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Abstract—We consider the load-balancing design for forward-
ing incoming flows to access points (APs) in high-density wireless
networks with both channel fading and flow-level dynamics,
where each incoming flow has a certain amount of service demand
and leaves the system once its service request is complete (re-
ferred as flow-level dynamic model). The efficient load-balancing
design is strongly needed for supporting high-quality wireless
connections in high-density areas. Despite the presence of a
variety of earlier works on the design and analysis of the load-
balancing schemes in wireless networks, there does not exist
a work on the load-balancing design in the realistic flow-level
dynamic model.

In this work, we propose a Join-the-Least-Workload (JLW)
Algorithm that always forwards the incoming flows to the AP
with the smallest workload in the presence of flow-level dynamics.
However, our considered flow-level dynamic model differs from
traditional queueing model for wireless networks in the following
two aspects: (1) the dynamics of the flows is short-term and
flows will leave the network once they received the desired
amount of service; (2) each individual flow faces an independent
channel fading. These differences pose significant challenges on
the system performance analysis. To tackle these challenges, we
perform Lyapunov-drift-based analysis of the stochastic network
taking into account sharp flow-level dynamics. Our analysis
reveals that our proposed JLW Algorithm not only achieves
maximum system throughput, but also minimizes the total system
workload in heavy-traffic regimes. Moreover, we observe from
both our theoretical and simulation results that the mean total
workload performance under the proposed JLW Algorithm does
not degrade as the number of APs increases, which is strongly
desirable in high-density wireless networks.

I. INTRODUCTION

With the rapid growth of smart phones, there is a strong

need for high-quality wireless local access network (WLAN)

connections in high-density areas, such as convention centers,

auditoriums, hotel meeting rooms, lecture halls, sports stadi-

ums, and concert halls. These high-speed wireless connections

are not only for business and entertainment purposes, but more

importantly provide emergency response communications in

crowded places in response to unexpected events such as

fire, shooting, and terrorist attack. To support such wireless

connections in high-density WLANs, multiple access points

(APs) are necessary to be deployed for providing satisfactory

services for wireless users. However, in conventional WLANs,

each user is automatically associated with the AP that has the

best channel quality, which causes significant load imbalance

among APs and results in poor network performance (e.g.

[12]). This raises a natural question in how to develop an

efficient joint load-balancing and scheduling algorithm that

first determines which AP an incoming user should associate

with, then each individual AP needs to decide which users it

serves. The goal of such an algorithm is to maximize system

throughput (or equivalently support network users as many as

possible) and to minimize average user’s delay.

While load-balancing for multiple APs with various fairness

criteria (e.g., [3], [8], [13], [1], [5], [20]) have been studied

extensively, relatively limited work on the realistic model

exists where a mobile user transmits data from a file (or a

flow), and either departs or becomes silent for a while, which

was observed in prior work (e.g., [2], [12]). In such practical

wireless networks, even the design of scheduling algorithms in

a single AP case is quite non-trivial, let alone load-balancing

design. Indeed, most existing scheduling designs including

the well-known MaxWeight-type algorithms (e.g., [21], [22])

implicitly assume that the system consists of a fixed number

of persistent users that continuously inject packets into the

network and will never leave the network, and thus perform

poorly in the presence of dynamic flows (e.g., [23], [24]).

The main reason is that the queue-length-based MaxWeight

algorithm myopically selects a feasible schedule with the

maximal residual size of dynamic flows and hence the flows

with small backlogs may stay in the network forever. Subse-

quent works (e.g. [15], [14], [18]) have developed throughput-

optimal scheduling algorithms that do not require any prior

knowledge of channels and user demands. Despite these

advances in efficient scheduling design for wireless networks

with flow-level dynamics, the load-balancing design among

multiple APs is far less explored.

On the contrary, the load-balancing schemes have been

explored extensively in data centers that distribute arriving

jobs across servers with the goal of minimizing queueing

delays. The celebrated Join-the-Shortest-Queue (JSQ) policy

(e.g., [26], [7]), where all arrivals are forwarded to the shortest

queue, has been shown to not only achieve maximum system

throughput but also minimize mean delay in the symmetric

case [22], or under the heavy-traffic regime (e.g., [7], [6]).

There are many variants of JSQ policy, such as Join-the-Least-

Loaded-Queue (JLQ) policy (e.g., [9]) instead forwarding

incoming jobs to the queue with the smallest amount of

remaining work (or workload), and low-communication over-

head load-balancing schemes (e.g., Power-of-Two-Choices

[25], [16], Batch Sampling [17], [27]). However, all these
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load-balancing schemes presume that queueing disciplines are

either First-Come-First-Serve (FCFS) (e.g., [7], [26], [25],

[16], [17], [27]) or Processor-Sharing (PS) (e.g., [4], [9]), and

their performance is unclear in wireless networks with both

channel fading and flow-level dynamics, where each individual

flow (or job) faces an independent wireless fading channel.

This motivates us to investigate efficient load-balancing design

in the presence of flow-level dynamics with wireless fading.

The following list highlights our contributions as well as the

outline of the remainder of the paper:

• In Section II, we formulate the problem of load-balancing

design among multiple APs in high-density wireless networks

in the presence of flow-level dynamics.

• In Section III, we present two existing policies and show

their performance deficiencies.

• In Section IV, we propose an efficient load-balancing

scheme for wireless networks with flow-level dynamics, and

show that it not only achieves maximum system throughput but

also minimizes the mean system workload in heavily loaded

conditions.

• We support our analytical results with extensive simula-

tions in Section V, which not only confirm our theoretical

findings but also exhibit the excellent performance of our

proposed algorithm in general cases.

A note on Notation: We use bold and script font of a variable

to denote a vector and a set, respectively. We use 〈x,y〉 to

denote the inner product of two vectors x and y. Let ‖x‖1 and

‖x‖ denote the l1 and l2 norm of the vector x, respectively.

We also use x � y to denote that each component of vector

x is not less than that of vector y.

II. SYSTEM MODEL

We consider a wireless network with M access points (APs).

We assume that the system operates in a slotted time manner.

Here, we assume that these M APs operate in orthogonal

channels and can serve users (referred as flows in the rest

of the paper) at the same time. However, within each AP, due

to the wireless interference, at most one flow can be served in

each time slot.

Let AΣ[t] denote the number of flows arriving at the system

in time slot t that is independently and identically distributed

(i.i.d.) over time with mean λΣ > 0, and AΣ[t] ≤ Amax for

some positive number Amax, ∀t ≥ 0. We use Fj [t] to denote

the number of packets of newly arriving flow j that follows any

probability distribution with mean η > 0, and Fj [t] ≤ Fmax

for some 0 < Fmax < ∞, ∀t ≥ 0. We use Nm[t] to denote the

number of flows in AP m in time slot t. We also use AΣ[t]
and Nm[t] to denote the set of newly arriving flows at the

system and the set of existing flows in AP m in time slot t,
respectively. Let Rm,j[t] be the number of residual packets of

flow j in AP m in time slot t.
We assume that each AP has K + 1 possible channel rates

c0, c1, c2, . . . , cK with 0 = c0 < c1 < c2 < . . . < cK = cmax,

where ck is a positive integer number denoting that at most ck
packets can be delivered in one time slot, ∀k = 1, 2, . . . ,K .

We use Cm,j[t] to capture wireless channel fading of each

flow j in the mth AP, which measures the maximum number

of packets that can be transmitted in time slot t if flow j is

scheduled in time slot t. We assume that (Cm,j [t])j∈Nm [t] are

independently distributed across APs and i.i.d. over both time

and flows within each AP with probability distribution

Pr {Cm,j [t] = ck} = pm,k, ∀k = 0, 1, 2, . . . ,K. (1)

Here, we reasonably assume that both probability that the

channel for each flow is unavailable and achieves the max-

imum channel rate are strictly positive, i.e., pm,0 > 0 and

pm,K > 0, ∀m = 1, 2, . . . ,M .

In order to characterize the underlying dynamics of

flows, we introduce following notations. Let Wm[t] ,∑
j∈Nm[t] ⌈Rj [t]/cmax⌉ be the total workload in AP m in

time slot t that measures the minimum number of slots

required for completing all existing service requests in AP

m. We use νΣ[t] ,
∑

j∈AΣ[t]⌈Fj [t]/cmax⌉ and νm[t] ,∑
j∈Am[t] ⌈Fj [t]/cmax⌉ to denote the total amount of new

workload arriving at the system and the amount of new

workload injected to AP m under some load-balancing policy

in time slot t, respectively, where Am[t] denotes the set of

arriving flows at AP m in time slot t. We also use Am[t] to

represent the number of newly arriving flows at AP m in time

slot t. Let ρ , E[νΣ[t]] = λΣw be the traffic intensity, where

w , E [⌈Fj [t]/cmax⌉] denotes the expected minimum number

of slots required for serving a newly arriving flow.

We define µm[t] to be the amount of workload decreasing

at AP m in time slot t. Since the maximum channel rate is

cmax, µm[t] is equal to either 0 or 1. In addition, if at least

one of flows in AP m has the maximum channel rate cmax in

time slot t, then µm[t] = 1. Therefore, µm[t] ≥ 1Fm
, where

Fm denotes the event that at least one of flows in AP m has

the maximum channel rate cmax. Based on the above setup,

the evolution of the workload Wm[t] at each AP m can be

described as follows:

Wm[t+ 1] = Wm[t] + νm[t]− µm[t], ∀m = 1, . . . ,M. (2)

We call AP m stable if its average workload is finite, i.e.,

lim sup
T→∞

1

T

T−1∑

t=0

E [Wm[t]] < ∞.

We say that the system is stable if all its APs are stable.

The capacity region Λ is defined as a maximum set of traffic

intensity ρ for which the system is stable under some policy.

It is shown in Appendix A that Λ = {ρ : ρ ≤ M}, where we

recall that M is the number of APs. Note that ρ denotes the

average amount of incoming workload, which is the expected

minimum number of slots required for serving incoming flows.

On the other hand, M is the maximum amount of workload

that can decrease in each time slot. In order to make the system

stable, ρ should not be greater than M .

The throughput-optimal algorithm stabilizes the system for

any traffic intensity lying strictly inside the capacity region Λ.

In this paper, we focus on the performance of load-balancing

schemes that determine which AP should serve the newly



incoming flows. We are interested in a load-balancing scheme

for high-density wireless networks that not only support flows

as many as possible, but also complete service requests of

existing flows as fast as possible. The first goal is equiv-

alent to maximizing system throughput, while the second

goal can be achieved by minimizing the total mean system

workload that measures the expected minimum number of

time slots to finish all existing service requests. In the rest

of the paper, we consider the following scheduling policy (see

[23]) within each AP: in each time slot, each AP m always

serves a flow j∗m with the maximum channel rate among all

its existing flows, breaking ties uniformly at random, i.e.,

j∗m ∈ argmaxj∈Nm[t]Cm,j [t]. As we show later, our proposed

load-balancing algorithm together with this specific scheduling

policy achieves both our desired goals.

Next, we discuss the performance deficiencies of existing

policies that motivate us for further investigations.

III. PERFORMANCE DEFICIENCIES OF EXISTING POLICIES

In this section, we present two existing policies and show

their performance deficiencies.

A. Throughput Deficiency of Best-Channel-First Policy

In this subsection, we consider the policy in conventional

WLANs, where each incoming flow joins the AP with the best

channel quality (e.g. [12]), which is given as follows:

Best-Channel-First (BCF) Algorithm: In each time slot t,
forward each incoming flow to the AP with the largest channel

rate, breaking ties uniformly at random.

Intuitively, more flows go to the AP with the better channel

quality under the BCF Algorithm, and thus the AP with the

better channel quality will be congested. This leads to the

insufficient usage of APs with the relatively worst channel

quality and results in the system throughput performance loss,

let alone its mean workload performance. To see the through-

put inefficiency of the BCF Algorithm, we consider the system

with two APs, where flows at both APs face independent ON-

OFF channel fading with different distributions. In particular,

let pm , Pr{Cm,j [t] = 1} denote the probability that flow j
has an available channel at AP m, where m = 1, 2. Without

loss of generality, we assume that p1 > p2. For each incoming

flow j, the probability that it will join the first AP under the

BCF Algorithm is equal to

Pr{C1,j = 1, C2,j = 0}+ 1

2
Pr{C1,j = 1, C2,j = 1}

+
1

2
Pr{C1,j = 0, C2,j = 0} =

1

2
(1 + p1 − p2). (3)

Therefore, the traffic intensity to the first AP is equal to

ρ(1 + p1 − p2)/2. In order to maintain the stability of the

first AP, ρ(1 + p1 − p2)/2 ≤ 1 should be satisfied, since the

workload can decrease at most by one in each AP in each

time slot. Thus, the BCF Algorithm can at most support the

throughput region: {ρ : ρ ≤ 2/(1 + p1 − p2)}. However, the

capacity region in this case is Λ = {ρ : ρ ≤ 2}. Therefore,

the BCF Algorithm suffers from throughput performance loss

by (p1 − p2)/(1 + p1 − p2). For example, the throughput

performance loss is 33.33% when p1 = 0.9 and p2 = 0.4.

Fig. 1 illustrates the throughput performance loss percentage

with respect to the channel quality difference between two APs

(i.e., p1−p2) under the BCF Algorithm. We can observe from

Fig. 1 that the throughput performance loss can be as high as

50% in an extreme case when the first AP always has perfect

channel quality and the second AP has extremely poor channel

quality, i.e., p1 = 1 and p2 = 0. Moreover, as the channel

quality difference between two APs becomes large, the BCF

Algorithm suffers from greater throughput performance loss.

The reason is that if the channel quality between two APs

is quite different, then the incoming flows prefer to join the

AP with the better channel quality. On one hand, this results

in a large number of flows accumulating at the first AP and

leads to traffic congestion. On the other hand, the second AP

does not have a sufficient number of flows to serve and is

underutilized. In fact, a simple randomized policy that simply

forwards each incoming flow to each AP uniformly at random

can achieve full capacity region but it suffers from poor mean

workload performance, as shown in the next subsection.
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Fig. 1: Throughput loss under the BCF Algorithm

B. Mean Workload Deficiency of Randomized Load-Balancing

In this subsection, we consider both throughput and

mean workload performance of a randomized load-balancing

scheme, which works as follows:

Randomized Load-Balancing (RLB) Algorithm: In each

time slot t, forward each incoming flow to each AP uniformly

at random.

The following proposition shows that the RLB Algorithm

can indeed achieve the maximum system throughput.

Proposition 1: The RLB Algorithm is throughput-optimal,

i.e., it stabilizes the system for any traffic intensity ρ lying

strictly inside the capacity region Λ. Moreover, all moments

of steady-state workloads are finite.

Proof: Under the RLB Algorithm, the number of incom-

ing flows forwarded to each AP in each time slot is i.i.d. with

mean λΣ/M and their flow sizes are also i.i.d. with the same



probability distribution as before. The proof is a special case

of that in Proposition 3 in the case with a single AP and

the mean flow arrival rate of λΣ/M , and thus is omitted for

simplicity.

Note that the RLB Algorithm randomly forwards the in-

coming flows to each AP and may cause significant workload

imbalance across APs especially when the number of APs

is relatively large, which is the case in high-density wireless

networks. Even though this does not hurt the throughput

performance, it results in the large mean workload, which

implicitly degrades the mean delay performance of each flow.

In order to characterize the mean workload performance, we

build on the recently developed approach of using Lyapunov

drifts for the steady-state analysis of queueing networks [6].

However, in our considered flow-level dynamic model, flows

dynamically arrive at the system and will leave once they

receive the desired amount of service, and existing flows suffer

from independent channel fading. These two characteristics

make our model quite different from the traditional FCFS

queueing model that is considered in [6]. Thus, novel tech-

niques are required to analyze the heavy-traffic performance

of the RLB Algorithm.

To that end, we consider the workload arrival process

{ν(ǫ)Σ [t]}t≥0, parameterized by ǫ > 0, with traffic intensity

ρ(ǫ) satisfying ǫ = M − ρ(ǫ) > 0 and Var(ν
(ǫ)
Σ ). Here,

ǫ characterizes the closeness of the traffic intensity to the

boundary of the capacity region, and is usually referred as

heavy-traffic parameter. We are interested in understanding the

steady-state workload with vanishing ǫ. The next proposition

shows that the RLB Algorithm results in the large mean

workload even under the Bernoulli flow arrival.

Proposition 2: Assume that the number of arriving flows

AΣ[t] follows Bernoulli distribution. Let W̃(ǫ) = (W̃
(ǫ)
m )Mm=1

be a random vector with the same distribution as the steady-

state distribution of the workload processes under the RLB

Algorithm. Consider the heavy-traffic limit ǫ ↓ 0, suppose

that the variance Var(ν
(ǫ)
Σ ) of the arrival process {ν(ǫ)Σ }t≥0

converges to a constant σ2. Then, we have

lim
ǫ↓0

ǫE

[
M∑

m=1

W̃ (ǫ)
m

]
=

1

2

(
σ2 +M(M − 1)

)
. (4)

Proof: Under the RLB Algorithm, the number of in-

coming flows joining to the mth AP in time slot t can be

represented as follows:

Am[t] = AΣ[t]1H[t], (5)

where H[t] denotes the event that the incoming flow joins the

mth AP in time slot t, which is independent from workload

Wm[t]. In addition, under the RLB Algorithm, the event H[t]
is i.i.d. with Bernoulli distribution with mean 1/M . Therefore,

the workload arriving at AP m in time slot t is

νm[t] = νΣ[t]1H[t], (6)

where νΣ = AΣ[t] ⌈Fj [t]/cmax⌉ since AΣ[t] follows Bernoulli

distribution. Thus, we have

E [νm[t]] =
1

M
ρ(ǫ),

and Var(νm[t]) =
1

M
Var(ν

(ǫ)
Σ ) +

M − 1

M2
(ρ(ǫ))2. (7)

Hence, we have

lim
ǫ↓0

ǫE
[
W̃ (ǫ)

m

]
=

1

2

(
1

M
σ2 +M − 1

)
, (8)

which implies the desired result by summing over m =
1, 2, . . . ,M . The proof of (8) is a special case of that in

Proposition 4 and Proposition 5 in the case with a single

AP and the arrival workload νm[t], and thus is omitted for

conciseness.

From Proposition 2, we can observe that the mean total

workload under the RLB Algorithm increases quadratically

with the number of APs, which is undesirable in high-density

networks even when M = 10. The main reason lies in that the

RLB Algorithm randomly makes the load-balancing decision,

and does not fully utilize the precious network resources. This

motivates us to develop a throughput-optimal load-balancing

scheme under which the mean total workload is minimized and

does not suffer from performance loss as the number of APs

scales. This property is pronounced in highly-dense wireless

networks in the presence of many APs.

IV. EFFICIENT LOAD-BALANCING DESIGN

In this section, we first propose a workload-aware load-

balancing algorithm. Then, we show that the proposed algo-

rithm not only achieves maximum system throughput but also

minimizes the mean total workload in the heavy-traffic regime.

As we discussed in the last section, the inefficiency of both

BCF and RLB Algorithms lie in the fact that they are not

aware of system workloads and thus cause significant load

imbalance among multiple APs. This motivates us to develop

a workload-aware load-balancing scheme that can evenly dis-

tribute incoming workloads across multiple APs. Motivated by

the design of JSQ and JLQ polices in data centers, we propose

the following workload-aware load-balancing algorithm that

aims to balance workloads across multiple APs in the presence

of dynamic flows.

Join-the-Least-Workload (JLW) Algorithm: In each time

slot t, given the current workload W[t] = (Wm[t])Mm=1,

forward all the arriving flows to the AP with the smallest

workload, i.e.,

A∗[t] ∈ argmin
A=(Am)M

m=1
�0:

∑
M

m=1
Am=AΣ[t]

〈A,W[t]〉, (9)

breaking ties uniformly at random.

In the JLW Algorithm, the central controller broadcasts the

ID of the AP with the least workload in each time slot, and thus

all arriving flows will join that AP. This is possible in high-

density wireless networks, where all APs are interconnected.

The main difference between our JLW Algorithm and the



JLQ Algorithm lies in that the JLQ Algorithm is mainly

designed for the system with FCFS or PS queueing discipline,

while each flow in our scenario faces an independent channel

fading and potentially may have different service rate. This

poses significant challenges for the performance analysis of the

JLW Algorithm. Nevertheless, we can still show that the JLW

Algorithm achieves maximum system throughput. Moreover,

we can show that all moments of steady-state workload are

bounded under the JLW Algorithm, which enables us to ana-

lyze the mean workload performance by using the Lyapunov-

type approach developed in [6].

Proposition 3: The JLW Algorithm is throughput-optimal,

i.e., it stabilizes the system for any traffic intensity lying

strictly inside the capacity region Λ. Moreover, all moments

of steady-state workloads are bounded.

Proof: The proof is available in Section VI.

Having established the throughput optimality and the mo-

ment existence of the steady-state workload of the JLW

Algorithm, we are ready to analyze the mean workload perfor-

mance in the heavy-traffic regime. Similar to the heavy-traffic

analysis of the RLB Algorithm, we consider the arrival process

{ν(ǫ)Σ [t]}t≥0 with heavy-traffic parameter ǫ > 0 characterizing

the closeness of the traffic intensity to the boundary of the

capacity region, i.e., ǫ = M − ρ(ǫ) > 0.

Proposition 4: Let W̃(ǫ) = (W̃
(ǫ)
m )Mm=1 be a random vector

with the same distribution as the steady-state distribution of the

workload processes under the JLW Algorithm. Consider the

heavy-traffic limit ǫ ↓ 0, suppose that the variance Var(ν
(ǫ)
Σ )

of the arrival process {ν(ǫ)Σ }t≥0 converges to a constant σ2.

Then, we have

lim
ǫ↓0

ǫE

[
M∑

m=1

W̃ (ǫ)
m

]
≤ σ2

2
. (10)

Proof: The proof is available in Section VII.

In fact, the upper bound in (10) is also tight. To see

this, we provide a generic lower bound for all feasible load-

balancing policies by constructing a hypothetical single-server

queue {Φ[t]}t≥0 with the arrival process {ν(ǫ)Σ [t]}t≥0 and the

constant service rate M . The queue-length evolution of this

single-server queue can be described as follows:

Φ[t+ 1] = max
{
Φ[t] + ν

(ǫ)
Σ [t]−M, 0

}
. (11)

It is easy to see that the constructed single-server queue length

{Φ[t]}t≥0 is stochastically smaller than the total workload

process {∑M
m=1 Wm[t]}t≥0 of the original system under any

feasible policy, since the total system workload can at most

decrease by M in one time slot. Hence, by using [6, Lemma 4]

for the constructed single-server queue, we have the following

lower bound on the steady-state workload under any feasible

policy.

Proposition 5: Let W̃(ǫ) = (W̃
(ǫ)
m )Mm=1 be a random vector

with the same distribution as the steady-state distribution of the

workload processes under any feasible load-balancing policy.

Consider the heavy-traffic limit ǫ ↓ 0, suppose that the variance

Var(ν
(ǫ)
Σ ) of the arrival process {ν(ǫ)Σ }t≥0 converges to a

constant σ2. Then,

lim
ǫ↓0

ǫE

[
M∑

m=1

W̃ (ǫ)
m

]
≥ σ2

2
. (12)

This together with Proposition 4 establishes the heavy-

traffic optimality of our proposed JLW Algorithm. Moreover,

compared with the mean workload performance under the

RLB Algorithm in the heavy-traffic regime, the mean workload

under our JLW Algorithm does not incur any performance

loss by increasing the number of APs. This desirable property

implies that the JLW Algorithm is suitable for deployment in

high-density wireless networks.

V. SIMULATION RESULTS

In this section, we provide simulation results for our pro-

posed JLW Algorithm and compare its performance to both

BCF and RLB Algorithms. In the simulations, we assume that

the number of flows arriving at the system in each time slot

follows a Bernoulli distribution with mean λ. Each flow at

each AP faces i.i.d. channel fading with rates 0, 1, 5, 10 and

corresponding probability 0.1, 0.2, 0.5, 0.2. The flow size F
is equal to 10 × β with probability (w − 1)/(β − 1) and 10
otherwise, where we recall that w = E [⌈F/cmax⌉] is the mean

newly arriving workload and β ≥ 2 is some parameter that

measures the variance of the newly arriving workload. Indeed,

the variance of the newly arriving workload in this setup is

equal to (w − 1)β − w(w − 1), which linearly increases with

the parameter β. We let w be equal to the number of APs M
and thus the capacity region Λ is {λ : 0 < λ ≤ 1}. We set

M = 5 and β = 20 in the simulations, unless we specifically

mention them.

A. Throughput Performance

Fig. 2a shows the mean total workload performance versus

the mean arrival rate under the BCF Algorithm, the RLB

Algorithm and our proposed JLW Algorithm. We can observe

from Fig. 2a that both JLW and RLB Algorithms can stabilize

the system for any arrival rate λ between 0 and 1, which

validate their throughput optimality (cf. Proposition 1 and

Proposition 3). In contrast, the BCF Algorithm cannot support

the arrival rate of λ = 0.45, where the mean workload blows

up. This also matches our discussions about the throughput

deficiency of the BCF Algorithm in Section III-A. In addition,

we can see that the mean workload under the JLW Algorithm

is smaller than that under the RLB Algorithm under different

arrival rates. To see it more clearly, Fig. 2b characterizes the

mean workload reduction percentage by the JLW Algorithm

compared with the RLB Algorithm. From Fig. 2b, we can

observe that the mean workload reduction is 10% even when

the arrival rate is equal to 0.1, and can reach as high as 70%
when the arrival rate is 0.99. The reason is that the RLB

Algorithm randomly forwards newly arriving flows to each

AP and thus may cause some APs underutilized, while the

JLW Algorithm aims to balance the workloads across APs

and utilizes network resources more efficiently. Thus, the JLW



Algorithm shows significant performance gain over the RLB

Algorithm especially when the arrival rate is high.
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(b) Workload reduction by JLW

Fig. 2: The workload performance of the JLW Algorithm

B. Heavy-Traffic Performance

Fig. 3a shows the impact of heavy-traffic parameter ǫ on the

mean total workload under both RLB and JLW Algorithms.

From Fig. 3a, we can observe that the mean total workload

under the JLW Algorithm converges to the theoretical lower

bound (equal to 30) derived in Proposition 5, while the RLB

Algorithm always keeps it away from the theoretical lower

bound. This confirms the heavy-traffic optimality of the JLW

Algorithm, i.e., it minimizes the mean total workload as the

heavy-traffic parameter ǫ diminishes.
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(b) Impact of number of APs

Fig. 3: Mean workload in heavy-traffic regimes

Fig. 3b studies the impact of number of APs M on the mean

total workload under both RLB and JLW Algorithms, where

we fix ǫ to 0.006 and vary the number of APs from 5 to 18.

From Fig. 3b, we can observe that the performance of the JLW

Algorithm stays close to the theoretical lower bound, which is

equal to (21M − 20 −M2)/2 from Proposition 5 under our

setting. In contrast, the product of mean total workload and

heavy-traffic parameter ǫ under the RLB Algorithm is equal

to 10M − 10 from Proposition 2 in the heavy-traffic regime,

which linearly increases with the number of APs (also can be

observed from Fig. 3b). This renders infeasibility of the RLB

Algorithm for high-density wireless networks with many APs.

C. Mean Delay Performance

In this subsection, we study the mean delay performance

of flows under both RLB and JLW Algorithms. From Fig. 4a,

we can observe that the JLW Algorithm outperforms the RLB

Algorithm in terms of mean delay performance. Moreover, the

delay improvement by the JLW Algorithm is very similar to its

workload reduction compared with the RLB Algorithm. The

reason lies in that the smaller workload implies that each flow

spends the less waiting time in the system and thus experiences

smaller delay.
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(b) Delay improvement by JLW

Fig. 4: The delay performance of the JLW Algorithm

Next, we study the impact of the variance of the flow

size on the system performance. Recall that the parameter β
characterizes the variance of the flow size. The larger the β,

the higher variance of the flow size. Here, we fix the arrival

rate λ to 0.9, and vary the parameter β from 10 to 100. We

can see from Fig. 5a that the JLW Algorithm always performs

better than the RLB Algorithm, and the parameter β does

not affect their mean delay performance. This is referred as

the delay insensitivity property in queueing literature, where

the mean delay performance is insensitive to the flow-size

distribution beyond its mean. This is expected, since each

AP always serves the flow with the maximum channel rate,

and in the extreme non-fading case, flows are served in a

preemptive random order, where the mean delay performance

exhibits insensitivity property to the flow size distribution (see

[11]). However, different from the mean delay performance,

the mean total workload under both RLB and JLW Algorithms

increases linearly with the parameter β, as shown in Fig. 5b.

The reason lies in the fact that the total system workload is

lower-bounded by the queue-length of a hypothetical single-

server queue {Φ[t]}t≥0 with the new workload arrival process

{νΣ[t]}t≥0 and the constant service rate M under any feasible

load-balancing policies (also see the discussion in Section

IV), where the mean queue-length E[Φ[t]] is sensitive to the

variance of νΣ[t].
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Fig. 5: The impact of the flow size distribution

VI. THROUGHPUT OPTIMALITY ANALYSIS

In this section, we establish the throughput optimality of the

JLW algorithm as well as the boundedness of all moments of

steady-state workload, where the later property enables us to



analyze the mean workload performance in Section VII. We

choose the Lyapunov function

V (W) , ‖W‖. (13)

Then, we consider the conditional expectation of its drift

∆V (W) , (V (W[t+ 1])− V (W[t]))1{W[t]=W}.

E [∆V (W)|W[t] = W]

=E [V (W[t+ 1])− V (W[t])|W[t] = W]

=E
[√

‖W[t+ 1]‖2 −
√
‖W[t]‖2

∣∣∣W[t] = W
]

≤ 1

2‖W‖E [L(W[t+ 1])− L(W[t])|W[t] = W] , (14)

where the last step is true for L(W) , ‖W‖2 and follows

from the fact that f(x) =
√
x is concave for x ≥ 0 and

thus f(y) − f(x) ≤ f ′(x)(y − x) = (y − x)/(2
√
x) with

y = ‖W[t+ 1]‖2 and x = ‖W[t]‖2.

Next, we focus on the expected difference in (14), which is

just the expected drift of L(W). We will omit the time index

[t] after the first step for conciseness.

E [∆L(W)|W] =E
[
‖W[t+ 1]‖2 − ‖W[t]‖2

∣∣W
]

=E
[
‖W+ ν − µ‖2 − ‖W‖2

∣∣W
]

=E
[
2〈W,ν − µ〉+ ‖ν − µ‖2

∣∣W
]

≤2E [〈W,ν − µ〉|W] +K1, (15)

where K1 , M(ν2max + 1) is bounded and νmax ,

Amax⌈Fmax/cmax⌉.

Next, we focus on E [〈W,ν − µ〉|W]. Since the traffic

intensity ρ is strictly inside the capacity region Λ, there exists

an ǫ such that ǫ = M − ρ > 0. We define a hypothetical

arrival rate vector λ = (λm)Mm=1 as λ = 1/w − ǫ1/(wM),
where we recall that w = E [⌈Fj [t]/cmax⌉]. Hence, we have∑M

m=1 λm = M/w − ǫ/w = λΣ, where we use the fact that

ρ = λΣw. Therefore, we have

E [〈W,ν − µ〉|W]

(a)
= 〈W, wE [A|W]− wλ〉 − 〈W,1− wλ〉 − E [〈W,µ− 1〉|W]

(b)

≤w〈W,E [A|W]− λ〉 − ǫ

M
‖W‖1 + E

[
M∑

m=1

Wm1Fm

∣∣∣∣∣W
]
,

(16)

where step (a) uses the fact that E [ν|W] = wE [A|W]; (b)
uses the fact that µm ≥ 1Fm

for all m = 1, 2, . . . ,M and we

recall that Fm denotes the event that at least one flow has the

maximum channel rate cmax and Fm is the complement of

the event Fm.

For the term 〈W,E [A|W]− λ〉 in (16), we have

〈W,E [A|W]− λ〉 =WminE [AΣ|W]− 〈W,λ〉

=WminλΣ −
M∑

m=1

λmWm

=

M∑

m=1

λm (Wmin −Wm)

≤0, (17)

where the first step follows from the definition of the JLW

Algorithm.

With regard to the term E

[∑M
m=1 Wm1Fm

∣∣∣W
]

in (16),

we have

E

[
M∑

m=1

Wm1Fm

∣∣∣∣∣W
]
= E

[
M∑

m=1

Wm (1− pm,K)Nm

∣∣∣∣∣W
]

(a)

≤E
[

M∑

m=1

Wm

(
1− pmin

K

)Nm

∣∣∣∣∣W
]

(b)

≤E
[

M∑

m=1

Wm

(
1− pmin

K

)Wm/wmax

∣∣∣∣∣W
]

(c)
=E

[
M∑

m=1

Wm

(
1− pmin

K

)Wm/wmax

1{Wm≤wm}

+

M∑

m=1

Wm

(
1− pmin

K

)Wm/wmax

1{Wm>wm}

∣∣∣∣W
]

(d)

≤E
[

M∑

m=1

Wm1{Wm≤wm} +

M∑

m=1

1{Wm>wm}

∣∣∣∣∣W
]

(e)

≤ K2,

(18)

where step (a) is true for pmin
K , minm pm,K > 0; (b)

is true for wmax = ⌈Fmax/cmax⌉ and follows from the

fact that given the workload Wm, the number of flows at

AP m is at least Wm/wmax (i.e., Nm ≥ Wm/wmax); (c)
is true for some constant wm > 0 such that Wm(1 −
pmin
K )Wm/wmax ≤ 1 holds whenever Wm > wm (since

limWm→∞ Wm(1 − pmin
K )Wm/wmax = 0); (d) uses the fact

that (1− pmin
K )Wm/wmax ≤ 1 and the definition of wm; (e) is

true for K2 ,
∑M

m=1(wm + 1).

By combining (16), (17) and (18), and substituting it into

(15), we have

E [∆L(W)|W] ≤− 2ǫ

M
‖W‖1 +K1 + 2K2

≤− 2ǫ

M
‖W‖+K1 + 2K2 (19)

where the last step uses the fact that ‖x‖1 ≥ ‖x‖ for any

vector x.

By substituting (19) into (14), we have

E [∆V (W)|W] ≤ − ǫ

M
+

K1 + 2K2

2V (W)
. (20)

This implies that when V (W) is sufficiently large, its condi-



tional expected drift is strictly negative.

Next, we will show that the drift of V (W) is also bounded,

which together with (20) establishes the desired result by [10,

Theorem 2.3].

|∆V (W)| = |‖W[t+ 1]‖ − ‖W[t]‖|1{W[t]=W}

(a)

≤‖W[t+ 1]−W[t]‖1{W[t]=W}

(b)

≤‖W[t+ 1]−W[t]‖11{W[t]=W}

≤M max
m

|Wm[t+ 1]−Wm[t]|1{W[t]=W}

≤M(νmax + 1), (21)

where step (a) follows from the triangle inequality for vectors

x and y, i.e., |‖x‖ − ‖y‖| ≤ ‖x − y‖; (b) uses the fact that

‖x‖ ≤ ‖x‖1 for any vector x.

VII. HEAVY-TRAFFIC ANALYSIS

In this section, we provide a proof of Proposition 4. In par-

ticular, we show that the proposed JLW Algorithm minimizes

the expected workload in the heavy-traffic regime. The proof

includes two parts: 1) showing state-space collapse; 2) using

the state-space collapse result to obtain an upper bound on the

mean workload. Yet, it is worth noting that each flow faces

an independent channel fading and may have different service

rate and thus its evolution is quite different from traditional

FCFS queueing systems. Thus, it calls for a novel technique

to establish heavy-traffic optimality of the JLW Algorithm.

A. State-Space Collapse

In this subsection, we establish a state-space collapse result

under the JLW Algorithm. That is, we develop the upper bound

for the deviation of steady-state workloads from their average.

This state-space collapse happens because JLW routes each

arrival to the AP with the smaller workload to balance the

workload across all APs.

Let {W(ǫ)[t]}t≥0 be the workload process under the JLW

Algorithm, where we recall that the heavy-traffic parameter ǫ
characterizes the closeness of the traffic intensity ρ and the

boundary of the capacity region Λ, i.e., ǫ = M − ρ(ǫ) >
0. Proposition 3 shows that all moments of the steady-state

workload exist. To that end, we use W̃(ǫ) to denote the steady-

state workload random vector. Note that the JLW Algorithm

tries to equalize the workload across APs, and thus we expect

the state space collapses along the direction of a unit vector,

all of whose components are equal, i.e., c , (1/
√
M)Mm=1.

Note that W(ǫ)[t] ⇒ W̃(ǫ) due to Proposition 3, where ⇒
denotes convergence in distribution. Then, by the continuous

mapping theorem, we have W
(ǫ)
‖ [t] ⇒ W̃

(ǫ)
‖ , and W

(ǫ)
⊥ [t] ⇒

W̃
(ǫ)
⊥ , where the projection and the perpendicular vector of

any given M−dimensional vector I = (Im)Mm=1 with respect

to the vector c are defined as follows:

I‖ , 〈I, c〉c =
IΣ
M

1, and I⊥ , I− I‖ =

(
Im − IΣ

M

)M

m=1

,

respectively, and IΣ ,
∑M

m=1 Im, where 1 is M−dimensional

vector of ones.

Next, we will show that under the JLW Algorithm, all

moments of W̃
(ǫ)
⊥ are bounded by some constants independent

of heavy-traffic parameter ǫ > 0.

Proposition 6: For any δ ∈ (0, 1/(2w)), under the JLW

Algorithm, there exists a sequence of finite positive numbers

{Hn}n=1,2,... such that

E

[
‖W̃(ǫ)

⊥ ‖n
]
≤ Hn, ∀n = 1, 2, . . . (22)

for all ǫ ∈ (0,M/2), where we recall that w is the mean

workload of a newly arriving flow.

Proof: In the following proof, we will omit ǫ associated

with the workload processes for ease of exposition. We con-

sider the Lyapunov function V⊥(W) , ‖W⊥‖, and its drift

is defined as

∆V⊥(W) , (V⊥(W[t+ 1])− V⊥(W[t]))1{W[t]=W}.
(23)

Since the workload process {W[t]}t≥0 has both bounded

increments and decrements, we can show that the drift of

V⊥(W[t]) is absolutely bounded by some positive constant

for all workload vector W. Indeed, we have

|∆V⊥(W)| = |‖W⊥[t+ 1]‖ − ‖W⊥[t]‖|1{W[t]=W}

(a)

≤ ‖W⊥[t+ 1]−W⊥[t]‖1{W[t]=W}

(b)
=
∥∥W[t+ 1]−W[t]−

(
W‖[t+ 1]−W‖[t]

)∥∥
1{W[t]=W}

(c)

≤
(
‖W[t+ 1]−W[t]‖+

∥∥∥(W[t+ 1]−W[t])‖

∥∥∥
)
1{W[t]=W}

(d)

≤2‖W[t+ 1]−W[t]‖1{W[t]=W}

(e)

≤2‖W[t+ 1]−W[t]‖11{W[t]=W}

≤2M max
m

|Wm[t+ 1]−Wm[t]|1{W[t]=W}

(f)

≤ 2M(νmax + 1),

where step (a) uses the triangle inequality for vectors x and y,

i.e., |‖x‖ − ‖y‖| ≤ ‖x−y‖; (b) follows from the definition of

W⊥ , W−W‖; (c) uses the fact that ‖x−y‖ ≤ ‖x‖+‖y‖
for two vectors x and y and the fact that x‖ − y‖ = (x −
y)‖; (d) uses the fact that ‖x‖‖ ≤ ‖x‖; (e) uses the fact

that ‖x‖ ≤ ‖x‖1 for any vector x; (f) is true for νmax ,

Amax⌈Fmax/cmax⌉ and follows from (2).

Next, we will show that when V⊥(W) is sufficiently large, it

has a strictly negative drift independent of ǫ. This together with

the absolute boundedness of the drift establishes the desired

result by [10, Theorem 2.3]. However, it is not easy to directly

study the drift of ‖W⊥‖. Instead, it is easier to study the drift

of ‖W‖2 and ‖W‖‖2, which provides a proper upper bound



on the drift of ‖W⊥‖. Indeed,

∆V⊥(W) = (V⊥(W[t+ 1])− V⊥(W[t]))1{W[t]=W}

=
(√

‖W⊥[t+ 1]‖2 −
√
‖W⊥[t]‖2

)
1{W[t]=W}

(a)

≤ 1

2‖W⊥[t]‖
(
‖W⊥[t+ 1]‖2 − ‖W⊥[t]‖2

)
1{W[t]=W}

(b)
=

1

2‖W⊥‖
(
∆L(W)−∆L‖(W)

)
, (24)

where step (a) follows from the fact that f(x) =
√
x is

concave for x ≥ 0 and thus f(y) − f(x) ≤ f ′(x)(y − x) =
(y − x)/(2

√
x) with y = ‖W⊥[t+ 1]‖2 and x = ‖W⊥[t]‖2;

(b) uses the fact that ‖x⊥‖2 = ‖x‖2 − ‖x‖‖2 for any vector

x, and is true for L(W) , ‖W‖2, L‖(W) , ‖W‖‖2, and

∆L(W) , (L(W[t+ 1])− L(W[t]))1{W[t]=W} (25)

∆L‖(W) ,
(
L‖(W[t+ 1])− L‖(W[t])

)
1{W[t]=W}. (26)

Next, we consider the conditional expectations of ∆L(W)
and ∆L‖(W), respectively. From (15), (16), and (18), we have

E [∆L(W)|W] ≤2w〈W,E [A|W]− λ〉 − 2ǫ

M
‖W‖1

+K1 + 2K2, (27)

where K1 and K2 are some positive constants.

Next, we consider the term 〈W,E [A|W]− λ〉 in (27).

〈W,E [A|W]− λ〉 (a)
=WminE [AΣ|W]− 〈W,λ〉

=WminλΣ −
M∑

m=1

λmWm

=−
M∑

m=1

λm (Wm −Wmin)

(b)

≤ − λmin

M∑

m=1

|Wm −Wmin|

=− λmin‖W −Wmin1‖1
(c)

≤ − λmin‖W −Wmin1‖
(d)

≤ − λmin

∥∥∥∥W − 1

M
WΣ1

∥∥∥∥
(e)

≤ − δ‖W⊥‖, (28)

where step (a) is true for Wmin , minm Wm and follows from

the definition of the JLW Algorithm; (b) is true for λmin ,

minm λm; (c) follows from the fact that ‖x‖1 ≥ ‖x‖ for any

vector x; (d) uses the fact that WΣ/M minimizes the convex

function ‖W − y1‖ over y ∈ R; (e) is true since λmin > δ
for any δ ∈ (0, 1/(2w)) and ǫ ∈ (0,M/2).

By substituting (28) into (27), we have

E [∆L(W)|W] ≤ − 2ǫ√
M

‖W‖‖ − 2wδ‖W⊥‖+K1 + 2K2.

(29)

On the other hand, we have

E
[
∆L‖(W)

∣∣W
]
= E

[
〈c,W[t + 1]〉2 − 〈c,W[t]〉2

∣∣W
]

=E
[
〈c,W + ν − µ〉2 − 〈c,W〉2

∣∣W
]

=E
[
2〈c,W〉〈c,ν − µ〉+ 〈c,ν − µ〉2

∣∣W
]

≥2〈c,W〉〈c,E [ν − µ|W]〉
(a)

≥2‖W‖‖
1√
M

M∑

m=1

(E[νm|W]− 1)

=2‖W‖‖
1√
M

(E [νΣ]−M)
(b)
= − 2ǫ√

M
‖W‖‖, (30)

where step (a) uses the fact that µm ≤ 1, ∀m = 1, 2, . . . ,M ;

(b) follows from the facts that E[νΣ] = ρ and ǫ = M − ρ.

By substituting (29) and (30) into (24), we have

E [∆V⊥(W)|W] ≤ 1

2‖W⊥‖
(−2wδ‖W⊥‖+K1 + 2K2)

=− wδ +
K1 + 2K2

2‖W⊥‖
. (31)

Hence, when V⊥(W) = ‖W⊥‖ is sufficiently large, its

expected drift is strictly negative, independent of heavy-traffic

parameter ǫ.

B. Upper Bound Analysis

Having established the state-space collapse result, we are

ready to provide the upper bound on the mean workload

under the JLW Algorithm in the heavy-traffic regime. In

Proposition 3, we have shown that all moments of steady-

state workloads are bounded under the JLW Algorithm. This

enables us to analyze its heavy-traffic performance by using

the methodology of “setting the drift of a Lyapunov function

equal to zero” (see [6]).

We will omit the superscript (ǫ) associated with the work-

load for brevity in the rest of proof. To facilitate the proof,

we introduce Um , 1 − µm and thus the evolution of the

workload can be rewritten as

W[t+ 1] = W[t] + ν[t]− 1+U[t], (32)

where U[t] , (Um[t])Mm=1. Note that Um is different from

the unused service in traditional queues. Indeed, recall that

1Fm
≤ µm ≤ 1 and thus 0 ≤ Um ≤ 1Fm

, where we recall

that Fm denotes the event that at least one flow in AP m has

the maximum channel rate cmax and Fm is the complement of

the event Fm. If all flows at AP m do not have the maximum

channel rate and the served flow has the size larger than its

channel rate, then the workload may not decrease by one (i.e.,

µm = 0), which implies that Um is equal to 1. However, the

flow at AP m does receive the service and does not incur any

unused service. This difference causes that the technique in

addressing unused service in [6] does not apply and requires

additional non-trivial efforts.

In order to derive an upper bound on E
[∑M

m=1 W̃m

]
, we



need the following fundamental identity [6, Lemma 8]:

E

[
〈c,W̃〉〈c,1− ν〉

]

=
1

2
E
[
〈c,ν − 1〉2

]
+

1

2
E

[
〈c, Ũ〉2

]

+ E
[
〈c,W̃ + ν − 1〉〈c, Ũ〉

]
, (33)

where Ũ is a random vector with the same distribution as the

steady-state distribution of the process {U[t]}t≥0. The identity

(33) is derived by setting the expected drift of 〈c,W〉2 to 0 due

to the existence of second moment of steady-state workload

under the JLW algorithm by Proposition 3.

First, we consider the left-hand-side (LHS) of (33).

E

[
〈c,W̃〉〈c,1− ν〉

]
=

1√
M

(M − E [νΣ])E
[
〈c,W̃〉

]

=
ǫ

M
E

[
M∑

m=1

W̃m

]
. (34)

Next, we will provide an upper bound for each individual

term on the right-hand side (RHS) of (33). By simply setting

the expected drift of 〈c,W〉 equal to zero, we have

E

[
〈c, Ũ〉

]
= E [〈c,1〉 − 〈c,ν〉] = 1√

M
(M − E [νΣ])

=
ǫ√
M

, (35)

which implies

E

[
M∑

m=1

Ũm

]
= ǫ. (36)

For the first term on the RHS of (33), we have

1

2
E
[
〈c,ν − 1〉2

]
=

1

2M
E

[
(νΣ −M)

2
]

=
1

2M
E

[
(νΣ − ρ− ǫ)2

]
=

1

2M

(
Var(νΣ) + ǫ2

)
. (37)

For the second term on the RHS of (33), we have

1

2
E

[
〈c, Ũ〉2

] (a)

≤ 1

2
〈c,1〉E

[
〈c, Ũ〉

]
(b)
=

1

2
ǫ, (38)

where step (a) follows from the fact that Ũm ≤ 1, and (b)
uses (35).

For the last term on the RHS of (33), we have

E

[
〈c,W̃ + ν − 1〉〈c, Ũ〉

]

(a)
=E

[
〈c,W̃+〉〈c, Ũ〉

]
− E

[
〈c, Ũ〉2

]

≤E
[
〈c,W̃+〉〈c, Ũ〉

]

(b)
=E

[
〈W̃+

‖ , Ũ‖〉
]
= E

[
〈W̃+ − W̃+

⊥, Ũ− Ũ⊥〉
]

=E
[
〈W̃+, Ũ〉+ 〈W̃+

⊥, Ũ⊥〉 − 〈W̃+, Ũ⊥〉 − 〈W̃+
⊥, Ũ〉

]

(c)
=E

[
〈W̃+, Ũ〉

]
+ E

[
〈−W̃+

⊥, Ũ〉
]
, (39)

where step (a) is true for vector I+ denoting I[t + 1] and

follows the evolution of the workload W[t] (cf. (32)); (b)

follows from the fact that W̃+
‖ and Ũ‖ are along the same

direction c; (c) uses the fact that 〈W̃+, Ũ⊥〉 = 〈W̃+
⊥, Ũ⊥〉+

〈W̃+
‖ , Ũ⊥〉 = 〈W̃+

⊥, Ũ⊥〉.
Next, we consider terms in the RHS of (39). For the term

E

[
〈W̃+, Ũ〉

]
, we have

E

[
〈W̃+, Ũ〉

]
= E

[
M∑

m=1

W̃m[t+ 1]Ũm[t]

]

≤E
[

M∑

m=1

(
W̃m[t] + νm[t]

)
Ũm[t]

]

(a)

≤E
[

M∑

m=1

W̃mŨm

]
+

√√√√
E

[
M∑

m=1

ν2m

]
E

[
M∑

m=1

Ũ2
m

]

(b)

≤E
[

M∑

m=1

W̃mŨm

]
+

√√√√√E



(

M∑

m=1

νm

)2

E

[
M∑

m=1

Ũm

]

(c)
=E

[
M∑

m=1

W̃mŨm

]
+
√
ǫE [ν2Σ], (40)

where step (a) follows from Cauchy−Schwarz inequality; (b)
uses the fact that Ũm ≤ 1; (c) uses (36).

For the term E

[∑M
m=1 W̃mŨm

]
in (40), we have

E

[
M∑

m=1

W̃mŨm

]
(a)

≤ E

[
M∑

m=1

W̃m (1− pm,K)Ñm

]

=E

[
M∑

m=1

W̃m (1− pm,K)
Ñm

2 (1− pm,K)
Ñm

2

]

(b)

≤E
[

M∑

m=1

W̃m

(
1− pmin

K

) W̃m

2wmax (1− pm,K)
Ñm

2

]

(c)

≤ (ŵmax + 1)E

[
M∑

m=1

(1− pm,K)
Ñm

2

]

(d)

≤ (ŵmax + 1)

(
E

[
M∑

m=1

(1− pm,K)dÑm

]) 1

2d

M
2d−1

2d

(e)

≤ (ŵmax + 1)

(
E

[
M∑

m=1

(pm,0)
Ñm

]) 1

2d

M
2d−1

2d

(f)

≤ (ŵmax + 1)

(
E

[
M∑

m=1

Ũm

]) 1

2d

M
2d−1

2d

(g)
= (ŵmax + 1) ǫ

1

2dM
2d−1

2d , (41)

where step (a) uses the fact that Um = 1−µm ≤ 1Fm
; (b) is

true for pmin
K , minm pm,K > 0 and wmax = ⌈Fmax/cmax⌉

and the fact that the number of flows at AP m is at least

W̃m/wmax (i.e., Ñm ≥ Wm/wmax); (c) is true for ŵmax ,

maxm=1,2,...,M ŵm and ŵm is some positive constant such

that W̃m(1 − pmin
K )W̃m/(2wmax) ≤ 1 whenever W̃m > ŵm



(since lim
W̃m→∞ W̃m(1 − pmin

K )W̃m/(2wmax) = 0), and is

derived using similar steps in (18); (d) is true for some d > 1
such that (1−pm,K)d ≤ pm,0 (which is the possible due to the

assumptions that pm,0 > 0 and pm,K > 0) and follows from

Hölder’s inequality; (e) uses the definition of the constant d;

(f) uses the fact that Um ≥ 1Gm
and Gm denotes the event

that all flows at AP m do not have available channels, i.e.,

µm = 0; (g) uses (36).

By substituting (41) into (40), we have

E

[
〈W̃+, Ũ〉

]
≤ (ŵmax + 1) ǫ

1

2dM
2d−1

2d +
√
ǫE [ν2Σ]. (42)

For the term E

[
〈−W̃+

⊥, Ũ〉
]

in (39), we have

E

[
〈−W̃+

⊥, Ũ〉
] (a)

≤
√
E

[
‖W̃+

⊥‖2
]
E

[
‖Ũ‖2

]

(b)

≤

√√√√
E

[
‖W̃⊥‖2

]
E

[
M∑

m=1

Ũm

]

(c)

≤
√
H2ǫ, (43)

where step (a) uses Cauchy−Schwarz inequality; (b) uses the

fact that Um ≤ 1; (c) uses the state-space collapse result (cf.

Proposition 6) and (36).

By substituting (42) and (43) into (39), we have

E

[
〈c,W̃ + ν − 1〉〈c, Ũ〉

]

≤ (ŵmax + 1) ǫ
1

2dM
2d−1

2d +
√
ǫE [ν2Σ] +

√
H2ǫ , G(ǫ).

(44)

By substituting (34), (37), (38), and (44) into (33), we have

ǫE

[
M∑

m=1

W̃m

]
≤ 1

2

(
Var(νΣ) + ǫ2

)
+

1

2
Mǫ+MG(ǫ),

which implies the desired result as ǫ ↓ 0.

VIII. CONCLUSIONS

In this paper, we studied the optimal load-balancing design

in high-density wireless networks with both channel fading

and flow-level dynamics. We discussed the performance defi-

ciencies of existing policies and developed a workload-aware

load-balancing scheme in the presence of dynamic flows. We

showed that our proposed load-balancing algorithm not only

achieves maximum system throughput, but also minimizes the

mean total workload in heavy-traffic regimes. In addition, our

analysis implies that the mean total workload performance

under our proposed algorithm is robust to the number of APs,

which is strongly desirable in high-density wireless networks.

Finally, extensive simulations were performed to confirm our

theoretical results.

APPENDIX A

CHARACTERIZATION OF CAPACITY REGION

(1) (Necessity) Assume that ρ > M is true. Consider the

Lyapunov function J(W) ,
∑M

m=1 Wm. Then, we have

E [J(W[t+ 1])− J(W[t])|W[t] = W]

(a)
=

M∑

m=1

E [νm[t]− µm[t]|W[t] = W]

=E [νΣ[t]]−
M∑

m=1

E [µm[t]|W[t] = W]

(b)

≥ρ−M
(c)
> 0, (45)

where step (a) uses the dynamic of workload (cf. (2)); (b)
uses νΣ[t] =

∑M
m=1 νm[t], E [νΣ[t]] = ρ, and the fact that

µm[t] ≤ 1; (c) uses our contradictory assumption.

Thus, by [19, Theorem 3.3.10], no policy can stabilize the

system.

(2) (Sufficiency) Proposition 3 in Section IV shows that any

arrival traffic intensity ρ strictly inside Λ (i.e., ρ < M ) can be

supported by the policy proposed in Section IV. This together

with the necessity proof establishes the desired result.
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