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Abstract— We consider the problem of routing Bernoulli
arrivals to parallel queues, where each queue provides service
according to an independent Bernoulli process. We assume
that the total arrival rate exceeds the sum of the service rates
of the queues. Since such a queueing system is unstable, the
vector of queue lengths does not have a well-defined stationary
distribution. However, one metric which can be used to compare
routing policies is the amount of unused service in the system.
To lower-bound the cumulative unused service in the system, we
present a “queue reversal” theorem for a single-server queue
with independent and identically distributed (i.i.d.) arrivals and
i.i.d. services: assuming that the queue is initially empty, the
expected cumulative unused service is equal to the expected
queue length in a queue where the arrivals and services are
reversed. Thus, the expected cumulative unused service in the
unstable system is equal to the expected queue length in a stable
system, which can be calculated. Using this result for a single-
server queue, we obtain a lower bound on the expected unused
service in the parallel queueing system for any feasible routing
policy. We then compare this lower bound to the performance of
two simple routing policies: Randomized and Join-the-Shortest
Queue Routing.

I. INTRODUCTION

The classical problem of routing random arrivals to par-

allel queues with random services has received a lot of

research interest (e.g., [1], [2], [3]). So far, we have a better

understanding when the system is under-loaded, that is, when

the arrival rate is less than the sum of the service rates.

In under-loaded conditions, Join-the-Shortest-Queue (JSQ)

policy that forwards all arrivals to a queue with the minimal

queue-length, and the Randomized-Routing (RR) policy that

routes all arrivals to a queue with a probability proportional

to its service rate have been shown to stabilize the queueing

system (i.e., they keep the mean queue-lengths finite). In

fact, the JSQ policy can be regarded as a special case of the

more general class of backpressure-based Max-Weight (MW)

policies studied in [4]. Moreover, it minimizes the total mean

queue-length in the heavy-traffic regime ([5], [2]), where the

arrival rate approaches to the total sum of service rates from

below.

In contrast to the rich and tight results on the performance

of state-based policies (including JSQ routing and MW

scheduling) in under-loaded conditions, their performance in

overloaded regimes (i.e., when the arrival rate is greater than
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the total sum of service rates) is less understood. There are

several interesting works (e.g., [6], [7], [8], [9]) dealing with

over-loaded queueing systems. Under various conditions,

these works study the performance and optimization of the

metrics of queue overflow rates (i.e., the rates at which

the queues grow in the overloaded regime), and the related

metric of the departure rates of served packets. For example,

in [7], [8], the authors focus on the design and analysis of

MW type scheduling policies to minimize the queue overflow

rates or to maximize the total departure rate from the system.

One caveat with the performance metrics of overflow rate

and departure rate is that, being long-term time averages, they

may not be able to differentiate between policies in terms of

their convergence rates to the same limit. In fact, as will

be noted in Section II, even suitably selected randomized

decisions can achieve optimal overflow or departure rate

levels in overloaded queueing systems. With this motivation,

in this paper we propose and analyze the metric of cumulative

unused service over time to analyze the performance of

routing policies in overloaded systems. This metric not only

measures the amount of under-utilization in the multi-server

system over time, but also captures the speed with which

the running-average of the departure rates converges to their

limiting value (cf. Section II).

The proposed cumulative unused service process is dif-

ficult to analyze in both stable and unstable systems due

to its non-stationary nature. To tackle this challenge, we

establish a novel “queue reversal” result (cf. Theorem 1)

that equates the expected cumulative unused service in the

unstable system to the expected queue-length of a related

(in fact, reversed) stable system. With this connection, we

can obtain the mean cumulative unused service metric by

studying the mean queue-length of a stable Markov chain,

for which a rich set of tools and results exists. Based on this

fundamental result, we are able to obtain a nontrivial lower

bound (cf. Section III) on the expected cumulative unused

service for any feasible routing policy serving N parallel

queues under overloaded conditions.

This lower bound motivates us to study the performance of

two well-known policies, namely Randomized Routing (RR)

and Join-the-Shortest Queue (JSQ) policies, with respect to

this fundamental limit (cf. Section IV). It is easy to observe

that both RR and JSQ policies are departure-rate-optimal,

in that, they both achieve the maximum total departure rate.

After utilizing the queue-reversal theorem once again, we

establish tight upper and lower bounds on the total mean

cumulative unused service under the RR policy (cf. Proposi-

tion 2). This result reveals that the cumulative unused service

performance under the RR policy deviates significantly from
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the lower-bound, and suggests that the RR policy is sub-

optimal. We also note that the JSQ policy minimizes the

total cumulative unused service over all feasible policies

under symmetric servers through a standard path-coupling

argument (cf. Proposition 3).

To compare the unused service performance of the JSQ

policy to the lower bound and the RR policy, we then per-

form numerical studies for both symmetric and asymmetric

conditions (cf. Section V). These investigations show that

for both conditions, the expected cumulative unused service

performance of the JSQ policy approaches the lower bound,

suggesting its optimality both in the scaling of the network

size and the critically overloaded regime (where the total ser-

vice rate approaches the arrival rate from above). Moreover,

these numerical results demonstrate that the lower bound we

derive through the queue-reversal theorem is indeed tight in

these two scaling regimes.

II. SYSTEM MODEL

We consider the discrete-time parallel queueing system

depicted in Figure 1. Packets arrive according to an i.i.d.

Bernoulli process1 {A[t]}t≥0 with mean rate of λ. Arriving

packets are routed to one of N infinite-size queues, which

provides service according to an i.i.d. Bernoulli process

{Sn[t]}t≥0 with mean rate of µn, ∀n = 1, 2, ..., N .

Router

A[t]

A1
( ) 

[t]
Q1

( ) 
[t]

Qn [t]

QN [t]

S1[t]

Sn[t]

SN[t]

An [t]

AN [t]

Fig. 1: Routing to parallel queues.

In each slot t, a routing policy π routes A
(π)
n [t] of

the incoming packets to the nth queue such that A[t] =
∑N

n=1 A
(π)
n [t]. We let Q

(π)
n [t] be the length of queue n in

slot t under policy π, whose evolution is given by

Q(π)
n [t+ 1] = max

(

0, Q(π)
n [t] +A(π)

n [t]− Sn[t]
)

(1)

= Q(π)
n [t] +A(π)

n [t]− Sn[t] + U (π)
n [t],

where U
(π)
n [t] , max(0, Sn[t] − Q

(π)
n [t] − A

(π)
n [t]) denotes

the amount of unused service at the nth server in slot t. Ac-

cordingly, Sn[t]− U
(π)
n [t] denotes the number of departures

from queue n in slot t under policy π.

1In this work, we focus on the case of Bernoulli processes to simplify
the exposition and analysis. However, many of our results can be extended
to more general processes.

In this work, we are interested in the operation of the

system in overloaded conditions, i.e., when the overload rate

ǫ , λ−
∑N

n=1 µn > 0. As argued in Section I, an important

metric of performance in such a scenario is the expected total

cumulative unused services until time T starting from zero

initial state2:

E

[

T−1
∑

t=0

U
(π)
Σ [t]

]

, (2)

under routing policy π, where U
(π)
Σ [t] ,

∑N

n=1 U
(π)
n [t].

This metric can characterize the convergence speed of the

running-average of the expected departure rate by noting that

E

[

d
(π)

[T ]
]

,
1

T

T−1
∑

t=0

E

[

Sn[t]− U (π)
n [t]

]

=

N
∑

n=1

µn −
1

T
E

[

T−1
∑

t=0

U
(π)
Σ [t]

]

. (3)

This expression clearly shows that any policy π satisfying

lim
T→∞

1

T
E

[

T−1
∑

t=0

U
(π)
Σ [t]

]

= 0

achieves the maximum departure rate of
∑N

n=1 µn that the

system can provide. Yet, many policies, including random-

ized policy (see discussion following Definition 2), can pos-

sess this limiting behavior. The study of E
[

∑T−1
t=0 U

(π)
Σ [t]

]

is

important in extracting additional critical information about

the convergence speed of the running-average of the expected

departure rate to its limit. This motivates us to investigate the

expected cumulative unused service performance of routing

over parallel queues.

In addition to fundamental bounds for all feasible policies,

in this work, we study the performance of two well-known

routing policies: Join-the-Shortest-Queue (JSQ) policy ([1]),

and Randomized Routing (RR) policy, described next.

Definition 1 (JSQ policy): In each time slot, the Join-the-

Shortest-Queue (JSQ) policy forwards all incoming packets

to the queue with the shortest queue-length in that time-slot.

In case of ties, it selects a queue uniformly at random among

the queues with the shortest queue-length.

The JSQ policy has been shown to possess many desirable

properties under stable conditions (i.e., λ <
∑N

n=1 µn),

such as throughput-optimality, and mean delay optimality in

heavy-traffic regimes, i.e., it minimizes the mean delay as

the arrival rate approaches to the total sum of the service

rates ([2]). We are interested in investigating whether the

JSQ policy also performs well in terms of the metric in (2)

in the over-loaded regime.

Another simple routing policy is the Randomized Routing

(RR) policy, which is defined as follows:

2Throughout this work, we assume (unless stated otherwise) the initial
condition of the system to be zero for all queues in order to capture the worst
case cumulative unused service performance. Yet, the results are extendable
to non-zero initial conditions.
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Definition 2 (RR policy): In each time slot, the Random-

ized Routing (RR) policy forwards all incoming packets

to the queue n with probability qn ,
µn

∑N

i=1 µi

, ∀n =

1, 2, ..., N , i.e., in proportion to its service rate.

We note that the RR policy requires statistical information

about the service rates, while the JSQ policy needs queue-

length information in each slot. It is easy to see that both

the JSQ and RR policies can stabilize the system under

stable conditions. Under overloaded conditions, the system is

unstable under both policies.Yet, it can also be seen that all

queues will overflow under both policies, and the departure

rate expression in (3) will converge to the optimal level of
∑

n µn under each policy. Thus, in the departure rate sense,

both JSQ and RR policies are optimal. Yet, their performance

in the new metric (2) will be significantly different, as we

will observe.

Since the system is necessarily unstable in overloaded

conditions, the traditional steady-state analysis does not ap-

ply, making it difficult to analyze the unused service metric.

In the next section, we tackle this challenge by propos-

ing a queue reversal theorem. This fundamental theorem

seamlessly relates the unstable system to a related stable

system, and helps us develop a lower bound on the expected

cumulative unused service for any feasible routing policy.

III. LOWER BOUND ANALYSIS

In this section, we establish a fundamental lower bound on

the expected cumulative unused service (2) in the over-loaded

system of Figure 1. To derive the lower bound, we first

establish an interesting and surprising relationship between a

single-server queue with i.i.d. arrivals and i.i.d. services, and

a reverse queue in which the roles of the arrival and service

processes are interchanged.

A. Queue Reversal Theorem

We assume that the arrival and service processes to

a single-server queue are two independent sequences of

i.i.d. nonnegative-valued random variables3 {α[t]}t≥0 and

{β[t]}t≥0. Let Φ[t] be its queue-length in slot t, which

evolves as

Φ[t+ 1] = Φ[t] + α[t]− β[t] + γ[t], t ≥ 0, (4)

where γ[t] , max{0, β[t]−Φ[t]−α[t]} denotes the amount

of unused service in slot t.
Consider a hypothetical reversal of the single-server queue

by exchanging the arrival and service processes. Let Φ(r)[t]
be the queue-length of the reverse queue in slot t. Then, the

evolution of Φ(r)[t] can be described as

Φ(r)[t+ 1] = β[t]− α[t] + γ(r)[t], t ≥ 0, (5)

where γ(r)[t] , max{0, α[t] − Φ(r)[t] − β[t]} denotes the

amount of unused service of the reverse queue in slot t. The

single-server queue (also named the forward queue) and its

reverse queue are shown in Figure 2.

3We note that these random variables need not be Bernoulli distributed
as in the original system. This generality is necessary to apply the result to
the multi-server system in the following subsection.

.[t] �[t]
-[t]

(a)

.[t]�[t]
-
(r)[t]

(b)

Fig. 2: (a) Forward queue; (b) Reverse queue.

We now provide a key relationship between the forward

and reverse queues.

Theorem 1 (Queue Reversal Theorem): Suppose the for-

ward and reverse queues introduced above (cf. Fig. 2) start

from zero, i.e., Φ[0] = Φ(r)[0] = 0. Then, for any t ≥ 0,

the total expected unused service until time t in the forward

queue is equal to the expected queue-length at time t of the

reverse queue. Similarly, for any t ≥ 0, the expected queue-

length at time t of the forward queue is equal to the total

expected unused service until time t in the reverse queue.

In other words, given that Φ[0] = Φ(r)[0] = 0, we have

E[Φ[t]] =

t−1
∑

τ=0

E[γ(r)[τ ]], ∀t ≥ 1 (6)

E[Φ(r)[t]] =

t−1
∑

τ=0

E[γ[τ ]], ∀t ≥ 1. (7)

Proof: Let X[τ ] , α[τ ]−β[τ ], ∀τ ≥ 0. Then, we have

E[Φ[t]]
(a)
=E

[

max
0≤m≤t−1

{

t−1
∑

τ=m

X[τ ], 0

}]

(b)
=E

[

max
0≤m≤t−1

{

m
∑

τ=0

X[τ ], 0

}]

(c)
=

t
∑

k=1

1

k
E

[

max

{

k−1
∑

τ=0

X[τ ], 0

}]

, (8)

where step: (a) follows from the Lindley’s equation;

(b) uses the fact that (X[0], X[1], ..., X[t − 1]) and

(X[t − 1], ..., X[1], X[0]) have the same distribution since

{X[τ ]}τ≥0 are i.i.d.; (c) follows from the Spitzer’s Identity

(see [10]). Similarly, we can show that

E[Φ(r)[t]] =

t
∑

k=1

1

k
E

[

max

{

−

k−1
∑

τ=0

X[τ ], 0

}]

. (9)

By using the identity max{x, y} = x + y −min{x, y}, we

have

E[Φ[t]] =

t
∑

k=1

1

k
E

[

k−1
∑

τ=0

X[τ ]−min

{

k−1
∑

τ=0

X[τ ], 0

}]

(a)
=

t−1
∑

τ=0

E[X[τ ]] +

t
∑

k=1

1

k
E

[

max

{

−

k−1
∑

τ=0

X[τ ], 0

}]

(b)
=

t−1
∑

τ=0

E[X[τ ]] + E[Φ(r)[t]], (10)

where (a) follows from the fact that X[τ ], τ ≥ 0 are i.i.d.;

and (b) utilizes equation (9). By summing (4) over τ =
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0, 1, ..., t − 1 and taking the expectation on both sides, we

have

E[Φ[t]] =

t−1
∑

τ=0

E[X[τ ]] +

t−1
∑

τ=0

E[γ[τ ]]. (11)

By comparing the equations (10) and (11), we have

E[Φ(r)[t]] =

t−1
∑

τ=0

E[γ[τ ]], (12)

which proves (6). The proof of (7) follows the same steps,

but with the roles of forward and reverse queues switched.

We note that this result is a bit surprising, since the cumu-

lative unused service is non-decreasing in each sample path

while the queue-length in the reverse queue may increase,

decrease, or stay the same over time. Yet, their means are

remains equal for all t. The key contribution of the Queue

Reversal Theorem is that it relates the metric of interest in

an overloaded (forward) queue (i.e., the mean arrival rate

is strictly greater than the mean service rate) to the queue-

length in a under-loaded (reverse) queue, for which we have

mature and rich analytical tools. In fact, this theorem helps us

establish a lower bound on the expected cumulative unused

service under any feasible routing policy.

B. Lower Bound on the Cumulative Unused Service

We are ready to establish the necessary lower bound on

the unused service in the over-loaded system of Figure 1.

We construct a hypothetical single-server queue illustrated

in Figure 3 with an infinite buffer, the same arrival process

{A[t]}t≥0 as before, and the service process {SΣ[t]}t≥0,

where SΣ[t] ,
∑N

n=1 Sn[t] is the total services of the orig-

inal multi-server system. Thus, the single-server queueing

A[t]
[t]

S [t] = n Sn[t]

Fig. 3: Lower bounding system.

system stores all arrivals in a single queue for service at

the combined service amount of its multi-server counterpart.

Then, the queue-length process, {Ψ[t]}t≥0, of the new sys-

tem evolves as:

Ψ[t+ 1] = max (0,Ψ[t] +A[t]− SΣ[t])

= Ψ[t] +A[t]− SΣ[t] +W [t], (13)

where W [t] , max(0, SΣ[t] − A[t] − Ψ[t]) denotes the

amount of unused service in slot t offered by the combined

(also called resource pooled) server. The following lemma

establishes the stochastic dominance relationship4 between

4A random variable X is said to be stochastically dominated by another
random variable Y, denoted as X 4st Y , if FY (z) ≤ FX(z) for all
z ∈ R.

the original multi-server system and this single-server sys-

tem.

Lemma 1: For any initial queue-length vector Q[0] =
(Qn[0])

N
n=1, set Ψ[0] =

∑N

n=1 Qn[0]. Then, under any

feasible (possibly non-causal) routing policy π, the queue-

length process {Q(π)[t]}t≥0 and the unused service process

{U(π)[t]}t≥0 satisfies

(i) Ψ[t] 4st Q
(π)
Σ [t] ,

∑N

n=1 Q
(π)
n [t], for all t ≥ 0, and

(ii)
∑t

τ=0 W [τ ] 4st

∑t

τ=0 U
(π)
Σ [τ ], for all t ≥ 0.

That is, Ψ[t] and
∑t

τ=0 W [τ ] are stochastically dominated

by the total queue-length and the total unused services of the

N -queue system of Figure 1.

Proof: This follows from coupling the sample paths of

queue-length process in the original system with that of the

lower bounding system.

Next, we utilize the result (ii) of Lemma 1 that the total

unused service of the original multi-server system of Figure 1

is lower-bounded by the cumulative unused service in the

single-server system of Figure 3, and then apply the Queue

Reversal Theorem to get a lower bound on the expected

cumulative unused service. Note that our lower bound holds

for more general arrival and service processes.

Assumption 1 (Basic Assumptions): We assume that:

(i) The service processes {(Sn[t])n}t≥0 are i.i.d. sequences

of non-negative integer-valued and bounded random

variables with P(Sn[1] ≤ Smax) = 1, for each n. We

use the notations: µn , E[Sn[1]], σ2
n , var(Sn[1]), and

µ ,
∑N

n=1 µn.
(ii) The arrival process {A[t]}t≥0 is an i.i.d. sequence of

non-negative integer-valued and bounded random variables

with: E[A[1]] = µ + ǫ, and P(A[1] ≤ Amax) = 1,
where Amax is independent of ǫ. We use the notations:

λ , E[A[1]], and (σ(ǫ))2 , var(A[1]).

Proposition 1: Suppose Assumption 1 hold, and that the

system starts from zero initial state Q[0] = 0. Then,

the unused service process {U(π)[t]}t≥0 achieved by any

feasible routing policy π satisfies

E

[

∞
∑

t=0

U
(π)
Σ [t]

]

≥ b
(ǫ)
1 ,

ζ(ǫ)

2ǫ
−

Amax

2
, (14)

where ζ(ǫ) ,
(

σ(ǫ)
)2

+
∑N

n=1 σ
2
n + ǫ2. Further, if (σ(ǫ))2

converges to a constant σ2 as ǫ ↓ 0, then,

lim
ǫ↓0

ǫE

[

∞
∑

t=0

U
(π)
Σ [t]

]

≥
1

2

(

σ2 +
N
∑

n=1

σ2
n

)

. (15)

Proof: The proof directly follows from Queue Reversal

Theorem and Lemma 4 in [2].

In the case of symmetric conditions, with Bernoulli ar-

rivals with mean λ and symmetric Bernoulli services with

mean (λ− ǫ)/N for each server, the lower bound becomes:

lim
ǫ↓0

ǫE

[

∞
∑

t=0

U
(π)
Σ [t]

]

≥ λ−
λ2

2

(

1 +
1

N

)

. (16)

We remark that this proposition not only shows that the

total cumulative unused service over time for the unstable
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system is lower-bounded, but also explicitly relates the bound

to the degree of over-load ǫ and the number of servers N.

IV. OVERLOAD ANALYSIS OF RR AND JSQ POLICIES

In this section, we analyze the performance of the two

well-known policies: the RR policy and the JSQ policy under

the Bernoulli arrivals and services. We calculate lower and

upper bounds on the expected cumulative unused service

under the RR policy. The upper and lower bounds match

as ǫ scales down to zero. Then, we show that the JSQ policy

minimizes the cumulative unused service in the stochastic

order sense under symmetric servers.

A. Lower and Upper Bounds under the RR Policy

In this subsection, we provide lower and upper bounds on

the expected cumulative unused services under the RR policy

in the system with Bernoulli arrivals and services. Recall that

λ is the arrival rate, µn is the service rate of the nth queue,

and λ =
∑N

n=1 µn + ǫ, where ǫ > 0. Then, we have the

following result.

Proposition 2: Assume the system starts from the zero

initial state Q[0] = 0. Then, the unused service process

{U(RR)[t]}t≥0 under the RR policy satisfies

b
(RR)
LB ≤ ǫE

[

∞
∑

t=0

U
(RR)
Σ [t]

]

≤ b
(RR)
UB , (17)

where b
(RR)
LB , ζ1

2 − Nǫ
2 , and b

(RR)
UB , ζ1

2 , and also

ζ1 , λ (N − λ) + (λ− ǫ) (N − λ+ ǫ) + ǫ2. This implies

lim
ǫ↓0

ǫE

[

∞
∑

t=0

U
(RR)
Σ [t]

]

= λ(N − λ). (18)

Proof: Under the RR policy, the nth queue is equivalent

to having the Bernoulli arrivals with the mean of λ µn∑
N

i=1
µi

and the Bernoulli services with the mean of µn. Then, we

apply the Queue Reversal Theorem to each individual queue

and utilize Lemma 4 in [2] to get desired results.

Since E

[

∑∞

t=0 U
(RR)
Σ [t]

]

< ∞ for any ǫ > 0, the

running-average departure rate can converge to its service

rate. Yet, for each ǫ > 0, ǫE
[

∑∞

t=0 U
(RR)
Σ [t]

]

linearly

increases with the number of queues N , which implies

that the speed at which the running-average departure rate

converges under the RR policy scales down linearly with

the number of queues, which is undesirable in large-scale

networks. In contrast, the limiting behavior of the lower

bound in (16) is inversely related to N , which suggests that

there is a potential for significant performance improvement

over the RR policy in large scale systems. This motivates

us to study the expected cumulative unused services under

the JSQ policy, which possesses many good properties in

under-loaded regimes.

B. Optimality of the JSQ Policy in Symmetric Conditions

In this subsection, we study the problem of optimal routing

policy with respect to cumulative unused service under

symmetric Bernoulli service processes. We show that the

JSQ policy minimizes the process of the total cumulative

unused service in the stochastic ordering sense.

Proposition 3: For the parallel queueing system with

Bernoulli arrivals and symmetric Bernoulli services in Fig-

ure 1, let
{

U(JSQ)[t]
}

t≥0
and

{

U(π)[t]
}

t≥0
be the unused

service processes under the JSQ policy and any feasible

routing policy π, respectively. Then,

t
∑

τ=0

U
(JSQ)
Σ [τ ] 4st

t
∑

τ=0

U
(π)
Σ [τ ]. (19)

Proof: This follows from coupling the queue-length

realizations under JSQ and policy π appropriately. The proof

is almost the same as in [11], and thus is omitted here for

brevity.

Even though the JSQ policy is optimal in terms of the

cumulative unused service, its closeness to the lower bound

we derived in Section III is unclear. In the next section, we

demonstrate with numerical investigations that the expected

cumulative unused service under the JSQ policy, for both

symmetric and asymmetric service processes, matches the

lower bound as ǫ scales down to zero, and more importantly,

is independent of the number of queues when ǫ is sufficiently

small.

V. NUMERICAL RESULTS

In this section, we provide simulations to compare the

expected cumulative unused service performance of the JSQ

policy with the RR policy. In the simulation, we take

λ = 0.8. We consider both symmetric and non-symmetric

Bernoulli service processes. In the symmetric setup, the

service rate for the nth queue is µn = (λ − ǫ)/N , while

in the non-symmetric case, the service rate for nth queue is

µn = 2n(λ − ǫ)/(N(N + 1)). We study the impact of the

overload level ǫ = λ−
∑

n µn > 0 and the number of queues

N on the expected cumulative unused service.

A. The Impact of Overload Level ǫ on Mean Unused Services

Figure 4 shows the impact of ǫ on the expected cumulative

unused service of JSQ and RR policies when there are N = 5
queues. From Figure 4, we can observe that the expected

cumulative unused service under the JSQ policy converges

to the theoretical lower bound as ǫ scales down to zero, while

the RR policy always keeps away from the theoretical lower

bound. Thus, we conjecture that the JSQ policy is overload-

optimal, i.e., it minimizes the expected cumulative unused

service as ǫ diminishes, while the RR policy is sub-optimal.

We leave the proof of this conjecture to future investigation.

B. The Impact of Server Number N on Mean Unused Service

In this subsection, we study the impact of the number

of queues on the expected cumulative unused service under

the JSQ policy and the RR policy. Here, we fix ǫ to 0.005,

and vary the number of queues from 5 to 25. From Figure

5, we can observe that the expected cumulative unused

service under the JSQ policy stays close to the theoretical

lower bound as the number of queues N increases, while

it scales linearly with N under the RR policy, as derived in
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Fig. 4: The impact of ǫ on the expected cumulative unused service.
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Fig. 5: The impact of N on the expected cumulative unused service.

Proposition 2. This indicates that the performance of the JSQ

policy is insensitive to the network size, which is desirable

in large-scale networks.

VI. CONCLUSIONS

We considered a queueing system in which Bernoulli

arrivals are routed to parallel servers with independent

Bernoulli service processes. We studied the system perfor-

mance in the overloaded regime, i.e., the total arrival rate

is greater than the sum of the service rates of the queues.

We proposed the use of cumulative unused service as a key

metric in overloaded conditions, and provided a fundamental

lower bound on it for any feasible routing policy. In the

process of deriving the lower bound, we found a surprising

result, which may be interesting in its own right: the expected

cumulative unused service in a single-server queue with i.i.d.

arrivals and i.i.d. services is equal to the expected queue-

length in a queueing system where the roles of arrival and

service processes are exchanged. Then, we compared the

derived lower bound with the performance of two well-

known routing policies, namely randomized and join-the-

shortest queue, to observe their optimality and sub-optimality

characteristics with respect to the new metric.
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