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Abstract

We study the question of routing for minimum average drop rate over unreliable servers that are
susceptible to random buffer failures, which arises in unreliable data or manufacturing networks. In-
terestingly, we first reveal that the traditional Join-the-Shortest-Queue (JSQ) or optimal Randomized
Splitting (RS) strategies are consistently outperformed by the Constant Splitting Rule (CSR) where
the incoming traffic is split with a constant fraction towards the available servers.

This finding motivates us to obtain the optimal splitting fraction under CSR. However, the objective
function to be minimized depends on the mean queue length of the servers, whose closed-form expression
is not available and often intractable for general arrival and service processes. Thus, we use non-
derivative methods to solve this optimization problem by approximately evaluating the objective value
at each iteration. To that end, we explicitly characterize the approximation error by utilizing the
regenerating nature of unreliable buffers. By adaptively controlling the precision of this approximation,
we show that our proposed algorithm converges to an optimal splitting decision in the almost sure sense.
Yet, previous works on non-derivative methods assume continuous differentiability of the objective
function, which is not the case in our setup. We relax this strong assumption to the case when the
objective function is locally Lipschitz continuous, which is another contribution of this paper.

Keywords: Optimal routing algorithm, unreliable buffers, non-derivative methods, stochastic
networks.

1. Introduction

The design and analysis of routing strategies for unreliable networks has received a lot of research
interest (e.g.,[1], [2]). In this work, we study the problem of efficient routing for forwarding the arrivals
to parallel unreliable queues, where all data in a queue will be dropped when a failure happens. Our
goal is to design an efficient routing policy which has a small average drop rate under any arrival
rate. One application of this problem in the field of manufacturing systems is the wafer distribution
to parallel production pipelines. If the power of one production pipeline stops even for 0.07 seconds,
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all wafers in that pipeline break down. Similarly, in data networks serving delay-sensitive traffic, any
unexpected setback in the service causes the dropping of all awaiting packets. In both scenarios, we
need to make intelligent routing decisions to distribute the incoming traffic to unreliable servers, which
is the focus of this work.

Join the Shortest Queue (JSQ) policy (e.g., [3], [5]), where all arrivals are forwarded to the shortest
queue at each slot, has been widely used as a basic routing mechanism in wired or wireless commu-
nication networks. When all queues are reliable (e.g., no failure happens), the JSQ policy is shown
to have minimum delay in the symmetric case [4], or under heavy-traffic (e.g., [5], [6]), and exhibits
good performance in the general cases. However, when there are some unreliable queues, the JSQ
policy may perform poorly. To see this, consider a system consisting of one reliable queue and one
totally unreliable queue (e.g., failure happens all the time), all arrivals are routed to the unreliable
queue under the JSQ policy and thus the average drop rate is 100%. In [2], the authors studied the
Randomized Splitting (RS) policy that forwards all arrivals to a queue with a certain probability in
the similar scenario. They obtained the optimal RS for the Poisson arrivals and exponential services.
Yet, to the best of our knowledge, there does not exist a work that systematically treats this problem
under general arrival and service processes and proposes an efficient routing policy.

In this work, we propose a constant splitting rule (CSR) that forwards a constant fraction of incom-
ing traffic to each of the available (unreliable) servers. We show that the optimal CSR minimizes the
average drop rate among all routing policies when both arrivals and services are deterministic. For the
general arrival and service processes, the optimal CSR outperforms, based on numerical investigations,
the well-known policies, e.g., JSQ and RS. To obtain the optimal splitting fraction, we need to solve
the optimization problem with the objective function depending on the mean queue length. Since the
formula for the mean queue length is hard to obtain under general arrival and service processes, it
is difficult to get the exact expression for the objective function, let alone its derivative. Hence, it is
almost impossible to use first or higher order numerical optimization methods to solve this optimization
problem and thus we use non-derivative methods to get the optimal splitting fraction.

The most popular non-derivative method includes Patterned Search (PS) algorithms (e.g.,[7], [8],
[9]), which construct the set of points based on the step size varying according to a certain rule: when
no improvement point is obtained on this set in the current iteration, then the step size reduces and
the process is repeated. However, all these works require the exact functional value for the given point,
which can not be achieved in practice. In [10], the authors presented a modified PS algorithm which
adaptively adjusts the precision of the functional evaluations for the deterministic system where the
accuracy of the functional value improves by increasing the evaluation time.

In our setup, the functional evaluation includes estimating the mean queue length, which can be
approximated by the time average queue length. However, the approximate error is in the probabilistic
form and thus it is unclear how to control the precision to guarantee the convergence to the stationary
point almost surely. The earlier works (e.g.,[11], [12]) attacked this problem when the objective function
is continuously differentiable, which is not the case in our setup. We generalized the previous results to
the case when the objective function is locally Lipschitz continuous. The following items list our main
contributions along with references on where they appear in the text:

e In Section 3, we reveal the advantage of optimal CSR over JSQ or RS in the presence of buffer
breakdowns, both by showing its optimality under deterministic processes and also by providing nu-
merical results under general processes. This motivates us to obtain the optimal constant splitting
fraction for the general stochastic system by using the aforementioned PS algorithm.

e In Section 4, we first characterize the probabilistic error between the approximate value and the
true objective value. Then, we present the PS algorithm that adaptively adjusts the probabilistic error



in each iteration, which is shown to guarantee the convergence to the optimal point almost surely.

2. System Model and Problem Statement

We consider the classic system consisting of a router and L servers with associated unreliable
queues (see Figure 1). At each time slot, the router needs to determine how to forward the arrivals.
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Figure 1: System model for routing over unreliable queues

We assume that all data in the queue will be dropped if a failure happens. Let Fj[t] denote whether
a failure happens at queue [ at slot t, where Fj[t|] = 1 if a failure happens and Fj[t] = 0 otherwise.
We assume that Fj[t], VI, t, are independently distributed over queues and identically distributed over
time, with p; :== Pr{F[t] = 1} > 0,VI. Let Q,[t] be the queue length of queue [ at the beginning of slot
t. Let A[t] denote the amount of data arriving at router in slot ¢ with E[A[t]] = ), and E[A%[t]] < v
for some v < co. We assume that A[t], V¢, are identically distributed over time. Let Sj[t] denote the
maximum amount of data that can be served by server [ at slot ¢ with E[S[t]] = p; and E[S?[t]] < &
for some k; < 0o. We assume that S[t], Vi, t, are independently distributed over queues and identically
distributed over time. If the router forwards A,[t| amount of data to queue [ at slot ¢, then the evolution
of queue [ is shown as follows !:

Qit + 1] = (Qu[t] + At (1 = Fft]) - Silt) ", ¥, (1)

where (z)* := max{z,0}. Our goal is to find the routing policy {(A4;[t])%,}i>o that minimizes the
average drop rate. At each slot ¢, the amount of dropped data at queue [ is equal to (Q;[t] + A;[t]) F[t]
and thus its expected value is pE[Q;[t] + A;[t]]. Hence, our goal is to solve the following optimization
problem:

Definition 1. (Stochastic Control Problem)

T-1 L
1
Minimize limsup — pE[Qt] + Allt 2
Dl o 5SS pEIQU) + Al @)
L
Subject to > Ajft] = A[t], Vt. (3)

=1

!This particular evolution assumes arrivals into queues before failures. Other variations would not change the essential
features of the subsequent discussion.



It is very tough to solve the above stochastic control problem directly. Instead, we consider the
following efficient routing policy, which we show to be efficient in our subsequent investigations.

Definition 2. (Constant Splitting Rule (CSR)) In each time slot, forward a; fraction of incoming
data to queue [,Yl = 1,...,L — 1 and the remaining ar, = 1 — Zf;ll a; fraction of data to queue L,
where a;, ¥l =1, ..., L — 1, are non-negative and satisfy ZZL:_II a; < 1.

In Section 3, we will show that the optimal CSR is an optimal routing policy to the above stochastic
control problem for the system with symmetric failure probabilities under constant arrivals and constant
services. Moreover, through simulations, we can observe that the optimal CSR outperforms the well-
known routing policies. Thus, our main task is to obtain the optimal CSR policy in the rest of the
paper.

Since the mean queue length is a convex function of the arrival rate for a single queue (by Proposition
4 in Section 4) and the mean arrival rate for queue [ is a;A, let f;(¢;\) be the mean queue length for
queue [. Let a = (al)lL:’ll. To get the optimal CSR, we need to solve the following optimization problem:

L L
Minimize g(a) =) pifilad) + ) paA (4)
=1 =1
L—-1
subject to Zal <1 (5)
=1
a >0Vl =12 L1 (6)

It is difficult to get the exact expression for g(a) under the general arrival and service processes,
let alone to obtain its derivative. Thus, it is almost impossible to use first or higher order numerical
optimization methods to solve this optimization problem. Hence, the only option for us is to use non-
derivative methods, which only evaluates the functional value at each iteration. However, it is worth
emphasizing that it is also hard to get the exact mean queue length for general arrival and service
processes. Thus, we use the time average queue length to approximate the mean queue length with the
error characterized in the probabilistic form. By controlling the probabilistic error in each iteration,
the proposed algorithm can guarantee almost sure convergence to the optimal point. Appendix A
explores some basic properties for a single unreliable queue. Next, we will show the optimality of CSR
in the deterministic system with symmetric non-zero failure probabilities and point out its robustness
in the general stochastic system.

3. CSR Performance Analysis and Comparison

In this section, we first show that the optimal CSR minimizes the average drop rate among all
routing policies for the system with symmetric failure probabilities under constant arrivals and services.
Moreover, for general arrival and service processes, we numerically observe that the optimal CSR
outperforms the well-known routing policies, i.e., JSQ and optimal RS. These observations signify the
value of using CSR over more adaptive strategies for efficient routing over unreliable networks.

We first introduce the following lemma, which is crucial in establishing the optimality of CSR in
deterministic systems.

Lemma 1. For a single queue with constant arrival X and constant service j under the non-zero failure
probability p € (0,1), the mean queue length is %(A — )t
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PRrROOF. The proof is based on the observation that this system can be regarded as a renewal reward
process (see Appendix A). Detailed proof is provided in Appendix B. O

Proposition 1. For the system consisting of L unreliable queues with the constant service p; and same
non-zero failure probability p under the constant arrival X, the optimal CSR minimizes the average drop
rate among all routing policies.

ProOOF. Under the above setup, our goal (4) is equivalent to minimizing

T L

lim sup 7{ Z Z E[Q[t] (7)

T—oo t=1 i=1

We prove this proposition by first establishing the fact that under any routing policy, the term (7) in
the original system is lower bounded by that in a single queue with the failure probability p under the
constant arrival A and constant service Zle ;- Then, we show that the optimal CSR can achieve this
lower bound and thus is optimal among all routing policies.

Let Q.[t] be the queue length in the introduced single queue at time t. By Lemma 3 in Appendix
A, there exists a random variable Q, with E[Q,] < oo such that lim; .., E[Q.[t]] = E[Q,]. Hence, by
Cesaro’s lemma, we have limy_.o 7 ST EQ.[] = E[Q).

(1) AL Zle i, then by Lemma 1, we have E[Q,] = 0. Thus, it is obvious that

1T1L 1T—1
li ]E >1' — E[Q.|t]]. 8
1¥1f£th 0121: [Qit] l?fithZ:; [Qe[t]] (8)

(2) If X > S2F |, by taking the expectation on both sides of (1), we have

E[Qit +1]] = (1 = p)E[(Qu[t] + Ailt] = )], VL.

Then, we have

> E[Qift +1]]
=1

On the other hand,

Mh

L L
E[(Qi[t] + Aft] — ) t] > (1 —p) (ZE[Qz[t]]H—Zm)- (9)
=1 =1

E[Qc[t + 1] = (1 —p) (E[Qe[tﬂ A= Zm> : (10)

Thus, if Zz L Qi[0] = Q[0], then by combining (9) and (10), we have ZleE[Ql[l]] > E[Q.[1]].
If S8 E[Qi[t]] > E[Q.[t]], then we have

D E[Qft+1)] > (1-p) (Z E[Qi[t)] + A — Z m) (by equation (9))
> (1- )( +A— ZW>: [Qc[t +1]).



Thus, by induction, we have >~ E[Qi[t]] > E[Q.[t]],Vt, and thus (8) still holds. By Lemma 1, we
— +
have E[Q.] = % </\ -0 Ml) . Thus, we have

fimsup 7 Y- S E[Qif] = L (A - Zm) | (11)

=1

This shows that the introduced single queue system is in fact a lower bound to the original system in
terms of (7).

Next, we will show that the optimal CSR can achieve this lower bound. Since for CSR policy, the
router forwards a; fraction of arrivals to queue [ at each slot, by Lemma 3 in Appendix A, there exists
a random variable Q, with E[Q;] < oo such that lim, .., E[Q;[]] = E[Q,]. Hence, by Cesaro’s lemma,
we have limy_.o ST E[Qi[t] = E[Q]. By Lemma 1, we have E[Q] = %(al)\ — )T, Thus, the
optimization problem (7) becomes

L
1 —
Minimize -2 Z(al)\ — )" (12)
(al)lel p =1
L
Subject to Zal =1 (13)
=1
a>0,Vli=1,.. L. (14)
It is easy to see that if A < Zle , then af = ZL’” M,Vl. In this case, the optimal value is 0. If
=1
A > Zle i, then
N SL-1
a;k:ﬂ,vzzL...,L—Laz:M. (15)
A A
In this case, the optimal value is % <)\ — Zle m), which is exactly the lower bound in (11). Thus,
the optimal CSR is indeed optimal among all routing policies. O

For general arrival and service processes, the mean queue length for a single queue does not have
a closed-form expression, and so does the objective function in (4). Hence, it is difficult to analyze
the performance of optimal CSR policy. Instead, we will show through extensive simulations that for
general arrival and service processes, the optimal CSR also outperforms the well-known routing policies,
e.g., JSQ (cf. Definition 3) and optimal RS (cf. Definition 4).

Definition 3. (Join-the-Shortest-Queue (JSQ)) In each time slot, forward all incoming data to
the one of queues with the shortest queue length in that time-slot, breaking ties uniformly at random.

Definition 4. (Randomized Splitting (RS)) In each time slot, forward all incoming data to queue
[ with probability b;,¥l =1, ..., L, where b;,Vl =1, ..., L, are non-negative and satisfy Zle b= 1.

In the simulation, there are L = 2 unreliable queues. The amount of arrivals and services in each
slot follows Poisson and exponential distribution in Fig. 2 and 3, respectively. We use brute-force
search method to get the optimal RS and optimal constant splitting fraction. We compare the average
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drop rate among optimal CSR, optimal RS and JSQ under both symmetric and asymmetric cases.
From Fig. 2a, 2b, 3a and 3b, we can observe that JSQ exhibits good performance when the failure
probability is small and the optimal CSR is quite robust for both low and high failure probability.
From Fig. 2c, 2d, 3c and 3d, we can see that JSQ performs better than the optimal RS in the high
arrival rate and shows worse performance in the low arrival rate, while the optimal CSR has the best
performance in all cases. Thus, the optimal CSR is quite robust when the highly unreliable queues
exist. However, it is hard to solve the optimization problem (4) without the exact expression for the
objective function by the first or higher order numerical optimization methods. Instead, we introduce
the non-derivative method in the next section.
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Figure 2: Average drop rate under Poisson distribution: (a) Symmetric case: small failure probability;
(b) Symmetric case: large failure probability; (¢) Asymmetric case: same service rate; (d) Asymmetric
case: same failure probability.
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Figure 3: Average drop rate under exponential distribution: (a) Symmetric case: small failure prob-
ability; (b) Symmetric case: large failure probability; (¢) Asymmetric case: same service rate; (d)
Asymmetric case: same failure probability.
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4. Non-derivative method for the optimal CSR

In Section 3, we observed the advantage of using optimal CSR over JSQ or optimal RS. In this
section, we turn to the question of finding the optimal splitting fraction that solves the problem (4).
This calls for the use of non-derivative methods since the objective function is not known in closed form,
and can only be evaluated approximately. To that end, in Section 4.1, we estimate the error between
the approximate objective function g(a) in (4) and its true value at the given splitting fraction a in
the probabilistic form. Then, in Section 4.2, we use non-derivative methods to solve the optimization
problem (4) and show its almost sure convergence to an optimal point.



4.1. Approximation Error

To use the non-derivative method, we need to know the functional value at each point. However,
for a general stochastic system, it is almost impossible to get the exact value of g(a) for each splitting
a due to its dependence on the mean queue length of each queue. In this subsection, we obtain the
approximation of g(a) by using the time average queue length to estimate the mean queue length. To
analyze the performance of the non-derivative method, we need to get the estimation error for each
approximation. To that end, we first give the convergence rate of time average queue length to the
mean queue length for a single queue (see Proposition 2). Then, we estimate the error between the
approximation of g(a) and its true value in the probabilistic form (see Proposition 3).

For a single unreliable queue, let N be the number of failures happening since t = 0 and Yy be the
time at which N** failure happens for a single unreliable queue. The following proposition characterizes
the rate at which the time average queue length converges to the mean queue length.

Proposition 2. For a single unreliable queue with non-zero failure probability p, where both arrivals
Alt] and services S|t] are identically and independently distributed over time, and E[A[t]] = X and
E[A%[t]] = v < oo, we have

Pr {

where Q is a steady-state queue-length random variable,

Y o’ :
hy(el\, v, p) = h1,N< 5 p)+hiN 2)\(1—p)p + ha N 1p

YN

> Q[ —E[Q)

t=1

1
Yy

> e} < hy(e|A, v, p), (16)

A, V,p) + han (%E'A,V,p) , (17)

(1—10)(613;6)2 Jife>p

h c — N )
1.n(€lp) { A-ppto® 4 U=Pp=0® r o

and

(v —22%)p* + (100% — 3v)p* + (2v — 142\%)p + 6)?
N€2p4 ’
PROOF. See Appendix C for details. O

hQ,N(€|>\7 v, p) =

Remarks: (1) In a given stochastic system, for any given € > 0, we have Nlim hn(€|A,v,p) = 0. Thus,

we can use the time average queue length to approximate the mean queue length at arbitrary accuracy
by observing sufficiently many failures N.

(2) We note that, if all moments of A[t] are bounded, the convergence rate of time average queue
length to the mean queue length is exponentially fast, but is hard to characterized due to the complexity
of queue length evolution. Nevertheless, (16) is enough for us, since we focus on the convergence of the
proposed algorithm rather than its convergence rate.

(3) For pure optimization problems without complicated queue evolution, it is easy to get the exact
exponential decay rate for the probability that the time average functional value deviates its mean
value. For example, consider the optimization problem (see [12])

min W (x) := E[w(x, £)], (18)

xeX



where w is a function of x and &, £ is a ¢-dimensional random vector with the bounded moment
generation function, and X C RP. Assume that W (x) does not have a closed-form expression and thus
we can only use non-derivative methods to solve this optimization problem. We generate M identical
and independent random samples &, &,, ..., &,;- Then, we can approximate the functional value at x
by using the sample mean 1 S M w(x, &;). The approximation error can be characterized as follows:

|

where [,,(-) is the rate function (see [13]) corresponding to the random variable w(x, ). In [11][12], the
authors proposed non-derivative methods for this pure optimization problem assuming the continuous
differentiability of the objective function W (x). However, this assumption in general is not expected to
hold in our setup. Indeed, from Lemma 1, the mean queue length is not a continuously differentiable
function of the arrival rate at the service rate point p and thus our objective function (4) is not
continuously differentiable. Under general arrival and service processes, the objective function does not
have a closed-form expression and so there is no ground to assume their continuous differentiability. In
Section 4.2, we are forced to relax this strong assumption to the case when the objective function is
locally Lipschitz continuous, which holds much more generally.

Next, we give the approximation of g(a) and obtain its error in the probabilistic form. Let N,
be the number of failures occurring in queue . Let N := (N;)£,. The next proposition gives the
approximation of g(a) with the error in the probabilistic form.

M
LS w6 - W) > } < (19
=1

Proposition 3. For a system with L unreliable queues, we have

Pr {lin(a) - g(a)] > ¢} < Zth (

@A, szpz) (20)

where gn(a) == Zleplle(alA) + AZlelplal, and le(al ) is the time average queue length during the
interval [1,Yy,] at queue [, that is, f,(a;)) := ZYNI Qilt].

PROOF.
Pr{|gn(a) —g(a)| > €}
= Pf{ szsz(@l)\) - szfz(al/\)‘ > 6}

{sz‘fm aA) — filaA )’ 6}
<ZPT{Pz‘le aA) — filaA )‘ %}

<Zth<

where the last inequality follows from Proposition 2. O

A, VlaPl) (21)



Remark: By Proposition 2, we have

€
lim h —
Nllinoo Nl (Lpl

CLl)\, Vl7pl) =0.

Given any 9 > 0, if we want
L
€
> (5
—1 Lp,

we can choose N; such that hy;, (ﬁm‘al)\, yl,pl> < %. Thus, we can get the approximation of g(a) at

A, Vz;pl> <0,

arbitrary accuracy by observing sufficient many failures N; for each queue .

4.2. Non-Derivative method

Let Q :={a: Ef;ll ap < 1l,a;>0,¥l =1,2,...,L — 1}. Note that € is an intersection of linearly
constraints. In the following proposed algorithm, we need to construct the positive spanning sets B
and D(a;) C B at each point a; that conforms to €, that is, for some 7 > 0, if for each x in the
boundary of Q for which ||x — ax|| < 7, the tangent cone T(x) := closure{u(y — x) : p > 0,y € Q}
can be generated by nonnegative linear combination of the columns of D(a;). Paper [14] introduced
the method to construct D(ay). For example, if L = 2, we can choose D(a;) = [1, —1]; if L = 3, we
can select D(ay,) = [I, —I, F], where I is an 2 x 2 identity matrix and F = [I —1; —1 1]. Let N} be the
number of failures happening at queue | during the k' iteration. Let N* := (N)E .

Pattern Search (PS) method:

Requirement: p € (0,1), klim 0, = 0 and klim Lk 0, as A, — 0.
—00 — 00 k
n=k

(1) Initialization: choose any ag € € and Ag > 0. Given any ¢, > 0 and dy € (0, 1), compute N°
such that Pr{|gno(ag) — g(ao)| > €0} < do.

(2) Poll step: In the k' iteration, construct M, = {ay + Ard : d € D(a;)}. Choose ¢, > 0 and
0, € (0,1), and sequentially evaluate the functional value gnr(a’) for any a’ € M, satisfying
Pr{|gn=(a") — g(ax)| > e} < & until some &’ € M, satisfying gnr(a') < gnr(ax) is obtained, or
until all points in M}, are evaluated.

(3) Step size update: If the poll step produced an improved point, i.e., g(axi1) < g(ak), then
A1 = Ay; Otherwise, g(ax) < g(ax + Ard) for all d € D(ay), set ag; = a; and update
Ay = pAyg. Increase k «+— k + 1, and go back to the poll step.

Next, we will establish the convergence property of the PS algorithm.

Lemma 2. The sequence of step sizes {Ay}32, produced by the PS algorithm satisfy limy_oo Ay = 0,
almost surely.

PROOF. Tt is easy to show that (see [15])

{;L%Apo}_[]@ﬁ{Ap%}. (22)

n=1m=1k=m
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Thus, we have

n=1m=1k=m

Pr (]}LIEOAW()) — Pr (G G ﬁ {Ak > %}) (23)

By using the subadditivity property of the probability measure, we have

Pr([j D ﬁ {Ak>%}> <ZPr(U N {Ak> }) (24)

n=1m=1k=m m=1k=m

By combining (23) and (24), we have

Pr (Jim Ak > 0) < ZPY(G M {A’“>%}>

1 k=m

23 (1 {3 1) 03 o e
n=1 n=1

k=m

ﬁ {Ak > %}) | (25)

k=m

where (a) follows from the fact that (;—,, {Ax > =}, Vm, are monotone non-decreasing and the prop-
erty of the monotone sequence of sets, and (b) follows from the continuity of the probability measure
for the monotonic sequences.

Next, let’s consider Pr (ﬂkf {Ak > }) Since Ay, is non-increasing, if the event [, {Ak > n}
happens, then there exists a k > m such that A, = Az, Vk > k. Thus, after k™" iteration, the algorithm
always evaluates a constant finite number of points. Thus, at least one point belongs to the sequence
{ag}72, infinitely many times. In addition, since Ay = A,;,Vk; > k, we have €, (Ag) = ez (Af) = e, Vk >
k. Hence if the event (,~z {|9(ax) — g(ax)| < ez} happens, then the sequence {g(ay)};>; cannot be
strictly monotone decreasing, which contradicts the constructions of the algorithm. Thus, if the event
Neei {|9(ax) — g(ax)| < ez} happens, the event (;—,, {Ax > 1} won’t happen. Thus, we have

Pr ( N {Ak > = }) < Pr ( U {lacar) — glar)| > e,;}> <> Pr(lg(ar) — glar)| > ) Z or.  (26)
k=m k=m
Thus, by taking the limit on the both sides of (26), we have

lim Pr<ﬂ {Ak> }) < lim Zak_o (27)

k=m

Hence, we have

Pr ( lim Ay > o) —0. (28)
By noting that Ay, > 0, Vk, we have the desired result. O

Next, we will show that the mean queue length is a convex function of the arrival rate, which implies
that g(a) is convex and thus is directional differentiable [16].
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Proposition 4. For a single queue with the failure probability p, the mean queue length is a convex
function of the arrival rate under general arrival and service processes.

PROOF. See Appendix D for the proof. O

By Proposition 4, it is easy to show the convexity of g(a) over 2. Before stating the main convergence
result, we need the concept of refining subsequence introduced in [17].

Definition 5. (Refining subsequence) Consider a sequence {a;}3°, constructed by PS algorithm.
We define the subsequence {ay}rex as the refining subsequence, if Api1 < Ay for all k € K, and
Agpi1 = Ay for all k ¢ K.

Proposition 5. Let a* be a limit point of a refining subsequence {ay trex, constructed by PS algorithm.
Let d be any column of positive spanning set B along which §(-) was evaluated for infinitely many iterates
in the subsequence {ay}rex. Then, we have

Pr {g'(a*; d) = limsup gla+ ti) —9(a) > O} = 1. (29)

a—a*,t|0

PROOF.

Pr {O > ¢'(a*;d) = limsup gla+td) —g(a) }

a—a*,t|0 t

< Pr {0 > lim sup g(ax + Ard) — g(ax) }
keK Ay

=Pr {0 > lim sup <g<ak * 2ed) — glau) 1 g(ax + Ard) — g(ax + Ard) + g(aw) — g(ak)> }
keK Ay A

(a)
< Pr {0 > lim sup (

keK

g(ax + Apd) — glax + Apd)  g(ax) — g(ax)
A A ) }

where (a) follows from that g(ax + Ard) > g(ax), since {ay }rek is a refining subsequence. Let Fj be
the event that

—2¢, < g(ax + Ard) — g(ax + Ard) + g(ax) — g(ak)

Ay = Ay (30)

Then, if liminf, .. F, happens, that is, 9n > 0 such that F; happens for all £ > n, then

0 = Tim sup —2€y, < lim sup glax + Ard) — g(ax + Ard) + g(ax) — g(ak)

keK k keK Ak

Thus, we have

Ard) — §ag + A i(ag) —
{O>hmsupg(ak+ rd) — glax + Apd) + g(ax) — g(ax)

nst A, } C (li%éli(nf Fi)¢ = limsup Fy. (31)

keK

Hence, we have

/ *, < s C < . (S G C < 1i C
Pr{0>g'(a’d)} < Pr{limsup i} < Pr{lim UienFf} = lim Pr{Uien i} < lim » Pr{F}. (32)

k>n

12



Since

Pr{F;} =Pr{—2¢ > g(ax + Ard) — g(ax + Ard) + g(ax) — g(ax)}
<Pr{—e; > glax + Axd) — g(ax + Apd)} + Pr{—e; > g(ax) — g(ax)}
<Pr{jg(ax + Ard) — g(ax + Ard)| > &} + Pr{|g(ax) — g(ax)| > e} < 26y, (33)

we have

td) —
Pr {O > ¢'(a*;d) = limsup gla+td) g(a)} <2 lim Z(Sk =0. (34)

a—a*t|0 t L>n
Hence, we have the desired result. Il

Remark: In fact, this result does not require the convexity of g. Proposition 5 continues to hold if ¢ is
locally Lipschitz continuous, which guarantees the existence of its directional derivative (see [18]).

Corollary 1. If g is strictly differentiable at a limit point a* of a refining subsequence, and if the
selection of the positive spanning sets D(ay) conforms to Q for a 7 > 0, then a* is a KKT point almost
surely, that is, Vg(a*)Tx > 0 for all z € To(a*), and —Vg(a*) € Ng(a*) hold with probability 1, where
No(x) :={y : Vy € To(z),y"x < 0}.

PrOOF. The proof is similar to the argument in [17]. O

Remarks: 1. Here, we only require that the objective function ¢ is differentiable at the limiting point
rather than being continuously differentiable, which is required in [11][12].

2. Even if g is not differentiable at a*, we still have desirable property that ¢’'(a*;d) > 0 for all
d € B from Proposition 5.

5. Simulations

In this section, we perform numerical simulations to confirm that the proposed PS algorithm indeed
can converge to the optimal point. We consider L = 2 unreliable queues. We assume that the amount
of arrivals and the amount of services follow the Poisson distribution with mean A =1 and p = [3, 3].
Each queue i (i = 1 or 2) fails with probability p; at each time slot. We consider the symmetric case
p =[0.2,0.2] and asymmetric case p = [0.2,0.01]. We take p = 0.8 in the PS algorithm.

A=1,u=[3,3],p=[0.2,0.2] A=1,u=[3,3],p=[0.2,0.01]
0.6 05 i
058 0.45 ‘
0.4 ‘
C 056 ﬁ c
% 0.54 ‘A%i % o ‘
. Hkk
g ‘ W g 0.3 ‘
o 0.52 ‘ % o 0.25 ‘
£ | s S—— £ o2
E os E " ‘
- ‘ O 015
o) 048 ‘ ) ‘
0.1 ‘
0.46 ‘ 0.05 |
0.44 0
0 10 20 30 . 40 '50 60 70 0 10 20 30' 40' 50 60
number of iterations number of iterations
(a) Symmetric case (b) Asymmetric case

Figure 4: Convergence of the PS algorithm
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The upper bound in Proposition 3 is too pessimistic, which requires huge N even for achieving
small probabilistic error. In this simulation, we heuristically increase N by 100 starting from 10000 at
each iteration. In the symmetric case, it is obvious that the optimal splitting fraction for queue 1 is
0.5; while in the asymmetric case, we use the brute-force search to get the optimal splitting fraction for
queue 1 is close to 0. From figures 4a and 4b, we can observe that the proposed PS algorithm gradually
converges to the optimal point as established in the theoretical analysis, however slowly.

6. Conclusions

In this paper, we investigated the problem of efficient routing for unreliable networks that are prone
to probabilistic buffer failures. We first revealed the advantage of using constant splitting rule (CSR)
in such a setup over the more traditional choices of Join the Shortest Queue (JSQ) or Randomized
Splitting (RS). This motivated us to obtain the optimal splitting fraction that solves the optimization
problem with the objective function depending on the mean queue length.

Realizing the difficulty in getting the exact expression for the objective function under general
arrival and service processes, we use non-derivative methods to solve this optimization problem by
using the time average queue length to approximate the mean queue length. By adaptively controlling
the approximation error, we show that the proposed algorithm can almost surely converge to an optimal
splitting fraction under mild conditions.
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Appendix A. Basic properties for a single unreliable buffer

In this section, we study some basic properties for a system consisting of a single server and an
associated unreliable queue. Since we only consider a single queue, we will omit the subscript in this
section. From the queue length evolution (1), it is easy to see that {Q[t]};>0 forms a Markov Chain.
The following lemma shows that the stationary distribution of the underlying Markov Chain exists.

Lemma 3. For any non-zero failure probability p, if both second moment of arrivals and services are
bounded (i.e., B[A%[t]] < oo and E[S?[t]] < oo), then there exist a random wvariable Q with E[Q] < oo
such that

lim E[Q[1]] = E(Q]. (A1)

t—o00

PROOF. Choose Lyapunov function V(Q[t]) := Q?[t]. Then,

AV =E[V(Q[t +1]) - V(Q)|Q[H] = Q]
<E[(QI1)(1 — F[t]) + A[)(1 - F[t]) - S[t)” - Q*[|Q[t] = Q]

< QE[(1 — F[t])’] + 2QE[A[t](1 — F[t])* — S[t](1 — F[t)] + E [(A[t](1 — F[t]) — S[t)*] — @

= —pQ° +2Q(1 —p)(A —p) + B

o 2(1 = p)(A = p)

= —pQ (Q ; ) + B (A.2)
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where B :=E [(A[t](1 — F[t]) — S[t])z} < (1 —p)E[A%[t] + E[S?[t]] < oo. Thus, if

2(1 —p)(\ —
Q > max{ (1= p)( 'u),O} +1=:C, (A.3)
p
then,
AV < —pQ + B. (A.4)
By using Theorem 14.0.1 in [19], we have the desire result. O

The existence of stationary distribution implies that the underlying Markov Chain is ergodic and
thus, by the Ergodic Theorem [19], we have

lim sup % Z Q[t] = E[Q], a.s. (A.5)

Next, we would like to determine the rate at which the time average queue length converges to the
mean queue length. Normally, it is hard to characterize the convergence rate of the Ergodic Theorem.
However, in our setup, we can estimate the convergence rate by regarding it as a renewal reward
process. When a failure happens, all the data in the queue will be dropped and thus we can take each
failure as a renewal. Let X,, be the length of n'* renewal. Note that X,, is a geometric random variable
with parameter p. Let Y, be the time at which n* renewal occurs and YO = 0. Let R, be the total
summation of queue length between the (n — 1) and n** renewals, that is, R, = 3" v, 41 Q[t]. Let
N be the number of renewals since Yy = 0. The next Lemma shows that the ﬁrst and second moment

of R,, are bounded.

Lemma 4. The first and second moment of the earned reward R,, between the (n—1)" and n'™ renewals
are bounded, 1.e.,

A(1—p)
2
(v —2X2)p% + (102 — 3v)p? + (2v — 142%)p + 6)\?
ol
Proor. Consider a new system with the same failure probability where there is the same arrival as the

original system and no departure happens. Let Q'[t] be the queue length at slot ¢ in the new system.
It is obvious that for every sample path, we have

E[R,] <

E[R,]

IN

Yy Yn
- 3 o= Y om (A.6)
=Y 141 =Yy 1+1
Thus, we have E[R,] < E[>.)" "y @t]] and E[R}] < E [(Zt o [t])j Next, let’s first

consider the term E[3)" "y QT

Xn—1

Xn—1

(Xn —1—t)AJt — 1]} ) { 3 A,

t=1

(A7)

E{ i Q,[t]} @ g

t=Yp_1+1

iQ’[t]} { Z Q' [t]} Qr {

t=1
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where (a) follows from the fact that the reward during the first renewal has the same distribution as

that during the n* renewal; (b) follows that queue length becomes zero when a renewal occurs; (c)
follows the evolution of the queue length Q'[t]; (d) follows the fact that the arrivals are i.i.d. over time.
Since

E XnZ_ItA[t]\Xn—X] —AXZ_lt—%(XQ—X), (A.8)
we have
E| S Q| = HEXY -ELX) (A9)

By following the same argument for deriving (A.7), we have

2

E i QM| | =E (Xfmuo . (A.10)

t=Y,_1+1 t=1
Since
Xp—1 2
E ( tA[t]) |1 X, =X
t=1
X-1 X-2 X-1
= Y PE[A[M]+2) > iE[ALE[A]]
t=1 i=1 j=it+1
)\2
- %(2)(3 —3X7 4 X) + T(3X" — 10X% 4+ 0X7 - 2X)
A2 v 5\ 3N v v\
_ 2 x4 Z_27 ) x3 - ) Xx? - - )X A1l
1 +(3 6) +<4 2> +(6 6>’ (A-11)
we have
S 2
B 2 v 5\ 3N v v\
E > QT = ZIE«:[X‘*] + (5 - 7) E[X?] + (T — 5) E[X?] + (6 — E) E[X].
t=Sp_1+1
(A.12)
Since X is a geometric random variable with parameter p, we have
1 2—p
E[X] = -, E[X?] =
[X] p [X7] e
— 2 24 — 14p? — p?
E[x? = O (;Tp E[XY) = 367’;4 i Y (A.13)
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By substituting (A.13) into (A.9) and (A.12), we have

S
= AM1—0p
El S Q= (—2) (A.14)
_t:Sn—1+1 p
— S 2
B —2X\2)p3 + (10M% — 2+ (2v — 14)? A2
el 3 o) | =Y T2 ANt @y )p + 6 (A15)
p
L t=Sp—1+1
Hence, we have the desire result. ]
Since E[X,,] < co and E[R,] < oo, according to the strong law of large numbers, we have
1 1 & E[R,]
On the other hand,
1 & 1 & _
&gle—NZlR Nhinooy_NZ“ YZ+1 = ]}ﬂoy—N;Q[t] = E[Q] a.s., (A.17)
n= n= n—1 =

where the last step follows from equation (A.5). Since E[Q] < oo, we have E[Q] = . Note that it

is easier to investigate the convergence rate of (A.16) than that of (A.17).

Appendix B. Proof for Lemma 1
PROOF. Recall that E[Q] = ]E[R"] . Let’s consider the term E[R,,].

E[RH]E[ i ]“ [ZQ

t:Ynfl‘f'l

Xn—1
5[ 3 Qm] |
t=1

where (a) follows from the fact that the reward during the first renewal has the same distribution as

that during the n'* renewal; (b) follows the fact that queue length becomes zero when a renewal occurs.
Since there is no failure during the renewal interval, the queue length evolution for the constant arrivals
and constant services is as follows:

Q] = (Qt — 1+ A= )"t = 1,2, X, — 1, (B.1)
where Q[0] = 0. Thus, we have
Q| =tN—p)",Vt=1,2,..., X, — 1. (B.2)

Hence, we have

t(A — u)*] = %(A — W) E[X] — X,].



Since X, is a geometric random variable with parameter p, we have E[X,] = i and E[X?] = %. Thus,
we have

Thus, we have

— ) (B4)

Appendix C. Proof for Proposition 2

To prove Proposition 2, we need the following two lemmas.

Lemma 5.
Pr{ %_ﬁ‘ >e} < hy(e), (C.1)
where
i (elp) = { Eﬁ%ﬁf 8%}@2927 o< (€2)
PROOF.
Pr{%—ﬁ‘ }_Pr{% m+e}+Pr{Y—N<ﬁ— } (C.3)

For P, we have
Y, E[X] 1 & E[X]
Po=Pr{ Y= L_prd{_V X <—1
! r{N<1+eE[X]} Y{N; <1—|—€E[X]}

1 & —cE[X]? 1 & ¢E[X]?
:Pr{NZXi—]E[X]<rI[EP]q} §Pr{ NZ)Q-E[X]‘ >%EEX]}

i=1 =1

2 N 2
1
cE[X]? ) ( N Z i [ ]) (By Chebyshev’s inequality)

1+61E[X]) LZV&I(Xi):(l_FEE[X]) Valj"\([X) ()



Since X is a geometric random variable with parameter p, E[X]

1 and Var(X) = 152, Thus, we have
p p

1=p)p+e?

< .
P < e (C.5)
For Py, if € > ﬁ =p, P, =0. If ¢ < p, then we have
Yy E[X]
Py=Pri{N > 2
2 r{N ~ 1—€E[X]}
N
1 cE[X]?
=Pr{—> X,—E[X]> ——_
r{N; i —E| ]>1—€E[X]}
N
1 cE[X]?
<Prd|= - e
= r{ N;Xl E[X]‘>1—€E[X]}
@ (1 E[X] ? Var(X)
E[X]? N
_(1=-p)p—e?
= N (C.6)

where (a) follows the same line of argument as deriving (C.4). By substituting (C.5) and (C.6) into

(C.3), we have the desire result.

[l
Lemma 6.
|
Pr{ ~ > R, —E[R,]| > e} < hy(e) (C.7)
n=1
where (V= 202)p* + (1002 — 30)p? + (20 — 14X2)p + 62
han(€[A, v, p) = Ne2pt
PrOOF.
L
Pr{ N;Rn — E[R,]| > e}
2
<lp|(L XN: Ry — E[R,]
(@ 1 Var(R,)
e N
1 E[R]]
~— e N
— 2\,,3 2 _ 2 _ 2 2
< (v —2X%)p° + (10A° — 3v)p* + (2v — 14X%)p + 6 (C.8)

Ne2pt
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where (a) follows the same argument as deriving (C.4). O
Proof of Proposition 2:
1 &
Pr|— t] —E[Q]| > ¢
{53 0n-=m > |
N
i E[R,|
—prd|— o
r{ YN;R E[X,] >e}
N
N 1 E[R,]
=Pr|——= ) R,
r{ YNN; E[X,] 6}
N
N 1 N N E[R,]
—Prl| _E Y RIR]—
r{ YNN;Rn v [Rn]+YN (R, E[X,] >€}
N
N N 1
<Pri{|Z _E E[R,] |~ —
< r{YN N;Rn [R,]| + E[R,] Yy E[X.] >e}
N
N |1 € N 1 €
<Pri{|= _E U PrlER, | — — ¢ .
7 ’ =P,
Next, let’s consider P;.
N
1 1 1 €
P =Pri|— — “NTR, —E[R,)| > £
! T{YN E[X,] | E[X,] N;R [Fon] >2}
N N
N 1 1 1 1 €
p Y AT n E n AT n —E n a
< r{ v T EX N;R [R,] T EX] N;R [R,] >2}
N N
1 1 € N 1 1 €
<P — R, —ElR, — P — — — R, —E[R, —
= r{]E[Xn] N; [Fen) 4}+ "y T EX N; [Fon] >4}
1 & €
<P — —E E|X, —
< r{ N;Rn [Ru]| > JE[X,)] 4p}
N
1 NG N 1 Ve
Prd |~ E VEU  ppd |l o Ve
+ r{N;R” [Fn]) > 2}+ r{YN E[X,] 2}
(C.10)
Next, let’s consider P,. By Lemma 4, we have E[R,,] < %. Thus, we have
pep{2P N L el N L (C.11)
o P Yy EXG]T2f 0 Uy EX]|T 201 -p) |

21




Thus, we have

gpr{ %;Rn—E[Rn] > 4—p}+Pr{‘%;RH—E[Rn] > g}

+P N !
I‘ _—
Yy  E[X,]

L } (C.12)

)\a V7p) + hZ,N (g‘Aay7p)

PROOF. The proof is similar to [20] and is by induction on Q[t] using the following identities.

Q[t + 1] =((Q[f] + Azy) (1 — 2) — pgn) "

| max{0,Q[t] + \zy — py} , if 2 = 0;

By Lemma 5 and , we have

e[ g >y = () o (i) o (5

t E[X,]
Appendix D. Proof for Proposition 4

If we assume that Q[t] is convex in A\, we can see that Q[t + 1] is also convex in A. Since the theorem
is true for any values of x;, 1, and z;, it is also true when these are realizations of random variables.
Thus, the mean queue length is a convex function of the arrival rate. O
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