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Abstract—With the rapid growth of wireless compute-intensive
services (such as image recognition, real-time language transla-
tion, or other artificial intelligence applications), efficient wireless
algorithm design should not only address when and which users
should transmit at each time instance (referred to as wireless
scheduling) but also determine where the computation should be
executed (referred to as offloading decision) with the goal of min-
imizing both computing latency and energy consumption. Despite
the presence of a variety of earlier works on the efficient offloading
design in wireless networks, to the best of our knowledge, there
does not exist a work on the realistic user-level dynamic model,
where each incoming user demands a heavy computation and
leaves the system once its computing request is completed. To
this end, we formulate a problem of an optimal offloading design
in the presence of dynamic compute-intensive applications in
wireless networks. Then, we show that there exists a fundamental
logarithmic energy-workload tradeoff for any feasible offloading
algorithm, and develop an optimal threshold-based offloading
algorithm that achieves this fundamental logarithmic bound.

Index Terms—Offloading, user-level dynamics, compute-
intensive applications, low latency, and energy efficiency.

I. INTRODUCTION

With the recent advances in Artificial Intelligence (AI) tech-
niques, there is a strong need for pushing machine intelligence
to mobile devices, such as smartphones, tablets, e-readers,
and smart watches. The reason behind this is that mobile
devices became aware of users’ location, and are capable of
providing convenient and seamless connections from anywhere
at anytime, and closely accompany humans that helps in
learning users’ behavioral patterns and monitoring users’ health
status. For example, users may use mobile devices to recognize
an image, translate English to foreign languages (such as
Chinese, French, and Spanish) in real-time, or even diagnose
their diseases by recording their appearances, behaviors and
symptom descriptions. Therefore, intelligence applications are
nowadays increasingly developed for every category of mobile
services. To support such a technology need and trend, tech-
nology giants have recently developed various AI development
platforms, such as Facebook Caffe2 and Google TensorFlow
Lite, to facilitate and speedup the design of mobile intelligent
applications.

Different from traditional wireless data/voice/video services,
mobile intelligence services typically require intensive com-
putations while demanding low energy consumption and low
latency. On one hand, each mobile user has limited computing

power and thus can complete computations with a relatively
slow speed and large energy consumption, while edge servers
usually have high-performance computing units and can pro-
cess a large amount of computing tasks in a much faster way.
On the other hand, if all computing tasks are uploaded to
edge servers through resource-restrictive wireless networks,
they will not only result in a large transmission delay but
also consume a large amount of energy. Therefore, in order
to minimize both processing delay of computing tasks and the
energy consumption of mobile users, each mobile user needs
to decide whether the incoming computing task is processed in
his/her local device or is uploaded to edge servers via wireless.

While the offloading design in wireless networks has re-
ceived great research interest, much of prior work (see [1]
for a thorough survey) used simulations and heuristics to
reveal its advantage over both local and cloud computing
only, and lacks of its fundamental understanding and algorithm
design with provable performance guarantees, which is crucial
especially with the explosive growth of wireless intelligent
applications with high performance needs. Some recent work
tried to explore this important direction. For example, [2]–
[4] focused on optimal offloading design in single-user cases.
[5]–[9] studied the multi-user cases with static users and
computational workloads. None of existing work focuses on the
realistic case with dynamic users and random computational
workloads, which is the typical feature of mobile computing
networks and is the main focus of this paper. Although several
efficient wireless scheduling algorithms (e.g., [10]–[13]) have
been developed in the presence of dynamic users, they did not
address offloading designs. Therefore, the proposed solutions in
existing work on offloading design (e.g., [5]–[9]) and schedul-
ing design (e.g., [10]–[13]) ) do not apply and new algorithm
designs are required to address the optimal offloading design
in the presence of dynamic compute-intensive applications.

To that end, we consider the optimal offloading design in the
realistic user-level dynamic model, where each incoming user
demands a heavy computation and leaves the system once its
computation is completed. Our main contributions are listed as
follows:
• In Section II, we formulate a problem of an optimal

offloading design in the presence of dynamic users.
• In Section III, we first derive a universal energy-workload



tradeoff for any feasible offloading algorithm, and then develop
an optimal algorithm that achieves this fundamental logarith-
mic bound.

II. SYSTEM MODEL

We consider a wireless system with one access point (AP)
equipped with powerful servers (referred to as edge servers),
where each incoming user carries a compute-intensive task and
leaves the system once its computation is completed. Here,
each incoming user should make an offloading decision that de-
termines whether its computing task is executed by its portable
device with limited computing capability or by powerful edge
servers via wireless transmission. Due to wireless interference,
at most one user can be scheduled for data transmission at each
time instance, which is determined by the AP (referred to as
wireless scheduling). We assume that the system operates in a
time-slotted manner, where each mobile user randomly arrives
and makes an offloading decision at the beginning of each time
slot and the scheduling decision is made by the AP at the end
of each time slot.

To facilitate our mathematical modeling, we unify the units
for the processing speed of each mobile user and wireless
transmission rate, and ignore the computing time in powerful
edge servers. In particular, we assume that the number of
packets1 that a newly arriving mobile user carries in each time
slot follows an arbitrary probability distribution with a finite
support, and is independently and identically distributed (i.i.d.)
over time and users with the same probability distribution as
that of a random variable F̃ .

Let AF [t] denote the number of arriving users that have a
size of F packets in time slot t that is i.i.d. over time with mean
λF > 0. Let Fmax denote the maximum number of packets
a newly user can carry. We also use AF [t] to denote the set
of arriving users with the size of F packets in time slot t. Let
A[t] ,

∑
F AF [t] denote the number of users arriving in time

slot t and thus its mean λ , E[A[t]] is equal to
∑
F λF . We

assume that A[t] ≤ Amax for some Amax > 0 for all t ≥ 0,
and q , Pr{A[t] = 0} > 0.

Each mobile user j has a limited computing power and thus
can only process µL packets in each time slot. We use Cj [t]
to capture wireless channel fading of user j, which measures
the maximum number of packets that can be transmitted in
time slot t if user j is scheduled for data transmission. We
assume that {Cj [t], j ∈ N [t]} are independently distributed
across users and i.i.d. over time with a finite support2, where
N [t] denotes the set of mobile users awaiting for wireless
transmission in time slot t. Let Cmax denote the maximum
channel rate. Here, we reasonably assume that the probability
that each mobile user achieves the maximum channel rate is
strictly positive, i.e., pmax , Pr{Cj [t] = Cmax} > 0,∀j ∈
N [t], t ≥ 0. We assume that Cmax > µL > 0. Indeed, in [14],
the authors showed that it is faster to transmit the task to edge

1Here, a packet refers to as a minimum amount of computing and wireless
communication units.

2Due to the finite number of modulation and coding schemes, each mobile
user has a finite number of channel rates.

servers via WiFi than that executed by its mobile device. Fig.
1 shows a snapshot of a wireless system with five mobile users
with different computing demands.

Powerful Servers

User 1

User 2

User 3

Access Point

User 4

User 5

Fig. 1: System model: “blue” and “red” computing tasks denote
that they are being processed in local devices and are being
uploaded to edge servers, respectively.

To capture the heterogeneous energy consumption due to
the computation and wireless communication of each mobile
user, we use eL and eE to denote the unit power consumption
of executing computing tasks and wireless communication,
respectively. We assume that eL > eE > 0. Indeed, it has
been reported in [14] that mobile CPU and GPU consume 6.45
watt and 7.89 watt, respectively, while it only takes 4 watt for
wireless transmission via WiFi.

We use hL and hE to denote the minimum number of
time slots required for the user to complete its local compu-
tation and transmission to edge servers, respectively, and thus
h , (hL, hE) denotes an offloading decision vector. Since we
consider the case that the computation is executed either in a
local device or in edge servers via wireless communication,
for each incoming user with the size of F , h is equal to either
(dF/µLe, 0) or (0, dF/Cmaxe). We are interested in minimiz-
ing average energy consumption while meeting the desired
throughput. This can be achieved by solving the following
optimization problem.

min
{α(h|F ),∀h,F≥0}

∑
F

λF
∑
h

α(h|F ) (eLhL + eEhE) (1)

s.t.
∑
F

λF
∑
h

α(h|F )hE ≤ 1, (2)

α(h|F ) ≥ 0,∀h, F ≥ 0, (3)∑
h

α(h|F ) = 1,∀F ≥ 0, (4)

α(h|F ) = 0 if F > hLµL + hEC
max, (5)

where α(h|F ) denotes the probability that the user with the
size of F packets makes an offloading decision vector h. In
the above optimization problem, the objective function is to
minimize the total average energy consumption of mobile users
while guaranteeing all service requests are fulfilled. Inequality
(2) is the network capacity constraint which means that the
average workload awaiting for wireless transmissions should
not be greater than 1. Inequality (5) states that the offloading



decision for each mobile user should guarantee sufficient
service for completing his/her service request.

Since Cmax > µL, for each incoming user j, its local
workload is always greater than its network workload, i.e.,
hj,L > hj,E . This together with the fact that eL > eE implies
that it is better to upload all computing tasks in order to min-
imize energy consumption if the network capacity constraint
(2) is satisfied. To avoid this trivial solution, we assume that
ρ , λE

[⌈
F̃ /Cmax

⌉]
≥ 1 and thus the network capacity

constraint (2) is violated if all incoming tasks are uploaded to
edge servers via wireless communication. However, it is worth
mentioning that our developed algorithm (cf. Section III-B) can
easily address this case.

In this paper, we focus on the offloading design for each user
that optimally solves optimization problem (1)-(5). In the rest
of the paper, we consider the following Maximum-Channel-
Rate-First scheduling policy (see [10], [11]) within the AP:
in each time slot, the AP always serves a user j∗[t] with the
maximum channel rate among all its existing users awaiting for
wireless transmission, breaking ties uniformly at random, i.e.,
j∗[t] ∈ argmaxj∈G[t] Cj [t], where G[t] , {j : hj,E [t] > 0}
denotes the set of mobile users that are awaiting for uploading
their computing tasks to edge servers in time slot t. As we
show later, our proposed offloading algorithm together with
this specific scheduling policy solves the problem (1)-(5).

We note that our considered user-level dynamic model
differs from traditional stochastic optimization framework (e.g.,
[15]) in the following two aspects: (i) The dynamics of mobile
users is short-term and users will leave the network once they
complete their computing tasks; (ii) Each mobile user suffers
from an independent channel fading and have different service
rates in different time slots. These differences pose significant
challenges on our efficient algorithm design and analysis.

III. OPTIMAL OFFLOADING ALGORITHM DESIGN

In this section, we propose an offloading algorithm that
achieves the optimal tradeoff between energy consumption
and total network workload. To that end, we first develop a
universal energy-workload bound under any policy.

A. Fundamental Energy-Workload Bound

We first characterize the underlying dynamics of mobile
users by introducing the following notations. Let W [t] denote
the total network workload in time slot t that measures the
minimum number of slots required for completing all existing
computing requests via wireless communications. Then, the
evolution of W [t] can be described as follows:

W [t+ 1] = W [t] + ν[t]− γ[t], (6)

where ν[t] ,
∑
F

∑
j∈AF [t] hj,E [t] denotes the total network

workload increment due to newly arriving users under the
offloading decision vector hj [t] , (hj,L[t], hj,E [t]) for each
user j in time slot t, and γ[t] is the amount of network workload
decreasing in time slot t.

Next, we prove that there exists a fundamental logarithmic
tradeoff between the average energy consumption and the

average network workload, i.e., the network workload is at least
Ω(logK) under any policy that achieves a long-term average
energy expenditure within O(1/K) of the optimal solution to
the Problem (1)-(5), where K > 0 is some parameter.

Proposition 1: If the policy φ yields an average energy
consumption P (φ) satisfying

P (φ) ≤ Pmin +O(1/K), (7)

then the average network workload must be at least Ω(logK)

if ρ , λE
[⌈
F̃ /Cmax

⌉]
≥ 1, where Pmin is the solution to

the optimization problem (1)-(5).
Proof: When ρ , λE

[⌈
F̃ /Cmax

⌉]
≥ 1, it is energy

optimal to upload incoming computing tasks with probabil-
ity 1/ρ. Therefore, in order to achieve the average energy
consumption within O(1/K) of the minimum energy con-
sumption, it should upload incoming computing tasks with
probability at least 1/ρ − 1/(Kλ(eLhL,max − eEhE,max)),
where hL,max , E

[⌈
F̃ /µL

⌉]
and hE,max , E

[⌈
F̃ /Cmax

⌉]
.

Thus, the admitted network workload E[ν̂[t]] should satisfy

E[ν̂[t]] ≥ 1− δ, (8)

where δ , hE,max/(K(eLhL,max − eEhE,max)).
Since we consider the Maximum-Channel-Rate-First

scheduling policy in this paper, it is not hard to show
that the system is stable. The proof is similar to that in
[10], [11] and hence is omitted here. Thus, in steady state,
Pr{γ[t] = 1} = E[ν̂[t]] ≥ 1 − δ. The rest of the proof is
similar to that of [16, Theorem 2] and we provide here for
completeness. Indeed, in steady state,

nδ ≥
n−1∑
t=0

Pr{γ[t] = 0}

(a)

≥ Pr

{
n−1⋃
t=0

{γ[t] = 0}

}
(b)

≥ Pr {W [0] ≤ n− 1, ν[t] = 0,∀0 ≤ t ≤ n− 1}
(c)

≥ Pr{W [0] ≤ n− 1}qn

= (1− Pr{W [0] ≥ n}) qn

(d)

≥

(
1− E[W̃ ]

n

)
qn

(e)

≥ 1

2
qn, (9)

where step (a) uses the union bound; (b) follows from the fact
that if the event {W [0] ≤ n − 1, ν[t] = 0,∀0 ≤ t ≤ n − 1}
happens, then γ[t] = 0 for at least one time slot among the first
n slots; (c) is true for q , Pr{ν[t] = 0} = Pr{A[t] = 0} ∈
(0, 1); (d) is true for W̃ denoting the steady-state workload and
uses Markov Inequality; (e) is true by taking n = d2E[W̃ ]e.

Therefore, we have

δ ≥ 1

2n
qn ≥ e−2nqn = e−n(2−log q), (10)



where the second last step uses the fact that 1/(2x) ≥
e−x,∀x > 0. Thus, we have

n ≥ 1

2− log q
log

1

δ
. (11)

Since n =
⌈
E[W̃ ]

⌉
≤ 2E[W̃ ] + 1, we have

E[W̃ ] ≥ 1

2

(
1

2− log q
log

1

δ
− 1

)
= Ω (logK) , (12)

where we recall δ , hE,max/(K(eLhL,max − eEhE,max)).

B. Optimal Energy-Workload Tradeoff Algorithm

Having established a fundamental energy-workload logarith-
mic tradeoff, we develop the following threshold-based policy
that achieves this logarithmic tradeoff.

Threshold-Based Offloading (TBO) Algorithm with Param-
eters 0 < θ < 1 and W > 0: In each time slot t, for each
incoming user j, with probability θ/ρ, it attempts to upload
all its computing workload to edge servers if W [t] < W .
Otherwise, it keeps all computations in its local device. For
those users awaiting for wireless transmissions, the AP deploys
the Maximum-Channel-Rate-First Scheduling policy.

Remarks: (1) In the TBO Algorithm, the AP broadcasts its
network workload W [t] in each time slot t, and thus each
incoming user will upload its computing tasks to edge servers
via wireless networks if W [t] < W , and execute computations
locally otherwise.

(2) Even though we assume ρ ≥ 1, the algorithm can easily
adapt to the case with ρ < 1 by changing the upload attempting
probability θ/ρ to min{1, θ/ρ}.

(3) In our proposed TBO Algorithm, we require the knowl-
edge of arrival intensity ρ, which is usually not available.
However, we can use the estimate ρ̃[t] = (1−a)ρ̃[t−1]+aν[t]
for some parameter a ∈ (0, 1) to replace ρ.

Next, we will show that the proposed TBO Algorithm can
achieve the fundamental logarithmic energy-workload tradeoff.
To that end, we first provide an upper bound on the tail
probability of network workload under the TBO Algorithm.

Lemma 1: Under the TBO Algorithm, if the admitted
throughput θ is equal to 1− ζ/2, then we have

Pr{W ≥W} ≤M(ζ)e−W ,∀W > 0, (13)

where

M(ζ) ,eη(ζ)(νmax+4H/ζ)/(1− r(η(ζ))), (14)

η(ζ) ,
1

4νmax
log

(
1 +

ζ

4νmax

)
,

r(η(ζ)) ,eη(ζ)νmax − η(ζ)

(
νmax +

ζ

4

)
∈ (0, 1). (15)

H , ν2max + wmax

− log(1−pmax)
e− log2(1−pmax), νmax ,

AmaxdFmax/Cmaxe, wmax , dFmax/Cmaxe, and W denotes
the steady-state random variable of the workload process under
the TBO Algorithm.

Proof: The proof is available in Appendix A.
Proposition 2: Under the TBO Algorithm, if θ and W satisfy

θ = 1− 1

2
ζ and W = log

2M(ζ)

ζ
,

where M(ζ) is defined in (14), ζ = hE,max/(K(hL,maxeL −
hE,maxeE)), hL,max = E

[⌈
F̃ /µ

⌉]
and hE,max =

E

[⌈
F̃ /Cmax

⌉]
, then, it yields the average energy consump-

tion within O(1/K) of the minimum energy consumption at
the cost of network workload growing with O(logK).

Proof: By setting θ = 1− ζ/2 and W to satisfy Pr{W ≥
W} ≤ ζ/2, where ζ = hE,max/(K(hL,maxeL − hE,maxeE)),
the network throughput is at least 1 − ζ and thus the aver-
age energy expenditure is within O(1/K) of the minimum
energy consumption required for network stability. In such a
case, the network workload is at most W , which is equal to
log(2M(ζ)/ζ) according to Lemma 1.

Next, we show that W = O(logK). Indeed, we have

r(η(ζ)) =eη(ζ)νmax − η(ζ)

(
νmax +

ζ

4

)
=

(
1 +

ζ

4νmax

) 1
4

−
(

1 +
ζ

4νmax

)
log

(
1 +

ζ

4νmax

)
=O

(
1 +

ζ

16νmax
−
(

1 +
ζ

4νmax

)
ζ

4νmax

)
=1−O(ζ2). (16)

Therefore, M(ζ) = O(1/(1 − r(η(ζ)))) = O(1/ζ2) and thus
W = log(2M(ζ)/ζ) = O(log(1/ζ3)). This combined with the
fact that ζ = O(1/K) implies that W = O(logK).

Here, it is worth mentioning that the author in [17] developed
an algorithm that achieves optimal energy-delay tradeoff by
intelligently dropping packets and controlling transmission
power in wireless downlinks. However, the considered setup
is quite different from ours, which requires a new technique
to perform analysis. In particular, the Kingman bound used to
bound the tail probability of workload in [17] does not apply
in our case. Instead, we apply [18, Lemma 2.2] to carefully
bound such a tail probability and obtain the proper threshold.

IV. SIMULATION RESULTS

In this section, we study the performance of our proposed
TBO Algorithm and compare it with the offloading algorithm
derived from the conventional stochastic network optimization
framework (e.g. [15]), i.e., in each time slot t, given the current
network workload W [t], each arriving user j forwards all its
workload to edge servers if W [t] +K ′eE < K ′eL, and keeps
them for local processing otherwise, where K ′ > 0 is some
control parameter. This algorithm is referred to as Lyapunov
Drift Minimization based Offloading (LDMO).

In the simulation, we assume that the number of users
arriving at the system in each time slot follows a Bernoulli
distribution with mean λ = 0.8. Each user awaiting for
wireless transmissions suffers from i.i.d. channel fading with
rates 0, 1, 5, 10 and corresponding probability 0.1, 0.2, 0.5, 0.2.



The file size F̃ is equal to 20 with probability 9/19, and 1
otherwise, and thus the mean file size is equal to 10. We set
local processing rate µL = 1, eL = 7 and eE = 4. Fig. 2a
shows that our developed TBO algorithm achieves a much
better energy-workload tradeoff than the LDMO Algorithm
derived from the conventional stochastic network optimization
framework. Interestingly, we can see from Fig. 2b that the com-
puting latency under the proposed TBO Algorithm is roughly
equal to 5, independent from the average energy consumption.
Note that if all computing tasks are processed in local devices,
it takes 10 time units on average under our setup. Thus, the
computation speed under the proposed Threshold-based policy
is twice faster than that of local-only approach.
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Fig. 2: Comparison between TBO and LDMO algorithms

V. CONCLUSIONS

In this paper, we first formulated a problem of offloading
design with the goal of minimizing average energy consump-
tion while maximizing system throughput in the presence of
dynamic users. Then, we proved that no algorithm can beat a
logarithmic energy-workload tradeoff and developed an opti-
mal threshold-based algorithm that achieves this fundamental
logarithmic bound. Finally, simulation results were provided to
demonstrate the efficiency of our proposed algorithm.

APPENDIX A
PROOF OF LEMMA 1

Under the TB Algorithm with threshold W > 0, the network
workload W [t] evolves as follows:

W [t+ 1] = min
{
W,W [t] + ν̂[t]− γ[t]

}
, (17)

where E[ν̂[t]] = θ = 1 − ζ/2. Let N [t] be the set of users
awaiting for wireless transmission. Define {Ŵ [t]}t≥0 with the
following evolution

Ŵ [t+ 1] = Ŵ [t] + ν̂[t]− γ̂[t], (18)

where γ̂[t] is the amount of workload decreasing in time
slot t, and is determined by the Maximum-Channel-Rate-First
Scheduling policy as shown in the JOWS Algorithm. Let N̂ [t]
be the set of users awaiting for wireless transmissions in the
associated system. If W [0] = Ŵ [0] = 0, then it is easy to show
that W [t] ≤ Ŵ [t],∀t ≥ 0. Indeed, if we couple channel fading
of same users and arrival processes in both systems, then under

the Maximum-Channel-Rate-First Scheduling policy, we have
N [t] ⊆ N̂ [t] and W [t] ≤ Ŵ [t]. Therefore, we have

Pr{W [t] ≥W} ≤ Pr{Ŵ [t] ≥W},∀t ≥ 0. (19)

Next, we focus on upper-bounding Pr{Ŵ [t] ≥ W}. We will
show that

E

[
Ŵ [t+ 1]− Ŵ [t]

∣∣∣Ŵ [t]
]
≤ −1

4
ζ, if Ŵ [t] ≥ 4H

ζ
, (20)

where H , ν2max + wmax

− log(1−pmax)
e− log2(1−pmax). This to-

gether with the fact that |Ŵ [t + 1] − Ŵ [t]| ≤ νmax ,
AmaxdFmax/Cmaxe implies that, accordingly to [18, Lemma
2.2], there exists a η1 > 0 and r(η, ζ) , eηνmax − η(νmax +
ζ/4) ∈ (0, 1),∀0 < η < η1, such that

E

[
eη(Ŵ [t+1]−Ŵ [t]); Ŵ [t] ≥ 4H

ζ

∣∣∣∣Ŵ [t]

]
≤ r(η). (21)

Therefore, for 0 < η < η1, we have

E

[
eηŴ [t+1]

∣∣∣Ŵ [t]
]

=E

[
eηŴ [t+1]; Ŵ [t] ≥ 4H

ζ

∣∣∣∣Ŵ [t]

]
+ E

[
eηŴ [t+1]; Ŵ [t] <

4H

ζ

∣∣∣∣Ŵ [t]

]
≤r(η)E

[
eηŴ [t]; Ŵ [t] ≥ 4H

ζ

∣∣∣∣Ŵ [t]

]
+ eη(νmax+4H/ζ)

≤r(η)eηŴ [t] + eη(νmax+4H/ζ), (22)

where the second last step uses inequality (21) and the fact
that Ŵ [t+ 1] ≤ Ŵ [t] + νmax. This implies

E

[
eηŴ [t+1]

]
≤ r(η)E

[
eηŴ [t]

]
+ eη(νmax+4H/ζ). (23)

By using (23) and iterating over t, we have

E

[
eηŴ [t]

]
≤ (r(η))tE

[
eηŴ [0]

]
+

1− (r(η))t

1− r(η)
eη(νmax+4H/ζ).

Hence, in steady state, we have

E

[
eηŴ

]
≤ 1

1− r(η)
eη(νmax+4H/ζ), (24)

where we use Ŵ to denote the steady-state random variable of
{Ŵ [t]}t≥0. Let W denote the steady-state random variable of
{W [t]}t≥0. Then, according to (19), we have

Pr{W ≥W} ≤Pr{Ŵ ≥W}

= Pr{eηŴ ≥ eηW }
(a)

≤ e−ηWE
[
eηŴ

]
≤M(η)e−ηW , (25)

where step (a) uses Markov’s Inequality; (b) uses (24) and is
true for M(η) , eη(νmax+4H/ζ)/(1− r(η)).

Next, we show that if η = 1
2νmax

log(1 + ζ/(4νmax)), then

r(η) , eηνmax − η(νmax + ζ/4) ∈ (0, 1). (26)



To see it, let’s consider the derivative of r(η).

r′(η) = νmaxe
ηνmax −

(
νmax +

ζ

4

)
. (27)

We note that r′(0) = −ζ/4 < 0. By setting r′(η) equal to 0,
we have

η =
1

νmax
log

(
1 +

ζ

4νmax

)
. (28)

Therefore, r′(η) < 0,∀0 < η < η and hence r(η) decreases in
the interval (0, η). We note that

r(η) =eηνmax − η
(
νmax +

ζ

4

)
=1 +

ζ

4νmax
−
(

1 +
ζ

4νmax

)
log

(
1 +

ζ

4νmax

)
. (29)

Note that ζ/(4νmax) < 1 and thus r(η) > 0. In addition,
we note that r(0) = 1. Hence, by setting η = η/2, we have
r(η) ∈ (0, 1).

Finally, we prove (20) to complete the proof. To that end, we
select Lyapunov function V2[t] , Ŵ [t]. Consider its expected
drift ∆V2[t] = E [V2[t+ 1]− V2[t]|W [t]].

∆V2[t] , E

[
Ŵ [t+ 1]− Ŵ [t]

∣∣∣Ŵ [t]
]

=E

[√
Ŵ 2[t+ 1]−

√
Ŵ 2[t]

∣∣∣∣Ŵ [t]

]
(a)

≤ 1

2Ŵ [t]
E

[
Ŵ 2[t+ 1]− Ŵ 2[t]

∣∣∣Ŵ [t]
]

(b)
=

1

2Ŵ [t]
E

[
(Ŵ [t] + ν̂[t]− γ̂[t])2 − Ŵ 2[t]

∣∣∣Ŵ [t]
]

(c)

≤
E

[
Ŵ [t](ν̂[t]− γ̂[t])

∣∣∣Ŵ [t]
]

+H1

Ŵ [t]

(d)

≤
θŴ [t]− E

[
Ŵ [t](1− (1− pmax)|N̂ [t]|)

∣∣∣Ŵ [t]
]

+H1

W [t]

(e)

≤
θŴ [t]− E

[
Ŵ [t](1− (1− pmax)Ŵ [t]/wmax)

∣∣∣Ŵ [t]
]

+H1

Ŵ [t]

(f)

≤
− 1

2ζŴ [t] + Ŵ [t](1− pmax)Ŵ [t]/wmax +H1

Ŵ [t]
(d)

≤ − 1

2
ζ +

H

Ŵ [t]
, (30)

where step (a) uses the fact that f(x) =
√
x for x ≥ 0 so

that f(y)− f(x) ≤ f ′(x)(y − x) = (y − x)/(2
√
x) with y =

Ŵ 2[t + 1] and x = Ŵ 2[t]; (b) uses the dynamics of Ŵ [t],
i.e., (18); (c) is true for H1 , v2max; (d) follows from the fact
that E[ν̂[t]] = θ and Maximum-Channel-Rate-First scheduling
policy; (e) uses the fact that |N̂ [t]| ≥ Ŵ [t]/wmax and we
recall that wmax , dFmax/Cmaxe; (f) uses θ = 1− ζ/2; (g)
uses the fact that limx→∞ x(1 − pmax)x/wmax = 0 and thus
x(1 − pmax)x/wmax ≤ H2 , wmax

− log(1−pmax)
e− log2(1−pmax) and

is true for H , H1 +H2.
Thus, (20) directly follows from (30).
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