|Q[t] = Q

]

=
∑
x

α(x)
∑
c

Pr{C[t] = c}
N∑
i=1

xiciQiS
∗
i [t]

=
∑
x

α(x)
∑
c

Pr{C[t] = c}
N∑
j=1

N∑
i=1

xiciQiS
∗
i [t]1Rj . (50)

Since
N∑
i=1

xiciQiS
∗
i [t]1Rj

= Qej , (51)

we have

E

[
N∑
i=1

Qi[t]X
R
i [t]S∗i [t]Ci[t]|Q[t]

]

=
∑
x

α(x)
∑
c

Pr{C[t] = c}
N∑
i=1

Qei1Ri
. (52)

Observe that
N∑
i=1

Qei1Ri
= Qe1(1− 1T1) +

N∑
j=2

(Qej −Qej−1
)(1− 1Tj ),

where we use facts that 1Ti+1
= 1Ti +1Ri

,∀i = 1, 2, ..., N−1,
and 1 = 1TN + 1RN

. Thus, we have

E

[
N∑
i=1

Qi[t]X
R
i [t]S∗i [t]Ci[t]|Q[t]

]

=Qe1

(
1−

∑
x

α(x)
∑
c

Pr{C[t] = c}1T1

)

+

N∑
j=2

(Qej −Qej−1
)

(
1−

∑
x

α(x)
∑
c

Pr{C[t] = c}1Tj

)
.

Since
N∑
i=1

λiQi =

N∑
i=1

λeiQei = Qe1

N∑
i=1

λei +

N∑
j=2

(Qej −Qej−1)

N∑
i=j

λei ,

∆V becomes

∆V ≤ B1,max +Qe1

(
N∑
i=1

λei − 1 +
∑
x

α(x)
∑
c

Pr{C[t] = c}1T1

)

+

N∑
j=2

(Qej −Qej−1 )

(
N∑
i=j

λei − 1 +
∑
x

α(x)
∑
c

Pr{C[t] = c}1Tj

)

We define

ζ , min
A⊆N

{
1−

∑
x

α(x)
∑
c

Pr{C[t] = c}1{xici=0,∀i∈A} −
∑
i∈A

λi

}
.

Since the arrival rate vector λ is strictly inside the region
Γ(m,C), we have ζ > 0. Thus, we have

∆V ≤ B1,max −Qe1ζ − ζ
N∑
j=2

(Qej −Qej−1)

= B1,max − ζQeN

≤ B1,max −
ζ

N

N∑
i=1

Qi.

By using Theorem 4.1 in [13], all data queues are strongly
stable.
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APPENDIX D
PROOF FOR PROPOSITION 2

Proof: Consider the Lyapunov function

L[t] , L(Q[t],U[t]) =
1

2

N∑
i=1

(Q2
i [t] + U2

i [t]). (53)

Then, we have

∆L , E[L[t+ 1]− L[t]|Q[t] = Q,U[t] = U]

≤1

2

N∑
i=1

E[(Qi[t] +Ai[t]−X∗i [t]S∗i [t]Ci[t])
2 −Q2

i [t]|Q[t],U[t]]

+
1

2

N∑
i=1

E[(Ui[t] +X∗i [t]− Ii[t])2 − U2
i [t]|Q[t],U[t]]

=

N∑
i=1

E [Qi[t](Ai[t]−X∗i [t]S∗i [t]Ci[t])|Q[t],U[t]]

+

N∑
i=1

E [Ui[t](X
∗
i [t]− Ii[t])|Q[t],U[t]] +B2, (54)

where

B2 ,
1

2

N∑
i=1

E[(Ai[t]−X∗i [t]S∗i [t]Ci[t])
2|Q[t],U[t]]

+
1

2

N∑
i=1

E[(X∗i [t]− Ii[t])2|Q[t],U[t]]

≤1

2

N∑
i=1

E[A2
i [t] + C2

i [t] + I2i [t] + 1]

≤1

2
N(Amax + Imax + c2M + 1) , B2,max.

Hence, we have

∆L ≤
N∑
i=1

λiQi −
N∑
i=1

miUi +B2,max

−
N∑
i=1

E [Qi[t]X
∗
i [t]S∗i [t]Ci[t]− Ui[t]X∗i [t]|Q[t],U[t]]

=

N∑
i=1

λiQi −
N∑
i=1

miUi +B2,max

− E

[
max
i
Qi[t]X

∗
i [t]Ci[t]−

N∑
i=1

Ui[t]X
∗
i [t]|Q[t],U[t]

]
.

Since λ ∈ Int(Λ(m,C)), there exists a ε > 0 such that

λi ≤
∑
x

α(x)
∑
c

P (C[t] = c)
∑
s∈S

β(x, c; s)xicisi − ε,∀i.

Then, by using the above inequality, ∆L becomes

∆L ≤ −ε
N∑
i=1

Qi +

N∑
i=1

Ui

(∑
x

α(x)xi −mi

)
+B2,max

+
∑
x

α(x)

(∑
c

P (C[t] = c)
∑
s∈S

β(x, c; s)

N∑
i=1

xicisiQi −
N∑
i=1

Uixi

)

− E

[
max

i
Qi[t]X

∗
i [t]Ci[t]−

N∑
i=1

Ui[t]X
∗
i [t]|Q[t],U[t]

]
. (55)

By using (6), we have

∆L ≤ −ε
N∑
i=1

Qi +B2,max

+
∑
x

α(x)

(∑
c

P (C[t] = c) max
i
xiciQi −

N∑
i=1

Uixi

)

− E

[
max
i
Qi[t]X

∗
i [t]Ci[t]−

N∑
i=1

Ui[t]X
∗
i [t]|Q[t],U[t]

]

= −ε
N∑
i=1

Qi +B2,max

+
∑
x

α(x)E

[
max
i
xiCi[t]Qi[t]−

N∑
i=1

Ui[t]xi|Q[t],U[t]

]

−
∑
x

α(x)E

[
max
i
Qi[t]X

∗
i [t]Ci[t]−

N∑
i=1

Ui[t]X
∗
i [t]|Q[t],U[t]

]

≤ −ε
N∑
i=1

Qi +B2,max. (56)

By using Theorem 4.1 in [13], all data queues are strongly
stable and all virtual queues are mean rate stable.

APPENDIX E
SOME PROPERTIES FOR FUNCTION f(E, e)

Lemma 7:

max
1≤i≤n

{min{xi, y}} = min{ max
1≤i≤n

xi, y}. (57)

Proof: (i) If n = 1, LHS = min{x1, y} = RHS.
(ii) Assume (57) is true for all n ≤ k. Then for n = k+ 1, we
have

max
1≤i≤k+1

{min{xi, y}}

= max{ max
1≤i≤k

{min{xi, y}},min{xk+1, y}}

= max{min{ max
1≤i≤k

xi, y},min{xk+1, y}}(by assumption(n = k))

= min{ max
1≤i≤k+1

xi, y}(by assumption(n = 2)). (58)

Remarks: We can use similar argument to show that
min1≤i≤n{max{xi, y}} = max{min1≤i≤n xi, y}.

Consider a set E of users and e /∈ E over a symmetric ON-
OFF fading channel with Pr{Ci = 1} = p,∀i. We assume
that there are K users in E whose queue lengths are less than
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or equal to Qe. Without loss of generality, we assume that
Q1 ≤ Q2 ≤ ... ≤ QK ≤ Qe ≤ QK+1 ≤ ... ≤ Q|E|. We denote
E1 , {1, 2, ...,K} and E2 , {K + 1,K + 2, ..., |E|}. Let H
be the event that at least one users in E2 have the available
channel. Let Ii be the event that Ci = 1, Cj = 0 for K ≥ j > i,
i = 1, 2, ...,K − 1, and IK be the event that CK = 1.

Lemma 8:

max
l∈E

min{QlCl, Qe} =

 Qe , if H happens;
Qi , if Hc

⋂
Ii happens,

for i = 1, 2, ...,K.
(59)

Proof:

max
l∈E

min{QlCl, Qe}

= max

(
max
l∈E1

min{QlCl, Qe},max
l∈E2

min{QlCl, Qe}
)

= max
l∈E1

min{QlCl, Qe}+ max
l∈E2

min{QlCl, Qe}

−min

(
max
l∈E1

min{QlCl, Qe},max
l∈E2

min{QlCl, Qe}
)

(60)

Note that

max
l∈E2

min{QlCl, Qe} =

{
Qe , if event H happens;

0 , otherwise. (61)

Thus,

min

(
max
l∈E1

min{QlCl, Qe},max
l∈E2

min{QlCl, Qe}
)

=

{
min (maxl∈E1 min{QlCl, Qe}, Qe) , if event H happens;

0 , otherwise

=

{
maxl∈E1 min{QlCl, Qe} , if event H happens;

0 , otherwise. (62)

where we use Lemma 7. In addition, if event Ii (i =
1, 2, ...,K) happens, we have

max
l∈E1

min{QlCl, Qe} = Qi (63)

By substituting (61), (62) and (63) into (60), we have (59).

Corollary 4:

f(E, e) =

K∑
k=1

p2(1− p)|E|−kQk + p(1− (1− p)|E|−K)Qe (64)

Proof: Pr{H} = 1 − (1 − p)|E|−K and Pr{Hc
⋂
Ii} =

p(1− p)|E|−i for i = 1, 2, ...,K. Thus,

f(E, e) ,E[max
l∈E

min{QlCl, QeCe}]

=pE[max
l∈E

min{QlCl, Qe}]

=

K∑
k=1

p2(1− p)|E|−kQk + p(1− (1− p)|E|−K)Qe,

where we use Lemma 8.

APPENDIX F
PROOF FOR BASIC ITERATIVE EQUATION

According to the maximum-minimums identity, we have

max
i∈F

⋃
{r}

QiCi = max{max
i∈F

QiCi, QrCr}

= max
i∈F

QiCi +QrCr −min{max
i∈F

QiCi, QrCr}

= max
i∈F

QiCi +QrCr −max
i∈F

min{QiCi, QrCr}, (65)

where we use Lemma 7. By taking expectation and subtracting
the term

∑
i∈F

⋃
{r} Ui on both sides of (65), we get (17).

APPENDIX G
PROOF FOR f(D∗, d) ≤ f(B, d) IN LEMMA 3

Proof: (1) If A∗
⋂
D∗ = ∅ or Qd ≤ mini∈BQi, then, by

Corollary 4, we have

f(B, d) = p
(

1− (1− p)|B|
)
Qd. (66)

Without loss of generality, we assume there are K1 users in
D∗ whose queue lengths are less than or equal to Qd, that is,
Qj1 ≤ Qj2 ≤ ... ≤ QjK1

≤ Qd ≤ QjK1+1
≤ Qj|D∗| . Then, by

Corollary 4, we have

f(D∗, d) =

K1∑
k=1

p2(1− p)|D
∗|−kQjk + p

(
1− (1− p)|D

∗|−K1

)
Qd.

Hence, by noting that |D∗| = |B|, we have

f(D∗, d)− f(B, d)

=

K1∑
k=1

p2(1− p)|D
∗|−kQjk + p

(
(1− p)|D

∗| − (1− p)|D
∗|−K1

)
Qd.

Since

−
K1∑
k=1

p2(1− p)|D
∗|−k = p

(
(1− p)|D

∗| − (1− p)|D
∗|−K1

)
,

we have

f(D∗, d)− f(B, d)

=

K1∑
k=1

p2(1− p)|D
∗|−k (Qjk −Qd) ≤ 0. (67)

Thus, we have f(D∗, d) ≤ f(B, d).
(2) If A∗

⋂
D∗ 6= ∅ and there are some users in A∗

⋂
D∗

whose queue lengths are less than Qd, let T , A∗
⋂
D∗, B′ ,

B\T and D′ , D∗\T. Figure 9 characterizes the relationship
among all these sets.

We define

g(E,F, e) ,

− E
[
min

(
max
l∈E

min{QlCl, QeCe},max
l∈F

min{QlCl, QeCe}
)]

,
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T

D’

B’

T

d

B

D*

A*

Fig. 9: The relations among all sets

where E
⋂
F = ∅ and e /∈ E, e /∈ F. Then, we have

f(B, d) = E
[
max
l∈B

min{QlCl, QdCd}
]

=E
[
max

(
max
l∈B′

min{QlCl, QdCd},max
l∈T

min{QlCl, QdCd}
)]

=E
[
max
l∈B′

min{QlCl, QdCd}
]

+ E
[
max
l∈T

min{QlCl, QdCd}
]

−E
[
min

(
max
l∈B′

min{QlCl, QdCd},max
l∈T

min{QlCl, QdCd}
)]

=f(B′, d) + f(T, d) + g(B′,T, d), (68)

where we use the maximum-minimums identity. Similarly, we
have

f(D∗, d) = f(D′, d) + f(T, d) + g(D′,T, d). (69)

Thus, to show f(D∗, d) ≤ f(B, d), we only need to show

f(D′, d) + g(D′,T, d) ≤ f(B′, d) + g(B′,T, d). (70)

Note that Qd ≤ mini∈B′ Qi. Without loss of generality, we
assume that K2 users in D′ whose queue lengths are less than
or equal to Qd, that is Qj1 ≤ Qj2 ≤ ... ≤ QjK2

≤ Qd ≤
QjK2+1

≤ ... ≤ Qj|D′| . We denote D′1 , {j1, j2, ..., jK2
} and

D′2 , {jK2+1, jK2+2, ..., j|D′|}. By using similar technique in
deriving equation (67), we have

f(D′, d)− f(B′, d) =

K2∑
k=1

p2(1− p)|D
′|−k(Qjk −Qd). (71)

Next, let’s focus on the term g(B′,T, d).

g(B′,T, d)

=− E
[
min

(
max
l∈B′

min{QlCl, QdCd},max
l∈T

min{QlCl, QdCd}
)]

=− pE
[
min

(
max
l∈B′

min{QlCl, Qd},max
l∈T

min{QlCl, Qd}
)]

.

Let J be the event that at least one user in B′ has the available

channel. Then, we have

max
l∈B′

min{QlCl, Qd} =

{
Qd , if event J happens;

0 , otherwise. (72)

Thus, we get

min

(
max
l∈B′

min{QlCl, Qd},max
l∈T

min{QlCl, Qd}
)

=

{
min (Qd,maxl∈T min{QlCl, Qd}) , if event J happens;

0 , otherwise

=

{
maxl∈T min{QlCl, Qd} , if event J happens;

0 , otherwise. (73)

where we use Lemma 7. Since Pr{J } = (1− (1− p)|B′|), we
have

g(B′,T, d) =− p
(

1− (1− p)|B
′|
)
E[max

l∈T
min{QlCl, Qd}]

=
(

(1− p)|B
′| − 1

)
f(T, d). (74)

Let’s consider the term g(D′,T, d).

g(D′,T, d)

=− E
[
min

(
max
l∈D′

min{QlCl, QdCd},max
l∈T

min{QlCl, QdCd}
)]

=− pE
[
min

(
max
l∈D′

min{QlCl, Qd},max
l∈T

min{QlCl, Qd}
)]

.

Let K be the event that at least one user in D′2 has the available
channel. Let Lk be the event that Cjk = 1, Cji = 0 for k <
i ≤ K2, k = 1, 2, ...,K2 and LK2 be the event that CjK2

= 1.
Then, by using Lemma 8, we have

max
l∈D′

min{QlCl, Qd} =

 Qd , if event K happens;
Qjk , if event Kc

⋂
Lk happens,

for k = 1, 2., , , .,K2.

Thus, we get

min

(
max
l∈D′

min{QlCl, Qd},max
l∈T

min{QlCl, Qd}
)

=

 min (Qd,maxl∈T min{QlCl, Qd}) , if K happens;
min (Qjk ,maxl∈T min{QlCl, Qd}) , if Kc

⋂
Lk happens,

for k = 1, 2., , , .,K2

=

 maxl∈T min{QlCl, Qd} , if K happens;
maxl∈T min{QlCl, Qjk} , if Kc

⋂
Lk happens,

for k = 1, 2., , , .,K2,

where we use Lemma 7. Hence, we have

g(D′,T, d)

=− pE
[
max
l∈T

min{QlCl, Qd}
]

Pr{K}

−
K2∑
k=1

pE
[
max
l∈T

min{QlCl, Qjk}
]

Pr
{
Kc
⋂
Lk
}

=− Pr{K}f(T, d)−
K2∑
k=1

Pr
{
Kc
⋂
Lk
}
f(T, jk). (75)
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Note that Pr{K} = 1 − (1 − p)|D
′
|−K2 and Pr{Kc

⋂
Lk} =

p(1− p)|D′|−k. Thus, we have

g(D′,T, d)

=

K2∑
k=1

(−p)(1− p)|D
′|−kf(T, jk) +

(
(1− p)|D

′|−K2 − 1
)
f(T, d).

Note that |B′| = |D′|. Thus, we have

g(D′,T, d)− g(B′,T, d)

=

K2∑
k=1

(−p)(1− p)|D
′|−kf(T, jk)

+
(

(1− p)|D
′|−K2 − (1− p)|D

′|
)
f(T, d). (76)

Note that (1−p)|D′|−K2 − (1−p)|D′| = p
∑K2

k=1(1−p)|D′|−k.
Thus, (76) becomes

g(D′,T, d)− g(B′,T, d)

=

K2∑
k=1

(−p)(1− p)|D
′|−k (f(T, jk)− f(T, d)) . (77)

Consider the term f(T, jk) − f(T, d). Without loss of gener-
ality, we assume nk users in T whose queue lengths are less
than or equal to Qjk and nd users whose queue lengths are
less than or equal to Qd, that is, Qi1 ≤ Qi2 ≤ ... ≤ Qink

≤
Qjk ≤ Qink+1

≤ ... ≤ Qind
≤ Qd ≤ Qind+1

≤ Qi|T| . Note
that nk ≤ nd. Thus, by using Corollary 4, we have

f(T, jk)− f(T, d)

=

nk∑
l=1

p2(1− p)|T|−lQil + p
(

1− (1− p)|T|−nk

)
Qjk

−
nd∑
l=1

p2(1− p)|T|−lQil − p
(

1− (1− p)|T|−nd

)
Qd

=p
(

1− (1− p)|T|−nk

)
Qjk − p

(
1− (1− p)|T|−nd

)
Qd

−
nd∑

l=nk+1

p2(1− p)|T|−lQil

≥p
(

1− (1− p)|T|−nk

)
Qjk − p

(
1− (1− p)|T|−nd

)
Qd

−Qd
nd∑

l=nk+1

p2(1− p)|T|−l

=p
(

1− (1− p)|T|−nk

)
Qjk − p

(
1− (1− p)|T|−nd

)
Qd

− p
(

(1− p)|T|−nd − (1− p)|T|−nk

)
Qd

=p
(

1− (1− p)|T|−nk

)
(Qjk −Qd) . (78)

Thus, we have

g(D′,T, d)− g(B′,T, d)

=

K2∑
k=1

(−p)(1− p)|D
′|−k (f(T, jk)− f(T, d))

≤
K2∑
k=1

p2(1− p)|D
′|−k(Qjk −Qd)

(
(1− p)|T|−nk − 1

)
=

K2∑
k=1

(Qjk −Qd)p2
(

(1− p)|D
′|+|T|−nk−k − (1− p)|D

′|−k
)
.

Hence, we have

f(D∗, d)− f(B, d)

≤
K2∑
k=1

(Qjk −Qd)p2(1− p)|D
′|−k

+

K2∑
k=1

(Qjk −Qd)p2
(

(1− p)|D
′|+|T|−nk−k − (1− p)|D

′|−k
)

=

K2∑
k=1

(Qjk −Qd)p2(1− p)|D
′|+|T|−nk−k ≤ 0. (79)

Thus, we have the desired result.

APPENDIX H
PROOF FOR LEMMA 4

Proof: We only prove the first part in (25). The second
part follows the similar argument. It is enough to show

max
i
aiC

min
i [t] ≤st max

i
aiCi[t],∀t, (80)

holds for any constants ai ≥ 0,∀i, where W1 ≤st W2 means
that the random variable W1 is stochastically smaller than the
random variable W2 [19]. At any time slot t, according to the
definition of stochastically smaller, we need to show

Pr{max
i
aiCi[t] ≤ b} ≤ Pr{max

i
aiC

min
i [t] ≤ b},∀b, (81)

which is equivalent to showing

Pr{aiCi[t] ≤ b,∀i ∈ N} ≤ Pr{aiCmin
i [t] ≤ b,∀i ∈ N},∀b.

If b < 0, we have

Pr{aiCi[t] ≤ b,∀i ∈ N} = Pr{aiCmin
i [t] ≤ b,∀i ∈ N} = 0,

since ai ≥ 0 and Ci[t] ≥ 0,∀i. Thus, we assume b ≥ 0 in the
rest of the proof. Let G , {i ∈ N : ai > 0}, we have

Pr{aiCi[t] ≤ b,∀i ∈ N} = Pr{aiCi[t] ≤ b,∀i ∈ G}
Pr{aiCmin

i [t] ≤ b,∀i ∈ N} = Pr{aiCmin
i [t] ≤ b,∀i ∈ G}

Thus, we only need to show

Pr{aiCi[t] ≤ b,∀i ∈ G} ≤ Pr{aiCmin
i [t] ≤ b,∀i ∈ G},
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which is equivalent to proving

Pr

{
Ci[t] ≤

b

ai
,∀i ∈ G

}
≤ Pr

{
Cmin
i [t] ≤ b

ai
,∀i ∈ G

}
.

(82)

Next, we will show that (82) is true. Let H , {i ∈ G : b
ai
≥

c1}. We have

Pr{Ci[t] ≤
b

ai
,∀i ∈ G}

≤ Pr{Ci[t] ≤
b

ai
,∀i ∈ G \H}

= Pr{Ci[t] = 0,∀i ∈ G \H}. (83)

From the construction of independent ON-OFF fading channel
Cmin, we have

Pr{Ci[t] = 0} ≤ Pr{Cmin
i [t] = 0},∀i. (84)

Since condition (24) holds, we have

Pr{Ci[t] = 0,∀i ∈ G \H} ≤ Pr{Cmin
i [t] = 0,∀i ∈ G \H}.

Thus, we get

Pr

{
Ci[t] ≤

b

ai
,∀i ∈ G

}
≤ Pr{Cmin

i [t] = 0,∀i ∈ G \H}

= Pr

{
Cmin
i [t] ≤ b

ai
,∀i ∈ G \H

}
(since Cmin

i [t] = 0 or c1)

= Pr

{
Cmin
i [t] ≤ b

ai
,∀i ∈ G

}
.

APPENDIX I
PROOF FOR LEMMA 5

Consider a system over fading channel CII . We show that
the JPT algorithm where we use channel statistics and rates of
channel CI in the probing component can support any arrival
rate vector λ ∈ Λ(m,CI). By choosing the same Lyapunov
function and following the same steps as in the proof for
Proposition 2, we have

∆L ≤
N∑
i=1

λiQi −
N∑
i=1

miUi +B2,max

−E

[
max
i
Qi[t]X

∗
i [t]CIIi [t]−

N∑
i=1

Ui[t]X
∗
i [t]|Q[t],U[t]

]
.

Given any value of Q[t] and U[t] at slot t, Qi[t]X∗i [t],∀i,
are just non-negative constant numbers. Thus, by the condition
(26), we have

E[max
i
Qi[t]X

∗
i [t]CIi [t]|Q[t],U[t]]

≤E[max
i
Qi[t]X

∗
i [t]CIIi [t]|Q[t],U[t]]. (85)

Hence, we get

∆L ≤
N∑
i=1

λiQi −
N∑
i=1

miUi +B2,max

−E

[
max
i
Qi[t]X

∗
i [t]CIi [t]−

N∑
i=1

Ui[t]X
∗
i [t]|Q[t],U[t]

]
For any λ ∈ Λ(m,CI), by Proposition 2, the considered JPT
algorithm can support this arrival rate vector and thus we have
the desired result.

APPENDIX J
PROOF FOR LEMMA 6

Proof: By maximum-minimums identity, we have

h(p) =
1

p

(∑
l∈A

E[XlZl]−
∑

l1,l2∈A
l1<l2

E[min{Xl1Zl1 , Xl2Zl2}]

+ ...+ (−1)|A|−1E[min{X1Z1, ..., X|A|Z|A|}]
)

=
∑
l∈A

E[Xl]− p
∑

l1,l2∈A
l1<l2

E[min{Xl1 , Xl2}]

+ ...+ (−1)|A|−1p|A|−1E[min{X1, ..., X|A|}]. (86)

Note that minl∈LXl =
∏
l∈LXl,∀L ⊆ A. Thus, we have

h(p) =
∑
l∈A

E[Xl]− p
∑

l1,l2∈A
l1<l2

E[Xl1Xl2 ]

+ ...+ (−1)|A|−1p|A|−1E[
∏
l∈A

Xl]. (87)

Hence, we have

h′(p) =−
∑

l1,l2∈A
l1<l2

E[Xl1Xl2 ] + 2p
∑

l1,l2,l3∈A
l1<l2<l3

E[Xl1Xl2Xl3 ]

+ ...+ (−1)|A|−1(|A| − 1)p|A|−2E[
∏
l∈A

Xl]. (88)

Let γi (i = 0, 1, 2, ..., |A|) be the probability that i
users in set A probe the channel. Let’s consider the term∑
l1,l2,...,lk∈A
l1<l2<...<lk

E[
∏k
i=1Xli ] (k = 2, 3, ..., |A|). Let U be the

event that users l1, l2, ..., lk probe the channel and Vj (j =
0, 1, 2, ..., |A|) be the event that j users probe the channel. By
the law of total probability, we have

E[

k∏
i=1

Xli ] = Pr{U} =

|A|∑
j=k

γj Pr{U|Vj}. (89)
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Thus, we have∑
l1,l2,...,lk∈A
l1<l2<...<lk

E[

k∏
i=1

Xli ] =
∑

l1,l2,...,lk∈A
l1<l2<...<lk

|A|∑
j=k

γj Pr{U|Vj}

=

|A|∑
j=k

γj
∑

l1,l2,...,lk∈A
l1<l2<...<lk

Pr{U|Vj}. (90)

Note that if {l1, l2, ..., lk} is a subset of the set of selected j
users, then Pr{U|Vj} = 1; otherwise, Pr{U|Vj} = 0. Thus,
we have ∑

l1,l2,...,lk∈A
l1<l2<...<lk

E[

k∏
i=1

Xli ] =

|A|∑
j=k

γj

(
j

k

)
. (91)

By substituting (91) into (88), we have

h′(p) =−
((

2

2

)
γ2 +

(
3

2

)
γ3 +

(
4

2

)
γ4 + ...+

(
|A|
2

)
γ|A|

)
+ 2p

((
3

3

)
γ3 +

(
4

3

)
γ4 + ...+

(
|A|
3

)
γ|A|

)
+ ...

+ (−1)|A|−1(|A| − 1)p|A|−2
(
|A|
|A|

)
γ|A|

=−
|A|∑
k=2

γk

k∑
i=2

(−1)i
(
k

i

)
(i− 1)pi−2. (92)

Using mathematical induction, it is not hard to show
n∑
i=2

(−1)i
(
n

i

)
(i− 1)pi−2 =

1− np(1− p)n−1 − (1− p)n

p2
,

for any n ≥ 2. Noting that 1 − np(1 − p)n−1 − (1 − p)n =∑n
k=2

(
n
k

)
pk(1 − p)n−k ≥ 0 for any n ≥ 2, we have∑n

i=2(−1)i
(
n
i

)
(i − 1)pi−2 ≥ 0 for any n ≥ 2. Hence, we

have h′(p) ≤ 0, and thus h(p) is a decreasing function.

APPENDIX K
PROOF FOR PROPOSITION 4

Proof: Under Assumption 1, by Lemma 4 and Lemma 5,
we have

Λ(m,Cmin) ⊆ Λ(m,C) ⊆ Λ(m,Cmax).

By Lemma 2, we have

Λ(m,Cmax)

={λ : ∃ a probability distribution of probing schedule Xmax

such that
∑
i∈A

λi ≤ E[max
i∈A

Xmax
i Cmax

i [t]],∀A ⊆ N and

E[Xmax
i ] ≤ mi,∀i}, (93)

and

Λ(m,Cmin)

={λ : ∃ a probability distribution of probing schedule Xmin

such that
∑
i∈A

λi ≤ E[max
i∈A

Xmin
i Cmin

i [t]],∀A ⊆ N and

E[Xmin
i ] ≤ mi,∀i}. (94)

Let

ρ|A| ,
E[maxi∈AX

max
i Cmin

i [t]]

E[maxi∈AXmax
i Cmax

i [t]]

= ρ

1
pminc1

E[maxi∈AX
max
i Cmin

i [t]]
1

pmaxcM
E[maxi∈AXmax

i Cmax
i [t]]

. (95)

By Lemma 6, we have ρ|A| ≥ ρ. Hence, for any λ ∈
ρΛ(m,Cmax), we have λ ∈ Λ(m,Cmin). Indeed, for any λ ∈
ρΛ(m,Cmax), we have λ

ρ ∈ Λ(m,Cmax), that is,
∑
i∈A

λi

ρ ≤
E[maxi∈AX

max
i Cmax

i [t]],∀A ⊆ N, and E[Xmax
i ] ≤ mi,∀i.

Hence, for any A ⊆ N, we have∑
i∈A

λi ≤ ρE[max
i∈A

Xmax
i Cmax

i [t]]

≤ρ|A|E[max
l∈A

Xmax
i Cmax

i [t]] = E[max
i∈A

Xmax
i Cmin

i [t]].

By taking the probability distribution of Xmin the same as
Xmax, we have λ ∈ Λ(m,Cmin). Thus, for any λ ∈ ρΛ(m,C),
we have λ ∈ Λ(m,Cmin). Next, we will show that the MSGP
algorithm, combined with the MWS algorithm in the transmis-
sion stage, can support any arrival rate vector λ ∈ Λ(m,Cmin),
implying that it can at least achieve a fraction ρ = pmin

pmax

c1
cM

of
the capacity region.

By choosing the same Lyapunov function and following the
same argument as in the proof for Proposition 2, we have

∆L , E[L[t+ 1]− L[t]|Q[t] = Q,U[t] = U]

≤
N∑
i=1

λiQi −
N∑
i=1

miUi +B2,max

−E

[
max
i
Qi[t]X

M
i [t]Ci[t]−

N∑
i=1

Ui[t]X
M
i [t]|Q[t],U[t]

]
,

where XM [t] = (XM
i [t])Ni=1 is a probing schedule chosen by

MSGP algorithm. Given any value of Q[t] and U[t] at slot t,
Qi[t]X

M
i [t],∀i are just non-negative constant numbers. Thus,

by Lemma 4, we have

E
[
max
i
Qi[t]X

M
i [t]Ci[t]|Q[t],U[t]

]
≥E

[
max
i
Qi[t]X

M
i [t]Cmin

i [t]|Q[t],U[t]
]
.
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Thus, ∆L becomes

∆L ≤
N∑
i=1

λiQi −
N∑
i=1

miUi +Bmax

−E
[

max
i
Qi[t]X

M
i [t]Cmin

i [t]−
N∑
i=1

Ui[t]X
M
i [t]|Q[t],U[t]

]
.

Then, by using the fact that the MSGP algorithm can find the
optimal probing schedule in the symmetric and independent
ON-OFF fading channel Cmin and following the same argu-
ment as in Proposition 2, we have the desired result.

APPENDIX L
PROOF FOR PROPOSITION 5

To prove this proposition, we need the following claim:

Claim 1: All edge weights with strictly positive value are
lower bounded by a strictly positive constant value.

Proof: Recall that c0 = 0. Since pij ,∀i = 1, ..., N, j =
0, 1, ...,M , and cj , j = 1, ...,M , are rational numbers, let cj =
aj
bj

and pij =
qij
dij

, where aj and bj are co-prime for any j =
1, ...,M , and qij and dij are co-prime for any i = 1, ..., N, j =
0, 1, ...,M . First, we will show that if φi > 0, we have

φi , QiE[Ci]− Ui ≥
1∏M

j=1 bjdij
,∀i. (96)

Indeed, we have

QiE[Ci]− Ui

= Qi

M∑
j=1

aj
bj

qij
dij
− Ui

=
1∏M

j=1 bjdij

Qi M∑
j=1

ajqij
∏
l 6=j

bldil − Ui
M∏
j=1

bjdij


Note that Qi

∑M
j=1 ajqij

∏
l 6=j bldil − Ui

∏M
j=1 bjdij is an in-

teger. If φi > 0, then φi ≥ 1∏M
j=1 bjdij

. Next, we will show that
if the weight φi − f({i1, ..., ik−1}, i) > 0, then

φi − f({i1, ..., ik−1}, i)

≥ 1∏M
j=1 bj

∏M
j1=0 di1j1 ...

∏M
jk−1=0 dik−1jk−1

∏M
j=0 dij

. (97)

Indeed, we have

φi − f({i1, ..., ik−1}, i)

= QiE[Ci]− Ui − E
[

max
l∈{i1,...,ik−1}

min{QlCl, QiCi}
]

= Qi

M∑
j=1

aj
bj

qij
dij
− Ui −

M∑
j1=0

Pr

{
Ci1 =

aj1
bj1

}

...

M∑
jk−1=0

Pr

{
Cik−1

=
ajk−1

bjk−1

} M∑
j=0

Pr

{
Ci =

aj
bj

}
max

{
min

{
Qi1aj1
bj1

,
Qiaj
bj

}
, ...,min

{
Qik1

ajk−1

bjk−1

,
Qiaj
bj

}}
= Qi

M∑
j=1

aj
bj

qij
dij
− Ui

−
M∑
j1=0

qi1j1
di1j1

...

M∑
jk−1=0

qik−1jk−1

dik−1jk−1

M∑
j=0

qij
dij

max

{
min

{
Qi1aj1
bj1

,
Qiaj
bj

}
, ...,min

{
Qik1

ajk−1

bjk−1

,
Qiaj
bj

}}
(I)

≥ 1∏M
j=1 bj

∏M
j1=0 di1j1 ...

∏M
jk−1=0 dik−1jk−1

∏M
j1=0 dij

,

(98)

where (I) follows the same argument as in (96).
Thus, by combining (96) and (97), it is easy to see that

all edge weights with strictly positive value should be lower
bounded by

∏M
j=1

1
bj

∏N
i=1

∏M
j=0

1
dij

> 0.
[Proof of Proposition 5:]

Proof: Assume that the node with the optimal value is
in level K. Given any τ > 0 and δ > 0. Let WDMSGP

k

and WMSGP
k be the weight of an edge selected by DMSGP

algorithm and MSGP algorithm from level k − 1 to level k
respectively. Note that WDMSGP

k and WMSGP
k are strictly

positive. By claim 1, WDMSGP
k and WMSGP

k are lower
bounded by a strictly positive constant value. Thus, by using
similar argument in [8], we can show that given any τ ′ > 0,
∃Gk > 0 such that for any G > Gk, we have

Pr{WDMSGP
k > WMSGP

k (1− δ)} > 1− τ ′. (99)

Let WDMSGP =
∑K
k=1W

DMSGP
k and WMSGP =∑K

k=1W
MSGP
k . Thus, for any G ≥ max{G1, G2, ..., GK}, we

have

Pr{WDMSGP > WMSGP (1− δ)}
≥Pr{WDMSGP

k > WMSGP
k (1− δ),∀k = 1, ...,K}

>1−Kτ ′, (100)

where we use the fact [4] that given any two events E and
F such that Pr{E} > 1 − ε1 and Pr{F} > 1 − ε2, we have
Pr{E

⋂
F} > 1− ε1 − ε2. We can pick τ ′ small enough such

that 1−Kτ ′ > 1− τ . Hence, we have

Pr{WDMSGP > WMSGP (1− δ)} > 1− τ. (101)
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Then, we have

E[WDMSGP |Q[t],U[t]] ≥ (1− δ)(1− τ)E[WMSGP |Q[t],U[t]].

By choosing the same Lyapunov function as in the proof
for Proposition 2, the remaining argument follows the similar
reasoning as in the proof for Theorem 1 in [8].
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