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Abstract The backpressure scheduling algorithm for multihop wireless networks
is known to be throughput optimal, but it requires each node to maintain per-
destination queues. Recently, a clever generalization of processor sharing has been
proposed which is also throughput optimal, but which only uses per-link queues.
Here we propose another algorithm called Queue Proportional Rate Allocation
(QPRA) which also only uses per-link queues, and allocates service rates to links
in proportion to their queue-lengths and employs the Serve-In-Random-Order
(SIRO) queueing discipline within each link. Through fluid limit techniques and
using a novel Lyapunov function, we show that the QPRA achieves the maxi-
mum throughput. We demonstrate an advantage of QPRA by showing that, for
the so-called primary interference model, it is able to develop a low-complexity
scheduling scheme which approximates QPRA and achieves a constant fraction of
the maximum throughput region, independent of network size.

Keywords Resource Allocation · Low-complexity Algorithm Design · Multihop
Networks · Maximum Throughput · Lyapunov Function · Fluid Limit Analysis

1 Introduction

We consider the resource allocation problem in multihop wireless networks with
fixed routing, where each packet may traverse multiple links before departure.
The work of Tassiulas and Ephremides (see [35]) developed a throughput-optimal

An earlier version of this paper has appeared in ACM SIGMETRICS 2015 [20].

Bin Li
Coordinated Science Lab
University of Illinois at Urbana-Champaign
lib@illinois.edu

R. Srikant
Coordinated Science Lab and Department of ECE
University of Illinois at Urbana-Champaign
rsrikant@illinois.edu



2 Bin Li, R. Srikant

backpressure algorithm, which prioritizes activation of routes with the largest dif-
ferential backlog awaiting service subject to network interference constraints. Here,
the throughput-optimal strategy means that it can achieve any throughput sub-
ject to network stability that is achievable by any other scheduling strategy. A
large body of work has extended throughput performance to other metrics, such
as fairness (e.g., [10,28,22,34,19]), average energy consumption (e.g., [29,27,5]),
Quality-of-Service (e.g., [13,14,37,18]) etc.; see [33] for an overview.

However, all the policies mentioned above make transmission decisions by
maintaining per-destination queueing information at each node and frequently
exchanging this information among neighboring nodes, which is usually a diffi-
cult task in large networks handling thousands of flows. Such a restriction has
motivated recent research efforts to develop more practical throughput-optimal
schedulers (e.g., [23,15]) with reduced queueing information. For example, the au-
thors in [15] developed a scheduling algorithm with per-link queueing information
in limited network setups, where routes do not form loops. But, it is likely to hap-
pen in practice that different routes do form a loop, in which case the results in
[15] do not apply. Additionally, the arrival rates are assumed to be either known
or measured in this line of work.

More recently, motivated by the research activities in bandwidth sharing net-
works (e.g., [25,2,26,32]), the author in [36] intelligently generalized the idea of
processor-sharing in queueing networks, and proposed the throughput-optimal
Proportional Scheduler that only utilizes per-link queueing information. There-
fore, the Proportional Scheduler significantly simplifies the queueing structure
compared to the well-known backpressure algorithm, since the number of traffic
flows is generally orders of magnitude greater than the number of links in com-
munication networks. However, the Proportional Scheduler requires the network
to solve a concave optimization problem with the full knowledge of the capacity
region and its low-complexity implementation still remains an open question.

In this work, we propose alternative throughput-optimal scheduling algorithm,
called Queue-Proportional Rate Allocation (QPRA), which also makes schedul-
ing decisions only based on per-link queueing information. The proposed QPRA
algorithm is a natural generalization of the algorithm developed in [11] that has
been shown to be throughput-optimal in single-hop networks, where packets im-
mediately leave the network once they are served. In particular, the QPRA algo-
rithm allocates the service rates to links in proportion to their queue-lengths as
in [11] and additionally employs the Service-In-Random-Order (SIRO) queueing
discipline within each link. However, stability in a single-hop network does not
necessarily imply stability in a multihop network (e.g., [24,30,4]).

By using fluid limit techniques and a novel Lyapunov function, we are able to
prove that the proposed QPRA algorithm achieves maximum throughput. Further,
for the commonly-used primary interference model (see, for example, [12]), we
develop a low-complexity scheduling scheme approximating the QPRA algorithm
that not only uses per-link queueing information but also achieves a constant
fraction of the maximum throughput region, independent of network size. To the
best of our knowledge, this is the first work that addresses both computational
and queueing complexities in multihop wireless networks. The following items list
our main contributions along with references on where they appear in the text:
• In Section 3, we develop a scheduling algorithm that allocates service rates

to links in proportion to their queue-lengths and employs the SIRO queueing
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discipline within each link. Then, we show the stability of our proposed algorithm
for any arrival rate vector within the maximum throughput region.

• To illustrate the advantage of our proposed algorithm, we develop an efficient
low-complexity scheduling algorithm that mimics our proposed QPRA algorithm
in Section 4, and show that it at least achieves a constant fraction of the maxi-
mum throughput region, independent of network size, in networks with primary
interference.

A note on Notation: We use bold and script font to denote a vector and a set,
respectively. Also, let |A| denote the cardinality of the set A. We use Int(A) to
denote the set of interior points of the set A. We use the convention that 0/0 = 0.

2 System Model

We consider a wireless network represented by a graph G = (N ,L), where N is
the set of nodes and L is the set of links. A node represents a wireless transmitter
or receiver, while a link represents a pair of transmitter and receiver that are
within the transmission range of each other. We assume that the system operates
in slotted time. For ease of exposition, we assume that each link can at most
transfer one packet in one time slot. We consider the link-based conflict model,
where links conflicting with each other cannot be active at the same time. We call
a set of links that can be active simultaneously as a feasible schedule and denote
it as R(t) , (Rl(t))l∈L, where Rl(t) = 1 if the link l is scheduled in time slot t
and Rl(t) = 0, otherwise. We define the capacity region Λ as the convex hull of all
feasible schedules.

We consider a multihop traffic model, where packets traverse multiple links
within the network before they depart. We assume that each route r consists
of K(r) consecutive links that do not form a cycle. That is, a route r packet served

at link l
(r)
k must next go to link l

(r)
k+1 until it is served at the last link l

(r)
K(r) , where

k = 1, 2, · · · ,K(r) − 1. Let R be a set of routes through the network. We use the
notation l ∈ r to denote that link l is part of route r. We also say pair (l, r) if l ∈ r.
Further, we denote l

(r)
− as the previous (upstream) link of link l on route r.

We use Al,r(t) to denote the number of exogenous route r packets arriving

at the ingress link l = l
(r)
1 in time slot t. Note that Al,r(t) ≡ 0 if l 6= l

(r)
1 . Let

AΣl,r(t) ,
∑t−1
τ=0Al,r(τ) denote the cumulative number of route r packets arriving

at the ingress link l up to time slot t − 1. The arrival processes are assumed to
satisfy the Strong Law of Large Numbers (SLLN), i.e.,

λl,r = lim
t→∞

AΣl,r(t)

t
, with probability 1, (1)

where λl,r , λr1{l=l(r)1 }
, and λr > 0 is the mean arrival rate of route r packets.

For simplicity, here we will assume that the arrival process for each route are i.i.d.,
and independent across routes1.

1 Since we use fluid limit techniques, this assumption can be relaxed in many different ways
at the cost of additional notation. In particular, we only need a Markovian description of the
queueing system for our results to hold.
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A queue is maintained for each link l with Ql(t) denoting its queue-length at
the beginning of time slot t. Let Xl,r(t) be the number of route r packets at link l

in time slot t. Thus,

Ql(t) =
∑
r:l∈r

Xl,r(t), ∀t ≥ 0. (2)

We use Hl(t) to denote the number of packets departing from link l in time slot t.
Let Dl,r(t) be the number of route r packets departing from link l in time slot t.
Therefore, we have

Hl(t) =
∑
r:l∈r

Dl,r(t), Dl,r(t) ≤ Xl,r(t), ∀t ≥ 0. (3)

Based on the above setup, the queueing dynamics of a multihop network can be
described as follows:

Xl,r(t+ 1) = Xl,r(t) +Al,r(t) +D
l
(r)
− ,r

(t)−Dl,r(t), (4)

holds for any pair (l, r) and t ≥ 0. Here, we note that D
l
(r)
− ,r

(t) = 0 if l = l
(r)
1 .

In this paper, we consider the policies under which the system evolves as a
Markov Chain. We call system stable if the underlying Markov Chain is positive
recurrent. We define the maximum throughput region Λ as the set of arrival rate
vectors λ , (λr)r∈R for which the network is stable under some policy. It has
been shown in [35] that the maximum throughput region Λ can be represented as
Λ , {(λr)r∈R : (

∑
r:l∈r λr)l∈L ∈ Λ}, where we recall that Λ denotes the capacity

region. We call an algorithm throughput-optimal if it makes the system stable for
any arrival rate vector λ that lies strictly within the maximum throughput region
Λ, i.e., λ ∈ Int(Λ). An algorithm is said to achieve an efficiency ratio κ ∈ (0, 1] if
it can stabilize the system for any λ strictly within a fraction κ of the maximum
throughput region Λ, i.e., λ ∈ Int(κΛ).

The aim of this work is to address the scheduler design with only per-link queue-
ing information in multihop networks. We first present a centralized throughput-
optimal algorithm that makes transmission decisions only based on the link queue-
lengths. Then, we show that this algorithm can be easily modified for low-complexity
implementations, which achieve a strictly positive efficiency ratio for certain in-
terference models, independent of the network size.

3 Queue-Proportional Rate Allocation scheduler

In this section, we present a throughput-optimal scheduling algorithm that makes
transmission decisions only based on per-link queueing information.

3.1 Algorithm description

Here we develop a scheduling algorithm that only utilizes per-link queueing infor-
mation and achieves the maximum throughput region. Given the link queue-length
vector Q(t) = (Ql(t))l∈L, the algorithm operates as follows:
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Queue-Proportional Rate Allocation (QPRA):

(1) In each time slot t, first allocate the service rate σl(Q(t)) for each link l, such
that

σl(Q(t)) = 0,whenever Ql(t) = 0,

σl(Q(t))

Ql(t)
=
σl′(Q(t))

Ql′(t)
, whenever Ql(t) > 0 and Ql′(t) > 0, (5)

and σ(Q(t)) = (σl(Q(t)))l∈L lies on the boundary of the capacity region Λ. That is,
the allocated service rate vector σ(Q(t)) is the longest vector within the capacity
region Λ that is along the same direction of the link queue-length vector Q(t). Let
R(t) = (Rl(t))l∈L be a random vector with the support on the set of all feasible
schedules and mean σ(Q(t)), i.e., E [Rl(t)|Q(t)] = σl(Q(t)),∀l ∈ L. Recall that link
l is scheduled in time slot t if Rl(t) = 1.
(2) Then, serve each link l according to Serve-In-Random-Order (SIRO) queueing
discipline, i.e., serve packets at each link l uniformly at random. This implies that
the average departure rate of each route at link l is proportional to the number of
packets of its route, i.e.,

µl,r(X(t)) = 0, whenever Xl,r(t) = 0,

µl,r(X(t))

Xl,r(t)
=
µl,r′(X(t))

Xl,r′(t)
, whenever Xl,r(t) > 0 and Xl,r′(t) > 0, (6)

where µl,r(X(t)) , E
[
Dl,r(t)

∣∣X(t)
]

denotes the average departure rate of route r
packets at link l in time slot t.

Remark : If Ql(t) = 0, then Rl(t) = 0 and hence Hl(t) = 0. If Ql(t) > 0, then
Rl(t) = 1 implies that Hl(t) = 1. Therefore, we also have E [Hl(t)|Q(t)] = σl(Q(t)).
Since Hl(t) =

∑
r:l∈rDl,r(t), we have σl(Q(t)) =

∑
r:l∈r µl,r(X(t)). This combines

the fact that Ql(t) =
∑
r:l∈rXl,r(t) and (6), implying that

µl,r(X(t))

Xl,r(t)
=
σl(Q(t))

Ql(t)
,whenever Xl,r(t) > 0. (7)

This, together with (5), yields

µl,r(X(t))

Xl,r(t)
=
µl′,r′(X(t))

Xl′,r′(t)
,whenever Xl,r(t) > 0 and Xl′,r(t) > 0, (8)

where l 6= l′ or r 6= r′.
Unlike the well-known backpressure algorithm, the QPRA algorithm only re-

quires the per-link queueing information to make transmission decisions and thus
significantly simplifies the queueing structure of multihop networks. Here, we want
to point out that the QPRA algorithm generalizes the algorithm proposed in [11]
under the single-hop traffic model, i.e., packets immediately leave the network once
they are served. In particular, the link rate allocation procedure of the QPRA algo-
rithm was proposed in [11], where the authors showed that this link rate allocation
scheme can achieve maximum throughput under the single-hop traffic model. To
see this, let us consider a network with two links, where the capacity region Λ is
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shown in Fig. 1. Suppose that the arrival rate vector λ = (λ1, λ2) is strictly within
the capacity region. If the queue-length vector is below the line Q1/λ1 = Q2/λ2,
i.e., Q1/λ1 > Q2/λ2, then according to the QRPA algorithm, we can observe from
Fig. 1 that the service rate of the first link is always greater than its arrival rate
(i.e., σ1 > λ1) and thus the queue length of the first link tends to decrease. This
suggests that the QPRA algorithm always tries to reduce maxl∈LQl(t)/λl (link
1 achieves maxl∈LQl(t)/λl in the current example) and hence keeps the mean
queue-length finite for any arrival rate vector strictly within the capacity region.

 =( 1, 2)

1, Q1

Q2

2

Q=(Q1,Q2)

 =(  1,  2)

1 1

2

2

1

1 QQ

 

Fig. 1: An example illustrating the throughput optimality of the QPRA algorithm
in networks with single-hop traffic.

Similarly, in multihop networks, the QPRA algorithm tends to reduce the
maximum of Xl,r/λr over all pairs (l, r). In particular, the following lemma shows
that if θ(

∑
r:l∈r λr)l∈L ∈ Λ for some θ > 0, and the pair (l∗, r∗) achieves the

maximum of Xl,r/λr over all pairs (l, r), then the departure rate of route r∗ at
link l∗ is at least θλr∗ under the QPRA algorithm.

Lemma 1 Assume θ(
∑
r:l∈r λr)l∈L ∈ Λ for some θ > 0. If X 6= 0 and (l∗, r∗) ∈

arg max(l,r)Xl,r/λr, then µl∗,r∗(X) ≥ θλr∗ .

Proof The proof generalizes [21, Lemma 5] to the multihop setup. Since X 6= 0, we
have Xl∗,r∗ > 0. Assume µl∗,r∗(X) < θλr∗ . Then, for any route r within the link l

(r 6= r∗ or l 6= l∗), there are two cases:
(i) If Xl,r = 0, then µl,r(X) = 0.
(ii) If Xl,r > 0, then we have

µl,r(X)
(a)
=

Xl,r
Xl∗,r∗

µl∗,r∗(X) =
Xl,r/λr

Xl∗,r∗/λr∗
λr
λr∗

µl∗,r∗(X)

(b)
≤λr

µl∗,r∗(X)

λr∗

(c)
< θλr, (9)
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where the step (a) follows from equations (8); (b) is true since
Xl∗,r∗
λr∗

= maxl,r
Xl,r

λr
;

(c) follows from the assumption.
Combining (i) and (ii), we have µl,r(X) < θλr for any pair (l, r). Therefore, we

have σl(Q) =
∑
r:l∈r µl,r(X) < θ

∑
r:l∈r λr for each link l ∈ L. This contradicts the

fact that the allocated service rate vector (σl(Q))l∈L lies on the boundary of the
capacity region Λ, since θ(

∑
r:l∈r λr)l∈L ∈ Λ. Hence, we have the desired result.

However, Lemma 1 does not necessarily imply the stability in a multihop sys-
tem. Indeed, as we mentioned in the Introduction, the stability in a single-hop
system does not necessarily imply stability in a multihop system (e.g., [24,30,4]).
Nevertheless, we are able to show that the QPRA algorithm achieves the maxi-
mum throughput under the multihop traffic model through fluid limit techniques.
Next, we introduce the fluid limit and fluid model equations under the QPRA
algorithm.

3.2 Fluid Model

In this subsection, we present the fluid limit and fluid model equations associated
with the QPRA algorithm.

Proposition 1 Under the QPRA algorithm, with probability 1, for any positive se-

quence wn →∞, there exists a subsequence wnj with wnj →∞ such that the following

convergence holds uniformly over compact intervals of time t:

1

wnj

AΣl,r(wnj t)→ λl,rt, ∀(l, r), (10)

1

wnj

HΣ
l (wnj t)→ φΣl (t), ∀l ∈ L, (11)

1

wnj

DΣl,r(wnj t)→ µΣl,r(t), ∀(l, r), (12)

1

wnj

Xl,r(wnj t)→ xl,r(t), ∀(l, r), (13)

1

wnj

Ql(wnj t)→ ql(t), ∀l ∈ L, (14)

where the limiting functions φΣl (t), µΣl,r(t), xl,r(t), ql(t) are Lipschitz-continuous in [0,∞),

which implies that these limiting functions are differentiable for almost all t. Let T be

the set of time instants where these functions are differentiable. Then, the following

equations hold for all t ∈ T :

d

dt
φΣl (t) = σl(q(t)), ∀l ∈ L, whenever q(t) 6= 0, (15)

d

dt
µΣl,r(t) = µl,r(x(t)), ∀(l, r), whenever x(t) 6= 0, (16)

φΣl (t) =
∑
r:l∈r

µΣl,r(t), ∀(l, r), (17)

ql(t) =
∑
r:l∈r

xl,r(t), ∀(l, r), (18)

d

dt
xl,r(t) = λl,r +

d

dt
µΣ
l
(r)
− ,r

(t)− d

dt
µΣl,r(t), ∀(l, r), (19)
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where d
dtµ

Σ
l
(r)
− ,r

(t) = 0 if l = l
(r)
1 . Here σ(q(t)) = (σl(q(t)))l∈L and µ(x(t)) =

(µl(x(t)))l∈L,r∈R are defined in the QPRA algorithm.

The proof of Proposition 1 is somewhat standard and technical using the tech-
niques developed in [8,9,21], and is available in Appendix A for completeness.
Proposition 1 indicates that the stochastic queueing networks and its fluid model
are strongly coupled. In particular, the queue-length dynamics (18) and (19) are
equivalent to (2) and (4), respectively. Moreover, equations (15) and (16) follow
from the QPRA algorithm. By [8, Theorem 4.2], the stability of the fluid model
implies that the original stochastic system is positive recurrent, where the fluid
model is stable if there exists a finite time T ≥ 0 such that for every fluid limit
model x , (xl,r(t))r∈R,l∈L with ‖x(0)‖ = 1, x(t) = 0 for all t ≥ T . Therefore, it is
sufficient to show that the fluid model is stable in the rest of the paper.

3.3 Stability of the Fluid Model

In this subsection, we will show that the fluid model is stable under the QPRA
algorithm for any arrival rate vector within the maximum throughput region Λ.
We first state the following two simple lemmas that will be used for the stability
proof.

Lemma 2 If f(x) = maxi=1,2,...,K fi(x) and fi(x),∀i, are locally Lipschitz continu-

ous2, then, we have

D+

dx+
f(x) ≤ max

i∈K

{
D+

dx+
fi(x)

}
, (20)

where K , {i|fi(x) = f(x)}, and D+

dx+ f(x) is defined as

D+

dx+
f(x) , lim sup

u↓0

f(x+ u)− f(x)

u
.

This lemma relaxes the assumption of differentiability of fi(x), ∀i = 1, 2, ...,K
in [3, Proposition 2.3.2] to the case when these functions are locally Lipschitiz
continuous. The proof is quite similar to that in [3, Proposition 2.3.2] and is
available in Appendix B for completeness.

Lemma 3 Let g : [0,∞)→ [0,∞) be a locally Lipschitz continuous function.

(i) Assume that g(0) = 0 and D+

dt+ g(t) ≤ 0 whenever g(t) > 0. Then, g(t) = 0 for

all t ≥ 0;

(ii) Assume that g(0) > 0 and D+

dt+ g(t) ≤ −γ for some γ > 0 whenever g(t) > 0.

Then, there exists a T ≥ 0 such that g(t) = 0 for all t ≥ T .

The proof of Lemma 3 is available in Appendix C.
We are ready to prove that the fluid model is weakly stable for any arrival rate

vector within the maximum throughput region Λ.

2 Locally Lipschitz continuity guarantees the existences of D+

dx+
f(x) and D+

dx+
fi(x), i =

1, 2, ...,K (see, for example, [7]).
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Proposition 2 The QPRA algorithm achieves throughput optimality, i.e., it stabilizes

the system for any arrival rate vector that is in the interior of the maximum throughput

region Λ.

Proof Given any arrival rate vector λ ∈ Int(Λ), there always exists a real number
ε ∈ (0, 1) such that

(1 + ε)

(∑
r:l∈r

λr

)
l∈L

∈ Λ. (21)

Consider the Lyapunov function

V (x(t)) = max
(l,r)

aNr−nl

λr
xl,r(t), (22)

where a > 1 is some parameter, Nr is the number of links belonging to route r,
and nl is the index of link l at route r, ∀nl = 1, 2, . . . , Nr.

We would like to show that there exists a constant δ > 0 such that D+

dt+ V (x(t)) ≤
−δ whenever V (x(t)) > 0, which implies the desired result according to Lemma 3
and [8, Theorem 4.2].

According to Lemma 2, we have

D+

dt+
V (x(t)) ≤ max

(l,r)∈K

aNr−nl

λr

d

dt
xl,r(t),

where

K ,

{
(l, r) : V (x(t)) =

aNr−nl

λr
xl,r(t)

}
.

In the rest of the proof, we will omit the time index t for brevity. We consider
the case when V (x) > 0, i.e., xl,r > 0. Let (l∗, r∗) ∈ arg max(l,r) xl,r/λr. Then, we
have

aNr−nl

λr
xl,r

(a)
≥ aNr∗−nl∗

λr∗
xl∗,r∗

(b)
≥

xl∗,r∗

λr∗
, (23)

where step (a) follows the definition of (l, r) and (b) uses the fact that a > 1 and
the fact that 1 ≤ nl∗ ≤ Nr∗ .

Hence, under QPRA policy, we have

µl,r =
xl,r
xl∗,r∗

µl∗,r∗

=
xl,r/λr

xl∗,r∗/λr∗
λr
λr∗

µl∗,r∗

(a)
≥ 1

aNr−nl

λr
λr∗

µl∗,r∗

(b)
≥ 1

aNr−nl
λr(1 + ε), (24)

where step (a) uses inequality (23); (b) follows form Lemma 1.
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(i) If l is the ingress link for route r (i.e., nl = 1), then

aNr−nl

λr

d

dt
xl,r =

aNr−1

λr

(
λr − µl,r

)
(a)
≤ aNr−1

(
1− 1

aNr−1
(1 + ε)

)
=aNr−1 − (1 + ε)

(b)
≤aNmax−1 − (1 + ε),

where step (a) uses inequality (24); (b) is true for Nmax , maxr∈RNr ≥ 1.
(ii) If l is not the ingress link for route r (i.e., nl ≥ 2), then

aNr−nl

λr

d

dt
xl,r =

aNr−nl

λr

(
µl−,r − µl,r

)
(a)
=
aNr−nl

λr

(
xl−,r
xl,r

− 1

)
µl,r

(b)
≤ a

Nr−nl

λr

(
1

a
− 1

)
µl,r

(c)
≤
(

1

a
− 1

)
(1 + ε) ,

where step (a) follows from the definition of QPRA policy; (b) uses the definition
of (l, r) (i.e., aNr−nlxl,r/λr ≥ a

Nr−(nl−1)xl−,r/λr); (c) utilizes inequality (24) and
the fact that a > 1.

We can then select a > 1 satisfying aNmax−1 < (1 + ε) such that a
Nr−n

l

λr

d
dtxl,r

has a negative drift in both cases, which implies that D+

dt+ V (x(t)) < −δ for some
δ > 0.

Even though the QPRA algorithm is throughput-optimal, it requires the knowl-
edge of the full capacity region, which is generally unavailable in practice. Moti-
vated by [21,16] and the QPRA Algorithm, we next propose an efficient low-
complexity scheduling scheme that makes transmission decisions only based on
per-link queueing information in multihop wireless networks.

4 Low-Complexity Implementation

In this section, we propose a low-complexity scheduling algorithm with only per-
link queueing information.

We consider the primary interference model, where each link l interferes with
all of its one-hop neighboring links. The capacity region Λ (see [12]) under the
primary interference model is bounded by 2

3Γ ⊆ Λ ⊆ Γ, where

Γ ,

η = (ηl)l∈L

∣∣∣∣∣∣
∑
l∈E(i)

ηl ≤ 1, ∀i ∈ N

 , (25)
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and E(i) denotes the set of links that connect to the neighbors of node i.
Motivated by the QPRA algorithm and [21], for any queue-length vector Q 6= 0,

let σ = (σl)l∈L be the longest vector in Γ such that σl = γQl, ∀l ∈ L, for some
γ ≥ 0. Therefore, it can be easily calculated that

σl =
Ql

maxi∈N
∑
l′∈E(i)Ql′

, ∀l ∈ L. (26)

Based on (26), we are able to develop a low-complexity scheduling algorithm
with only per-link queueing information. We divide each time slot into a control
slot and a data slot, where we further subdivide the control slot into M mini-slots3.
The main purpose of the control slot is to determine the transmission schedule used
for data transmission in the data slot.

Low-Complexity QPRA (LC-QPRA):

(1) In each mini-slot of the time slot t, each link l attempts transmission with
probability σl(t)(

√
M − 1)/(2M), where σl(t) is defined as follows:

σl(t) =


0, if Ql(t) = 0;

Ql(t)

maxi∈N
∑
k∈E(i)Qk(t)

, if Ql(t) > 0. (27)

(2) If the link l attempts transmission in the current mini-slot and does not over-
hear its neighbors’ transmissions, then it will start transmission in the data slot.
Otherwise, it repeats steps (1) and (2) until the end of the control slot.
(3) In the data slot, serve each link l according to the SIRO queueing discipline as
in the QPRA algorithm.

Remarks: (1) Here we need to know maxi∈N
∑
k∈E(i)Qk(t) in each time slot. How-

ever, since the throughput performance is insensitive to the accuracy of the queue-
lengths (e.g., [38,17,31]), we may just need to update the attempt probability over
a relatively long period so that all links have sufficient time to learn this global
information.
(2) The proposed LC-QPRA algorithm can be easily extended to the two-hop
interference model (see [21,16]), where each link l interferes with all of its two-hop
neighboring links.

The next lemma provides the successful transmission probability of each link
l in each time slot under the LC-QPRA algorithm.

Lemma 4 Under the LC-QPRA algorithm, the successful transmission probability of

link l in time slot t is at least σ(t)
(
1/2− 1/

√
M
)
.

The proof is available in [16, Proposition 3].

Proposition 3 The LC-QPRA Algorithm can achieve a constant efficient ratio of at

least ρ under the primary interference model, i.e., it stabilizes the system for any arrival

rate vector that is strictly within the region ρ2Λ, where ρ , 1/2− 1/
√
M .

3 In IEEE 802.11b standard, the total number of mini-slots M ranges between 32 and 1024,
where each mini-slot lasts 20µs.
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Proof Given any arrival rate vector λ ∈ Int(ρΛ), there always exists a real number
ε ∈ (0, 1/2) such that

1 + ε

ρ2

(∑
r:l∈r

λr

)
l∈L

∈ Λ.

The fluid model under the LC-QPRA algorithm is the same as that in Propo-
sition 1 except the departure rate vector µ(t) = (µl,r(t))r∈R,l∈L, which satisfies

µl,r(t) =
xl,r(t)

ql(t)
νl(t), (28)

σl(t) ≥ νl(t) ≥ ρσl(t), (29)

where νl(t) is the service rate for link l at time t and σ(t) = (σl(t))l∈L lies on the
boundary of the region Γ satisfying

σl(t) = 0, whenever ql(t) = 0; (30)

σl(t) =
ql(t)

maxi∈N
∑
l′∈E(i) ql′(t)

, whenever ql(t) > 0, (31)

Here we note that equation (29) follows from Lemma 4, and (28), (30) and (31)
are from the LC-QPRA algorithm.

We use the same Lyapunov function V (x(t)) as in the proof of Proposition 2
except selecting a > 1/ρ, i.e.,

V (x(t)) = max
(l,r)

aNr−nl

λr
xl,r(t), (32)

where a > 1/ρ is some parameter, Nr is the number of links belonging to route r,
and nl is the index of link l at route r, ∀nl = 1, 2, . . . , Nr. We would like to show

that there exists a constant δ > 0 such that D+

dt+ V (x(t)) ≤ −δ whenever V (x(t)) > 0,
which implies the desired result according to Lemma 3 and [8, Theorem 4.2].

According to Lemma 2, we have

D+

dt+
V (x(t)) ≤ max

(l,r)∈K

aNr−nl

λr

d

dt
xl,r(t),

where

K ,

{
(l, r) : V (x(t)) =

aNr−nl

λr
xl,r(t)

}
.

In the rest of the proof, we will omit the time index t for brevity. We consider
the case when V (x) > 0, i.e., xl,r > 0. Let (l∗, r∗) ∈ arg max(l,r) xl,r/λr. Then, we
have

aNr−nl

λr
xl,r

(a)
≥ aNr∗−nl∗

λr∗
xl∗,r∗

(b)
≥

xl∗,r∗

λr∗
, (33)

where step (a) follows from the definition of (l, r) and (b) uses the fact that a >
1/ρ > 1 and the fact that 1 ≤ nl∗ ≤ Nr∗ .
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Under the LC-QPRA algorithm, we have

µl,r
(a)
=

xl,r
ql

νl

(b)
≥ ρ

xl,r
ql

σl
(c)
=ρxl,r

σl∗

ql∗

(d)
≥ ρxl,r

νl∗

ql∗

(e)
=ρxl,r

µl∗,r∗

xl∗,r∗

=ρ
xl,r/λr

xl∗,r∗/λr∗
λr
λr∗

µl∗,r∗

(f)
≥ ρ 1

aNr−nl

λr
λr∗

(1 + ε)
1

ρ2
λr∗

=
1

aNr−nl
(1 + ε)

1

ρ
λr, (34)

where the steps (a) and (e) use equation (28); (b) and (d) follow from inequality
(29); (c) utilizes equation (31); (f) utilizes inequality (33) and Lemma 1.

(i) If l is the ingress link for route r (i.e., nl = 1), then

aNr−nl

λr

d

dt
xl,r =

aNr−1

λr

(
λr − µl,r

)
(a)
≤ aNr−1

(
1− 1

aNr−1

1

ρ
(1 + ε)

)
=aNr−1 − 1

ρ
(1 + ε)

(b)
≤aNmax−1 − 1

ρ
(1 + ε),

where the step (a) uses inequality (34); (b) is true for Nmax , maxr∈RNr ≥ 1.
(ii) If l is not the ingress link for route r (i.e., nl ≥ 2), then

aNr−nl

λr

d

dt
xl,r =

aNr−nl

λr

(
µl−,r − µl,r

)
(a)
=
aNr−nl

λr

(
xl−,r
ql−

νl− −
xl,r
ql

νl

)
(b)
≤ a

Nr−nl

λr

(
xl−,r
ql−

σl− −
xl,r
ql

ρσl

)
=
aNr−nl

λr

(
xl−,r − ρxl,r

) σl
ql

=
aNr−nl

λr

(
xl−,r
xl,r

− ρ

)
µl,r

(c)
≤ a

Nr−nl

λr

(
1

a
− ρ
)
µl,r

(d)
≤
(

1

aρ
− 1

)
(1 + ε) ,
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where the step (a) follows from the definition of QPRA policy; (b) uses inequality
(29); (c) uses the definition of (l, r) (i.e., aNr−nlxl,r/λr ≥ a

Nr−(nl−1)xl−,r/λr); (d)

utilizes inequality (34) and the fact that a > 1.

We can then select a > 1/ρ satisfying aNmax−1 < (1+ε)/ρ such that a
Nr−n

l

λr

d
dtxl,r

has a negative drift in both cases, which implies that D+

dt+ V (x(t)) < −δ for some
δ > 0.

5 Conclusion

In this work, we first developed a scheduling algorithm that makes transmission
decisions only based on the per-link queueing information, which significantly re-
duces the queueing complexity compared to the well-known backpressure algo-
rithm. By introducing a novel Lyapunov function, we are able to establish the
throughput optimality of our proposed algorithm through fluid limit arguments.
We further proposed a low-complexity scheduling algorithm that approximates
our proposed algorithm and showed that it achieves a constant fraction of the
maximum throughput region, independent of network size.
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A Proof of Proposition 1

For any integer t ≥ 1, let HΣ
l (t) ,

∑t−1
τ=0Hl(τ) be the cumulative number of packets departing

from link l up to time slot t− 1. Let DΣl,r(t) ,
∑t−1
τ=0Dl,r(τ) denote the cumulative number of

route r packets departing from link l up to time slot t− 1. Further, let HΣ
l (0) = DΣl,r(0) = 0.

Then, the evolution of the queue length can be rewritten as

Xl,r(t) = Xl,r(0) +AΣl,r(t) +DΣ
l
(r)
− ,r

(t)−DΣl,r(t), (35)

for all pairs (l, r). Here we note that DΣ
l
(r)
− ,r

(t) = 0 if l = l
(r)
1 .

For the purposes of our analysis, we interpolate the values of AΣl,r(t), H
Σ
l (t) and DΣl,r(t)

to all real number t ≥ 0 by linear interpolation between btc and btc+ 1, where btc denotes the
largest integer no greater than t. Then, we have the following lemma.
Proof of Lemma ??: Equation (10) follows from the Functional Strong Law of Large Numbers

if l = l
(r)
1 . If l 6= l

(r)
1 , then AΣl,r(wnj t) = λl,r = 0 and thus equation (10) always holds.

Note that for any 0 ≤ t1 ≤ t2, we have

0 ≤
1

wn
HΣ
l (wnt2)−

1

wn
HΣ
l (wnt1) ≤ t2 − t1, (36)

where we use the fact that each link l can at most transfer one packet in one time slot. Thus,
the sequence of functions { 1

wn
HΣ
l (wnt)} is uniformly equicontinuous, and since HΣ

l (0) = 0,

the sequence is also uniformly bounded. Similarly, the sequence { 1
wn

DΣl,r(wnt)} is uniformly

bounded and uniformly equicontinuous. Consequently, according to the Arzela-Ascoli Theorem,
there must exist a subsequence of {wn}n≥1 for which both (11) and (12) hold. Since

1

wn
Xl,r(wnt) =

1

wn
AΣl,r(wnt)−

1

wn
DΣ
l
(r)
− ,r

(wnt) +
1

wn
DΣl,r(wnt),

1

wn
QΣl (wnt) =

∑
r:l∈r

1

wn
XΣ
l,r(wnt),

we have (13) and (14) by taking limits as wnj →∞.

Since the functions HΣ
l (t), DΣl,r(t), Xl,r(t), Ql(t) are Lipschitz continuous, the Lipschitz

continuity of φΣl (t), µΣl,r(t), xl,r(t), ql(t) also follows. Hence, these limiting functions are dif-

ferentiable for almost all t. In the rest of proof, we consider all t ∈ T , where T is the set of
time instants where the limiting functions are differentiable.

Next, we prove equation (15). Since σl(q(t)) is continuous with respect to q(t) when
q(t) 6= 0. Therefore, for any ε > 0, there exists a u > 0 such that for all t′ ∈ [t, t+ u], we have∣∣σl(q(t′))− σl(q(t))

∣∣ ≤ ε. (37)
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Since 1
wnj

Q(bwnj t
′c)→ q(t′) uniformly over compact intervals of time, and σl(aQ) = σl(Q)

for any a > 0, we have σl(Q(bwnj t
′c)) → σl(q(t′)) with probability 1. Thus, there exists an

integer J > 0 such that for all j > J and t′ ∈ [t, t+ u],

σl(q(t′))− ε ≤ σl(Q(bwnj t
′c)) ≤ σl(q(t′)) + ε. (38)

Combining with (37), we have

σl(q(t))− 2ε ≤ σl(Q(bwnj t
′c)) ≤ σl(q(t)) + 2ε. (39)

By the definition of the limit in (11), for any t′ ∈ [t, t+ u], we have

φΣl (t′)− φΣl (t) = lim
j→∞

1

wnj

bwnj
t′c−1∑

k=bwnj
tc
Hl(k). (40)

Define the filtration Fk, k = 1, 2, · · · , where Fk is the σ−algebra generated by the random
variables AΣl,r(bwnj tc + k′), DΣl,r(bwnj tc + k′), Xl,r(bwnj tc + k′) for all pairs (l, r) and for

k′ = 0, 1, 2, · · · , k − 1. Let

Yk = Hl(bwnj tc+ k)− E
[
Hl(bwnj tc+ k)

∣∣Q(bwnj tc+ k)
]
.

Therefore,
∑k−1
m=0 Ym, k = 1, 2, · · · , is a martingale with respect to the filtration Fk, k =

1, 2, · · · . Further, E
[
Y 2
k

]
is always bounded for all k. Hence, using a strong law of large numbers

for martingales [6], we have

lim
k→∞

1

k

k−1∑
m=0

Ym = 0, with probability 1, (41)

which implies that

φΣl (t′)− φΣl (t) = lim
j→∞

1

wnj

bwnj
t′c−1∑

k=bwnj
tc
Hl(k)

= lim
j→∞

1

wnj

bwnj
t′c−1∑

k=bwnj
tc

E [Hl(k)|Q(k)]

= lim
j→∞

1

wnj

bwnj
t′c−1∑

k=bwnj
tc
σl (Q(k)) . (42)

By using (39), we have

(t′ − t)(σl(q(t))− 2ε) ≤ φΣl (t′)− φΣl (t) ≤ (t′ − t)(σl(q(t)) + 2ε),

for t′ ∈ [t, t+ u]. Since we assume that σΣl (t) is differentiable at t (i.e., t ∈ T ), we have

σl(q(t))− 2ε ≤
d

dt
σΣl (t) ≤ σl(q(t)) + 2ε. (43)

Finally, since this is true for any ε > 0, equation (15) follows. The proof of equation (16)
follows the similar technique and is omitted here for brevity.

Equations (17) and (18) follow from the equation HΣ
l (t) =

∑
r:l∈r D

Σ
l,r(t) and Ql(t) =∑

r:l∈r Xl,r(t) by taking limits as wnj →∞, respectively. Finally, by using the queue-evolution
equation (35) and taking limits as wnj →∞, we have (19).
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B Proof of Lemma 1

We prove it by contradiction. Assume

D+

dx+
f(x) > max

i∈K

{
D+

dx+
fi(x)

}
. (44)

Then, for a sufficient small ε > 0, there exist a decreasing sequence {uk, k = 1, 2, ...} with
limk→∞ uk = 0 such that

f(x+ uk)− f(x)

uk
≥ max

i∈K

{
D+

dx+
fi(x)

}
+ ε, ∀k = 1, 2, · · · .

Note that f(x) = fi(x),∀i ∈ K. Since there are a finite number of locally Lipschitz con-
tinuous functions fi(x), i = 1, 2, · · · ,K, there must exist a j ∈ K and a decreasing sub-
sequence {utk , k = 1, 2, · · · } of {uk, k = 1, 2, · · · } such that fj(x + utk ) = f(x + utk ) =
maxi=1,2,··· ,K fi(x+ utk ), ∀k = 1, 2, · · · , which implies that

fj(x+ utk )− fj(x)

utk
≥ max

i∈K

{
D+

dx+
fi(x)

}
+ ε, ∀k = 1, 2, · · · .

Therefore, we obtain the contradiction

D+

dx+
fj(x) ≥ max

i∈K

{
D+

dx+
fi(x)

}
+ ε. (45)

Hence, we have the desired result.

C Proof of Lemma 2

(i) Assume that there exist a t1 > 0 and a ζ > 0 such that g(t1) = ζ. Since g(0) = 0, according
to the continuity property of the function g(·), there exists a t2 ∈ (0, t1) such that g(t2) = ζ/2

and g(t) ≥ ζ/2 > 0 for any t ∈ (t2, t1]. Since g(t) > 0 for any t ∈ [t2, t1] and D+

dt+
g(t) ≤ 0

whenever g(t) > 0, we have g(t1) ≤ g(t2), which contradicts that g(t1) = ζ > g(t2) = ζ/2.
Therefore, g(t) = 0 for all t ≥ 0.

(ii) Since D+

dt+
g(t) ≤ −γ whenever g(t) > 0, the function g(·) will first hit zero at time

T = g(0)/γ. Then, by using the technique in (i), we can show that g(t) = 0 for all t ≥ T .


