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Abstract—We consider a system in which two nodes take
correlated measurements of a random source with time-varying
and unknown statistics. The observations of the source at the
first node are to be losslessly replicated with a given probability
of outage at the second node, which receives data from the first
node over a constant-rate channel. We develop a system and
associated strategies for joint distributed source coding (encoding
and decoding) and transmission control in order to achieve low
end-to-end delay. Slepian-Wolf coding in its traditional form
cannot be applied in our scenario, since the encoder requires the
joint statistics of the observations and the associated decoding
delay is very high. We analytically evaluate the performance
of our strategies and show that the delay achieved by them
are order optimal, as the conditional entropy of the source
approaches to the channel rate. We also evaluate the performance
of our algorithms based on real-world experiments using two
cameras recording videos of a scene at different angles. Having
realized our schemes, we demonstrated that, even with a very
low-complexity quantizer, a compression ratio of approximately
50% is achievable for lossless replication at the decoder, at an
average delay of a few seconds.

Index Terms—Lossless distributed source coding, universal
algorithms, delay optimal control, heavy-traffic analysis

I. INTRODUCTION

In many applications, multiple nodes take measurements
from the same source to be combined later in order to obtain a
high resolution representation of the source. In order to achieve
that, nodes encode their digitized observations and share
information for the observations to be replicated at a common
location. Lossless distributed source coding aims to encode
the observations in a way to minimize the rate of exchanged
information for all observations to be perfectly replicated
at a certain location. The nodes exploit the correlations in
their observations to build an efficient code. Following the
seminal work by Slepian and Wolf [17], there has been a vast
interest in lossless distributed source coding (DSC) including
applications in quantum key distribution [12], distributed video
coding [8] and wireless sensor networks [20].

We address the lossless distributed source coding problem
for a pair of nodes, observing a random source with time-
varying statistics, unknown to the nodes before the session
starts. Our objective is to minimize the delay for the second
node to losslessly replicate the observations of the first node,
subject to a given desired probability of outage. Communica-
tion from the first node to the second node occurs over a finite-

Fig. 1: A sample scenario for our problem
rate channel. Slepian-Wolf coding in its traditional form cannot
be applied in our scenario, since, with traditional SW, the
encoder requires the joint statistics of the observations causally
to encode information. The alternative is to encode across a
time period, long enough to exploit long-term variations of
the source. However, with this approach, the corresponding
decoding delay is very high. To that end, we develop a system
and associated novel strategies for joint distributed source
coding (encoding and decoding) and transmission control in
order to achieve low end-to-end delay. We evaluate the perfor-
mance of our strategies both analytically and via real-world
experimentation. We first derive upper and lower bounds on
the expected delay. Our bounds show that the delay achieved
by our strategies are order optimal as the conditional entropy
of the source (given the observation at the second node)
approaches to the channel capacity. Next, we use two cameras
recording videos of a common scene at different angles to
obtain experimental data. After evaluating the possible joint
source distributions based on the observations, we apply our
schemes and show major improvements in end-to-end delay
over existing traditional Slepian-Wolf based coding schemes.
The analytical results show us that the delay performance of
our schemes are very close to that of a highly-optimistic imag-
inary scenario, in which the joint distribution of the source
observations are causally available to encoder, without seeing
the observation at the decoder. The experimental results show
that, even if we use highly coarse quantization for the source
statistics, the average data rate at which an encoder shares
information to achieve lossless replication at the decoder is
reduced by ∼ 50% (compression ratio), at an average end-to-
end delay of 6-9 secs.
Sample scenario: In Fig. 1, we provide an example for a



typical setting1 that we consider in this paper. Here, two
security surveillance cameras observe the action in the en-
vironment, which is time-varying and uncertain. Therefore,
the joint distribution of the observations of the two cameras is
not causally available at these two locations. One of the nodes,
holding a camera would like to replicate the video taken by the
other camera to increase the resolution, in order to enhance the
detection performance of an intruder, for example. The brute
force approach would be to have the whole video transmitted
to the replicator node over the wireless channel. However, this
would lead to a waste of communication resources, especially
if the wireless channel has a limited capacity. Instead, the first
node can exploit the existence of highly correlated observation
at the second (replicating) node to send information merely
“sufficient” for its video to be replicated. This process is
known as lossless distributed source coding. In security appli-
cations, delay is of critical importance. Therefore, traditional
schemes that are based on the utilization of the long-term
statistical regularities are not viable. Furthermore, due to time-
varying statistics (non-stationarity), the knowledge of the joint
statistics at the encoder is also not a valid assumption, which
calls for universal solutions for coding.
Background, Related Work, and our Contributions: Loss-
less distributed source coding was first introduced by Slepian
and Wolf in [17]. There, two independently and identically
distributed (i.i.d.) random source sequences, {Xi}∞i=1,{Yi}∞i=1

with joint cumulative distribution function (cdf) FXY (x, y)
are observed at the encoder and the decoder, respectively.
The objective is to reconstruct sequence {Xi}∞i=1 losslessly
at the decoder. Instead of encoding {Xi}∞i=1 with its full
entropy rate H(X), SW coding enables lossless replication at
an encoding rate RX = H(X|Y ), regarding {Yi}∞i=1 as side
information at the decoder. To achieve this rate, SW coding
(i) encodes the source sequence across infinitely many blocks
to achieve an arbitrarily low probability of decoding error; (ii)
requires the knowledge of the joint cdf, FXY at the encoder.
These two assumptions make direct application of SW coding
inappropriate in some delay-sensitive applications (e.g. live
video meeting, online video streaming etc.) or for cases in
which the joint statistics is unknown, and/or time-varying/non-
stationary in certain situations (e.g. the encoder and decoder
are moving while communicating).

These issues were addressed in a variety of studies, fol-
lowing [17]. Many practical coding schemes for SW problem
have been proposed, e.g. [15], [19]. And most of them are
based on channel codes [18], especially low-density parity
check (LDPC) codes [11], [13]. Nevertheless, most of them
still assume perfect knowledge of joint cdf. Csiszar and Korner
first extended SW coding to achieve universality [4], where
neither encoding nor decoding depends on source statistics.
They also analyzed the finite-block behavior and provided
the universally attainable error exponent when encoding rates
are within the SW-region, i.e., the region of rates for which

1In fact, the illustrated scenario is the very case we evaluate in our
experimental observations.

lossless replication of sources is possible with arbitrarily
low probability of outage as the block size goes to infinity.
In [2], end-to-end delay is studied in a SW coding setup.
There, decoding error exponent is derived for a given end-
to-end delay. If a feedback channel from the decoder to the
encoder is present, [14] proposed a scheme under lack of the
knowledge for the joint cdf. There, by carefully choosing a
sequence of codes, the average encoding rate is minimized
over each frame at the encoder. Similarly, [9] exploited the
feedback channel to send some information to the encoder for
a better performance. With unknown statistics, [16] studied the
outage capacity of the system and [6] proposed a compound
source model to achieve arbitrarily low probability of outage.
In another direction, [5] proposed universal incremental SW
coding, in which an incremental transmission and a universal
sequential decision test is applied by the encoder and decoder,
respectively. The system developed requires the availability of
ACK/NAK feedback from decoder to encoder.

None of the above studies addressed the time varying and
unknown source statistics in the context of delay minimization,
without an active use of a feedback channel. Indeed, if the
prior knowledge of the source statistics is not available, it
may not be possible to feed back the joint statistics without
actually feeding back the actual observation sequence itself.
With that motivation, the main contributions of our paper can
be listed as follows:
(1) We extend the existing studies on universal distributed
source coding by integrating time-varying and unknown joint
statistics, the use of finite-capacity channel from the encoder
to the decoder, and minimization of end-to-end delay.
(2) We specify two different classes of joint encoding, decod-
ing, and transmission control schemes, Wait-to-Encode and
Wait-to-Decode and develop a scheme in each class to achieve
low-delay in universal distributed source coding.
(3) We derive upper and lower bounds on the performance
of our schemes. While the bounds are valid in any regime,
in the heavy traffic limit as the long-term average source
rate converges to the channel capacity, we show that our
schemes achieve optimal delay scaling. To achieve that, we
develop and utilize new techniques in heavy-traffic analysis
of queues. We also point out a phase-transition phenomenon
on the achievable delay scaling to show that even a minor
degradation in the knowledge of joint statistics leads to a
different scaling regime.
(4) We implement our schemes in a setup that involves two
cameras recording videos of a common scene at different an-
gles. This setup enabled the real-world experimental evaluation
of the performance of our schemes. We demonstrated that,
even with a low-complexity quantizer, a compression ratio of
∼ 50% is achievable for lossless replication at the decoder, at
an average delay of a few seconds.

II. SYSTEM MODEL

In this paper, we use boldface to represent vectors, upper
case to represent random variables and vectors, and lower case
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Fig. 2: System model

to represent realizations of random variables and vectors, or
deterministic parameters.

First, we introduce our source model. In our system,
there are two nodes that take correlated measurements of a
random source. Time is slotted and a single source symbol
is taken by each node in each time slot. We further group
time slots into blocks of size n time slots and denote the
random measurement taken by the nodes in block t as Xt

and Yt, respectively. Hence, we will refer to the nodes as
node X and node Y in the sequel. Source symbols are
discrete, taking on values from associated finite sets X and
Y , for node X and node Y , respectively. We denote the joint
cumulative distribution function (cdf) of the observation in
block t nodes with FXtYt(x,y), and the associated probability
mass function (PMF) with PXtYt

(x,y). We assume the joint
statistics of the blocks to be time varying from one block to
another, but to remain constant within each block (analogous
to block fading models in channel coding) of n symbols, large
enough to invoke random source coding arguments. Also, the
symbols observed by node X and Y are i.i.d. in each block:

FXtYt(x,y) =

n∏
i=1

FXtYt(xi, yi),

PXtYt(x,y) =

n∏
i=1

PXtYt(xi, yi),

where FXtYt(x, y) and PXtYt(x, y) denote the joint cdf and
the associated PMF of a symbol in block t, respectively.
In the sequel, we simply use F(t)(x, y) and P(t)(x, y). We
further assume that FXtYt(x, y) takes values from a finite
set F , of possible joint cdfs. Without loss of generality,
we group the joint cdfs in F into m groups as follows:
F = {F11, . . . F1l1 ;F21, . . . F2l2 ; . . . ;Fm1, . . . Fmlm}, where
each group, {Fij}lij=1, of joint cdfs have identical marginal
cdfs, i.e., Fi(x) , Fi1(x,∞) = · · · = Fili(x,∞), Fi(y) ,
Fi1(∞, y) = · · · = Fili(∞, y) for all i, 1 ≤ i ≤ m. Since
nodes X and Y merely have their own observations Xt and
Yt, they only have the knowledge of the marginals FXt(x) and
FYt(y), available at the end of block t, but they do not have
any knowledge of FXtYt(x, y) beyond the possible group that
it belongs to F . However, the nodes have the knowledge of
the PMF, PF (Fij) of each possible joint cdf of the node. Note
that, the existence of such a PMF implies a doubly stochastic,
stationary, and ergodic structure in our source model: the joint
cdf in each block t is chosen at random, i.i.d. with probabilities
parameterized by PMF PF (Fij). Then the source symbols are
chosen at random, according to the associated joint cdf Fij ,
chosen by the PMF.

Next, we present the system that we consider, as illustrated

in Fig. 2. Node X is connected to node Y via a noiseless
channel with constant transmission rate c bits per slot. Node
X (source) encodes the observed symbols {Xt} into a string
of bits, which we refer to as the message. We denote the
message created in block t with Mt. For each block, node
X and Y also (possibly) exchange the indices of the marginal
distributions (between 1 and m)2, i.e., node X sends the index
of Xt and node Y sends the index of Yt. Note that, to form
a message, the encoder can possibly combine multiple blocks
of source symbols. Consequently, there exist times in which
the encoder chooses to make further observations to combine
with the existing ones and not encoding the current block
at the time. For such blocks, a blank message is generated.
For instance, in traditional SW coding, the encoder waits to
observe infinitely many blocks of symbols that are encoded
jointly to take advantage of long-term statistical averaging.
The size of the string dictates the instantaneous rate of the
encoder, denoted by Rt bits/slot. Thus, the total number of
bits in message Mt = nRt. In case of a blank message after
block t, Rt = 0 for that block. We ignore the number of
bits the encoder uses to encode the index of Xt in calculating
the rate (i.e., log2m � nRt for all non-blank messages).
These messages are transmitted over the channel to be (source)
decoded by the decoder at node Y . The decoder combines the
received messages with its own observation sequence {Yt} (as
well as the indices of the marginals of blocks Xt if available)
in order to losslessly decode {Xt}. We denote the decoded
sequence with {X̂t}. If for certain block t, X̂t 6= Xt, we say
that an outage occurred for block t.

We refer to a strategy as a method that jointly selects the
encoder and the decoder. In particular, a strategy, parameter-
ized with π, chooses the mapping from the sequence of blocks
{Xt} observed thus far to the message Mt , and the mapping
from the received sequence {Mt} to the decoded blocks {X̂t},
at the end of each block. The set of all strategies is denoted
with Π. Moreover, we do not impose any limitation on the
strategy space such as stationarity or ergodicity.

Finally, we provide the delay model. We measure the delay
experienced by a block of source symbols as the time elapsed
between the slot that the first source symbol is observed and
the slot that all the symbols of the block is decoded. There
are three different components of the delay. Firstly, for a
given strategy π, a block may experience a delay, W (π)

E (t),
at the encoder. This is due to the fact that the encoder decides
to group the symbols of the block with the symbols of the
subsequent blocks. Next, the messages (encoded symbols)
need to wait to be transmitted over the channel, since the
channel has a finite rate. For instance, if the message at time
t has a rate Rt = 2 Mbits/slot and the channel has a rate
c = 1 Mbits/slot, then it takes the message (encapsulating all
blocks encoded) at least 2n slots (or 2 blocks) to be transmitted
over the channel, even if there are no other messages in
transmission at the time the message generated at time t arrives

2This consumes a negligible amount of resources, compared to the size of
the message, since n is assumed to be large.



at the transmission queue. We denote the transmission delay
associated with a strategy π with W (π)

C (t). Lastly, depending
on the encoder strategy, the decoder may choose to accumulate
further information on a source block through future messages
and thus defer the decoding decision until later. We denote the
decoding delay associated with strategy π with W (π)

D (t). The
overall delay experienced in the system with strategy π is thus,
W (π)(t) = W

(π)
E (t) +W

(π)
C (t) +W

(π)
D (t).

We finalize the section noting that, systems studied in [14]
and [2] can be regarded as two special cases of our system.

III. PROBLEM STATEMENT

In this paper, our objective is to develop strategies that
minimize the end-to-end delay observed by the source, while
keeping the rate of blocks experiencing outage below a certain
desired threshold ε ∈ (0, 1). This goal can be achieved by
solving the following problem:

min
π∈Π

lim sup
T→∞

1
T

T∑
t=1

E[W
(π)
E (t) +W

(π)
C (t) +W

(π)
D (t)] (1)

s.t. P{X̂t 6= Xt} ≤ ε,∀t = 1, 2, ...,∞,

where the expectation is taken over the PMF, PF (Fij), of the
source cdfs and the probability of outage is dictated by the
strategy π, as well as PF (Fij). Note that, while the source
is stationary and ergodic, the strategies need not be stationary
nor ergodic. One thing to be careful about our formulation is
that, the outage probability is imposed on every single block
individually, rather than on average.
Illustrative scenarios:
(1) Known joint cdfs: It is well-known that if the joint cdf,
F(t)(x, y), of the source were known at the encoder, then one
could apply SW encoding and decoding [17] (based on random
binning and typicality decoding) on a block-by-block basis.
Thus, the rate of the message Mt would be the conditional
entropy, H(t)(X|Y ), of the source associated with joint cdf
F(t)(x, y), which would lead to a long-term average encoding
rate of

E[H(t)(X|Y )] =
∑

1≤i≤m

∑
1≤j≤li

PF (Fij) ·Hij(X|Y ).

where Hij(X|Y ) is the conditional entropy given Fij .
With this approach, an arbitrarily low probability of outage

can be achieved as n → ∞ and thus the constraint is met.
The encoding delay is merely a single block for all t, since
each block is immediately encoded. The decoding delay is 0
for all t, since each block is immediately decoded. Thus, the
only component of the delay experienced is the transmission
delay, which is finite if c > E[H(t)(X|Y )].
(2) Accumulate and encode: Without the knowledge of the
joint cdfs, one possibility is to accumulate infinitely many
blocks at the encoder and encode them jointly. That way, node
X can exploit the law of large numbers as the empirical PMF
of the source statistic, converges to PF (Fij) with probability 1.
Thus, the situation becomes that of known joint statistics, and
the long-term average encoding rate of E[H(t)(X|Y )] can still

be achieved at an arbitrarily low decoding error probability.
However, clearly the encoding delay will be arbitrarily large
with this approach and it cannot be a viable solution for our
problem.
(3) Block-by-block encoding: In the other extreme, where each
block is encoded separately, one has to pick the encoding rate
large enough to ensure the outage constraint is met in each
block. For instance, to achieve arbitrarily low probability of
outage, the encoding rate has to be picked as

Rt = max
1≤i≤m,1≤j≤li

Hij(X|Y ) , Hmax(X|Y ).

While the encoding delay is a single block, the highly con-
servative choice of encoding rate increases transmission delay
significantly, potentially to ∞ if c < Hmax(X|Y ).

The above observations motivate us to find a solution
somewhere in between the two extreme approaches depicted in
(2) and (3). Note that, if c� E[H(t)(X|Y )] the problem be-
comes uninteresting (trivial if c ≥ Hmax(X|Y )). The problem
becomes interesting for E[H(t)(X|Y )] < c < Hmax(X|Y ).
The major focus in performance analysis will be the case in
which c is very close to, but slightly larger than E[H(t)(X|Y )].

IV. PROPOSED APPROACHES

With the mere assumption that F is a finite set, there
does not exist a well-structured closed-form solution for opti-
mization problem (1), for all possibilities of F . However, we
propose two structured class of strategies, Wait-to-Encode and
Wait-to-Decode and show that they are both able to achieve
optimal delay scaling as E[H(t)(X|Y )] approaches channel
rate c. Also in both sets of strategies, we provide ways to
jointly encode and decode multiple (can be single if needed)
blocks of source symbols together. In the rest of this section,
our proposed strategies are presented in detail.

A. Wait-to-Encode Strategies

A strategy, πWE , is called Wait-to-Encode if it accumulates
blocks of symbols at the encoder and the blocks in the group
are encoded simultaneously. With Wait-to-Encode, a source
block is encoded only in a single message and an encoded
message is no longer kept at the encoder. At the end of
each block t, the encoder makes a decision about generating
message Mt , which is based on whether a condition asso-
ciated with strategy πWE is satisfied or not. This condition
is parameterized with C(πWE). Any time a block, Xt, is
deferred for future encoding, the associated message, Mt, at
that instant is blank. Node Y decodes Mt immediately after
receiving it, thus W (πWE)

D (t) = 0. Denoting the set of Wait-to-
Encode strategies with ΠWE , we can summarize the general
procedure as follows:

Algorithm 1 (Wait-to-Encode Strategy):
Observation:
At the beginning of block t, suppose K − 1 blocks of source
symbols have been accumulated thus far, for K = 1, 2, . . .,
waiting to be encoded. By the end of block t, node X and



Y observes xt and yt respectively and the marginals F(t)(x)
and F(t)(y) are interchanged between nodes.
Encoding:
Node X generates message Mt as follows:

If C(πWE) holds for the accumulated set of blocks
Blank message Mt is generated, i.e. Rt = 0;

Else
Message Mt is generated via SW encoding at rate
Rt = RX(FKX , F

K
Y , ε),

where FKX and FKY represent the sequence of marginals for
the observations of node X and node Y , respectively and the
encoding rate function RX(FKX , F

K
Y , ε) is chosen as:

RX(FKX , F
K
Y , ε) = min RX (2)

s.t.
∑

FK∈F ′K
PF (FK |FKX , FKY ) ≤ ε,

where F ′K,

{
FK∈FK :

t∑
τ=t−K+1

H(τ)(X|Y )≥RX

}
. SW encoding

is a random coding strategy, in which 2
∑t
τ=t−K+1H(τ)(X) pos-

sible typical node X observations are mapped into a binning
structure with 2nRX(FKX ,F

K
Y ,ε) bins. Then, given the vector of

observations, node X finds the bin number of the associated
vector in the binning structure and uses it as message Mt.

Theorem 1: Given xK , yK , FKX , FKY and the outage proba-
bility constraint ε > 0, the minimum achievable joint encoding
rate for Mt is the solution of the constrained optimization
problem (2).

Proof: The detailed proof can be found in Appendix A of
our Technical Report [1]. To prove this theorem, we utilized
random coding and typicality decoding ideas.
Possible choices for Condition C(πWE): It is clear that the
main differentiator between different Wait-to-Encode schemes
is the choice of Condition C(πWE). For instance, the two
extreme cases for this class of algorithms are the ones in which
C(πWE) is chosen such that (i) K = 1 and (ii) K =∞, which
correspond to Illustrative Scenario (2) and (3), respectively. In
general, Condition C(πWE) dictates the achievable point in the
tradeoff between E[W

(πWE)
E (t)] and E[W

(πWE)
C (t)]. If we try

to keep one of them small, then the other will increase. With
this observation, we propose the following Wait-to-Encode
strategy π∗WE , in which the condition C(π∗WE) is chosen to
be:

1

K
RX(FKX , F

K
Y , ε) > c. (3)

Though π∗WE is not necessarily optimal with respect to Prob-
lem (1), we prove in Section V that it achieves optimal delay
scaling as the entropy rate, E[H(t)(X|Y )], of the observation
at node X approaches to the channel rate c.

B. Wait-to-Decode Strategy

In a Wait-to-Decode strategy, πWD, the encoder generates
message Mt with encoding rate Rt = c, at the end of each time
block t. For some blocks, this rate will be sufficient to decode
Xt at the desired probability of outage. For those blocks that

this is not true, block Xt is not dropped at the encoder, and it
is jointly encoded with the subsequent blocks of source obser-
vations. Once the encoder decides that sufficient information
is accumulated at the decoder so that the group of blocks
encoded can be decoded with the desired probability of outage,
the blocks at the encoder are removed and the next block is
encoded by itself, to start the process afresh. With Wait-to-
Decode strategy, the main delay is experienced at the decoder,
since the messages are accumulated there. Once the delay is
calculated at the decoder, the other components of delay can
be written as W (πWD)

E (t) = 1 and W (πWD)
C (t) = n·Rt

n·c = 1.
Motivated by the sequential binning strategy proposed

in [2], we propose the following Wait-to-Decode strategy:

Algorithm 2 (Wait-to-Decode Strategy):
Observation:
At the beginning of block t, suppose K − 1 blocks of source
symbols and messages have been respectively accumulated
at node X and Y thus far, for K = 1, 2, . . ., waiting to be
decoded. By the end of block t, node X and Y observes xt
and yt respectively and the marginals F(t)(x) and F(t)(y) are
interchanged between nodes.
Encoding:
Node X generates message Mt for jointly encoding xK

via sequential SW encoding at rate Rt = c. Sequential
SW encoding is also a random coding strategy, in which
2
∑t
τ=t−K+1H(τ)(X) possible typical node X observations are

mapped into a binning structure as with 2n·c bins. Then, given
the vector of observations, node X finds the bin number of
the associated vector in the binning structure and uses it as
message Mt. After accumulating the bin number sequence,
i.e. message sequence (Mt−K+1, ...Mt), this sequence of bin
numbers is sequentially connected and treated as the ‘bin
number’ in traditional SW coding.
Decoding:
After receiving message Mt, node Y decodes the accumulated
messages (Mt−K+1, ...Mt) as follows:

If 1
KRX(FKX , F

K
Y , ε) ≤ c holds

Jointly decode all the accumulated messages
(Mt−K+1, ...Mt), remove xK from the encoder and
start afresh;

Else
All the messages (Mt−K+1, ...Mt) keep being ac-
cumulated at node Y , waiting for the subsequent
message(s).

Notice that, we described only one Wait-to-Decode strategy,
without any control condition. The main reason is that, here,
we use a constant encoding rate (as opposed to the variable-
rate encoding in Wait-to-Encode class of strategies) and at
the same time node Y decides to decode the accumulated
messages as soon as the probability of outage goes below
the desired threshold. We show in Section V that our Wait-
to-Decode strategy also achieves optimal delay scaling as
E[H(t)(X|Y )] approaches channel rate c.



C. Comparison of Wait-to-Encode and Wait-to-Decode
Both proposed strategies have their own advantages and

disadvantages. Under our Wait-to-Encode strategy πWE , we
carefully control the encoding rate, which is variable. We
choose Condition C(π∗WE) in a way to minimize the encoding
delay by transmitting the group of blocks, as soon as the
encoding rate goes below the channel rate. The optimal design
of C(πWE) is complicated due to the strong coupling between
the encoder and the channel, where the instant arrival rate of
the channel, i.e. Rt, depends on our control decisions.

On the other hand, under the Wait-to-Decode strategy πWD,
we only have messages accumulating at the decoder. Due to
the lack of control in our scheme, the end-to-end expected
delay can be fairly large for certain blocks (despite being order
optimal). For example, once a (very-long) block, demanding
large SW encoding rate is observed, i.e., the required encoding
rate is way above c, the decoder needs to wait for many
subsequent blocks for things to smooth out in the long term.
This is identical to the so called slow truck effect in First-in-
First-out type queue scheduling.

V. PERFORMANCE BOUNDS

In this section, we derive upper and lower bounds for the
end-to-end delay under both Wait-to-Encode strategy π∗WE

and Wait-to-Decode strategy πWD. While our results are
general for all possible values of the parameters, one of
our main focus will be on the case in which the channel
transmission rate c is larger than, but close to E[H(t)(X|Y )].
To formalize this, we define parameter η with 0 < η < 1 such
that E[H(t)(X|Y )] = (1 − η)c. The results reveal that both
strategies achieve the order-optimal delay performance with
respect to Problem (1) in heavy-traffic regime, i.e., η ↓ 0.
This regime is particularly interesting in cases when we want
to fully utilize the available channel, while achieving a low
finite end-to-end delay. At the end of the section, we illustrate
the bounds via a simple numerical example.

Recall that the set of possible joint cdfs F =
{F11, . . . F1l1 ;F21, . . . F2l2 ; . . . ;Fm1, . . . Fmlm}. Note that if
li = 1,∀1 ≤ i ≤ m, then the marginal distribution information
is equivalent to know the joint cdf information, for which the
delay analysis becomes trivial. In fact, as we will discuss later,
the delay scaling changes in the case of the availability of joint
cdf, pointing out a phase transition phenomenon. The main
focus in this section is in the case where there exists an m∗

with 1 ≤ m∗ < m such that li = 1 for any i ≤ m∗ and li > 1
for m∗+1 < i ≤ m. Let φij , PF (Fij), φi ,

∑li
j=1 φij , and

Hmaxi(X|Y ) , max1≤j≤li Hij(X|Y ). Next, we define some
quantities that we use in expressing the performance. For all
(i, j) such that 1 ≤ i ≤ m, 1 ≤ j ≤ li, let

σ2
H ,

m∑
i=1

li∑
j=1

φij (Hij(X|Y )− (1− η) · c)2
,

ci ,
1

1− η

li∑
j=1

φij
φi
Hij(X|Y ),

σ2
Hi ,

li∑
j=1

φij
φi

(Hij(X|Y )− (1− η)ci)
2
.

Also, let us succinctly denote the objective function of opti-
mization problem (1) with E[W

(π)
(t)], i.e.,

E[W
(π)

(t)] , lim sup
T→∞

1

T

T∑
t=1

E[W
(π)
E (t) +W

(π)
C (t) +W

(π)
D (t)].

A. Delay Upper Bounds
In this section, we provide upper bounds on the end-to-end

delay achieved by Wait-to-Encode strategy π∗WE and Wait-to-
Decode strategy πWD to be valid for all values of η.

Theorem 2: For a given set of possible joint cdfs,
F , expected average end-to-end delay E[W

(π∗WE)
(t)] and

E[W
(πWD)

(t)] can be upper bounded as follows:

E[W
(π∗WE)

(t)] ≤ 3γ

2
· 1

η2
+

1

2
, (4)

E[W
(πWD)

(t)] ≤ γ

2
· 1

η2
+

3

2
, (5)

where γ =
−2 ln ε·σ2

H

c2 ·
(

1 + MH ·c
3σ2
H
· η
)

and MH =

Hmax(X|Y )− E[H(t)(X|Y )] .
Proof: Both strategies achieve their upper performance

bounds in the worst case scenario when the encoder and the
decoder do not use the marginal cdf of source symbols (or
the marginal cdfs are useless, e.g. m = 1, l1 > 1). In such
a case, the joint encoding rate function RX(FKX , F

K
Y , ε) no

longer depends on FKX or FKY , but the value of K. Hence,
RX(FKX , F

K
Y , ε) can be simply written as RX(K, ε). Based

on this observation, we define constant Kc as:
Kc , min K (6)

s.t. P

{
t+K−1∑
τ=t

H(τ)(X|Y ) > K · c

}
≤ ε.

Since there always exists a solution to (6) for all η ∈ (0, 1), it
is clear that RX(Kc, ε) ≤ c. Thus, in Wait-to-Encode strategy
π∗WE , the encoder will always accumulate Kc blocks to jointly
encode; while in Wait-to-Decode strategy πWD, the decoder
will always accumulate Kc blocks to jointly decode (because
of the lack of side information from the observation of the
marginals). Since every Kc blocks form a cycle which will
repeat over and over again in both strategies, the expected
average end-to-end delay under the worst case scenario, i.e.
E[W

(π∗WE)

WC (t)] and E[W
(πWD)

WC (t)], can be easily derived as
follows:

E[W
(π∗WE)

WC (t)] =
1

Kc

t+Kc−1∑
τ=t

[WE(τ) +WC(τ) +WD(τ)]

= (3Kc + 1)/2 (7)

since WE(τ) = τ − t+ 1, WC(τ) = c·Kc
c , and WD(τ) = 0;

E[W
(πWD)

WC (t)] =
1

Kc

t+Kc−1∑
τ=t

[WE(τ) +WC(τ) +WD(τ)]

=
Kc

2
+

3

2
(8)



since WE(τ) = WC(τ) = 1, and WD(τ) = τ − t.
In general, Kc is difficult to be exactly evaluated. Yet, we

can make use of Chernoff bound to approximately calculate
Kc, denoted by K̃c. From Theorem 2.11 in [3], we have

P

{
t+K−1∑
τ=t

H(τ)(X|Y ) > K · c

}

≤ exp

{
− Kη2c2

2(σ2
H +MH · c · η/3)

}
.

Therefore, if we define K̃c as:

K̃c = min K

s.t. exp

{
− Kη2c2

2(σ2
H +MH · c · η/3)

}
≤ ε,

then we have

K̃c =
−2 ln ε · σ2

H

c2 · η2
·
(

1 +
MH · c
3σ2

H

· η
)
. (9)

By substituting (9) into (7) and (8), and replacing Kc with
K̃c, we complete the proof.

Theorem 2 indicates that without any marginal distribution
information, the expected end-to-end delay under both WE
and WD strategies scales as O(1/η2). Next, we derive lower
bounds for the same delay and show that the lower bounds also
have the same scaling law. This indicates that our algorithms
are order optimal.

B. Delay Lower Bounds

Next, we evaluate lower bounds on the end-to-end expected
delay achieved for all πWE ∈ ΠWE and πWD.

Theorem 3: Given the set of possible joint cdfs F , ex-
pected delays E[W

(π∗WE)
(t)] and E[W

(πWD)
(t)] can be lower

bounded as:

E[W
(πWE)

(t)] ≥ max
m∗+1≤i∗≤m

(1− η)
∑
i6=i∗

φici
c

+ φi∗

(
4γi∗ci∗

27 · c(1 + βi∗)2
· 1

η2
+

1

6

)}
(10)

E[W
(πWD)

(t)] ≥ max
m∗+1≤i∗≤m

(1− η)
∑
i 6=i∗

φici
c

+φi∗

(
2γi∗

27(1 + βi∗)2
· 1

η2
+

1

2

)}
, (11)

where γi∗ =
−2 ln ε·σ2

Hi∗
c2
i∗

·
(

1 +
MHi∗ ·ci∗

3σ2
Hi∗

· η
)

, MHi∗ =

Hmaxi∗ (X|Y )− (1− η) · ci∗ , and βi∗ =

∑
i6=i∗

φici

φi∗ci∗
.

Proof: The complete proof can be found in Appendix B
of [1]. Here, we just provide a brief sketch: We bound the
performance of both strategies from below by considering a
genie-aided scenario, in which part of the sequence of joint
cdfs is provided to both nodes by a genie. In particular, all
joint cdfs are available to node X and Y , except for the
blocks with joint cdf Fi∗j (m∗ + 1 ≤ i∗ ≤ m). Then we

applied the following steps for the lower bound: (i) Encode the
blocks with cdf Fij (i 6= i∗) block by block and in calculating
the end-to-end delay, ignore all, except for the transmission
delay; (ii) Assume the channel is always idle whenever a
message arrives; (iii) Accumulate blocks with cdf Fi∗j to
jointly encode, which leads to the same situation as discussed
in the proof of Theorem (2) for the blocks with that particular
cdf. Then, we can use a similar line of techniques to derive the
lower bound. Finally, by taking the maximum over all possible
lower bounds, the tightest lower bound is evaluated.
Discussion: Theorem 3 reveals that the end-to-end delay scales
as Ω(1/η2) under both WE and WD strategies. Along with
Theorem 2, we showed that both WE and WD strategies
achieve order-optimal delay performance in the heavy-traffic
regime (see [7], [10]), i.e., η ↓ 0. Also, one interesting
observation is that the marginal distribution information does
not necessarily improve the delay scaling. This is in contrast
to the case where the perfect knowledge of the joint cdf is
available. If the joint cdf is known, the experienced delay
is equivalent to the queueing delay with random arrivals
H(t)(X|Y ) and constant service rate c, which scales with
O(1/η) (see [7, Lemma 4]). This points out a phase transition
phenomenon: Even a minor degradation in the knowledge
of joint statistics at the encoder -from perfect knowledge to
a slightly imperfect knowledge- leads to a different scaling
regime in the expected delay.

C. Numerical Evaluation

To illustrate how the performance bounds vary with
η, we study a simple example as follows: (i) F =
{F11, F21, F22, F31, F32, F33}, ε = 0.01; (ii) φ11 = 0.1,
φ21 = φ22 = 0.2, φ31 = 0.12, φ32 = φ33 = 0.19; (iii)
Hij(X|Y ) = i + j. Thus the source entropy varies between
2−6 bits/symbol. In Fig 3, we plot the upper and lower bounds
on the expected delay for the observations taken at node X
to be replicated at node Y , measured in number of blocks (n
slots), as a function of the heavy-traffic parameter η−1.
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Fig. 3: Delay bounds for Wait-to-Encode and Wait-to-Decode
schemes: both x-axis and y-axis are in logarithmic scale

Examining the plots, one can see that both upper and lower
bounds scale as O( 1

η2 ) as η → 0, which reflect the order
optimality of our proposed strategies. Also, for the above set of
parameters, the bounds slightly favor Wait-to-Decode strategy,
but note that, this is not a typical trend and one can come up
with another set of parameters for which the opposite holds.



VI. EXPERIMENTAL EVALUATION
To illustrate the performance of average end-to-end delay

and compare the proposed encoding and decoding strategies,
we set up an experiment which emulates a possible application
of our problem in real-time streaming networks. As shown
in Fig. 1 and discussed in Section I, we set two cameras at
different locations at still to record people walking by in a
busy street. The distance between the cameras is 20 meters
and the directions they face are at a 90◦ angle to one another.

After synchronization, we end up with two correlated un-
compressed video frame sequences. For the video signals,
each frame has a size 1024 × 1024, where each pixel is
represented with 3 bytes (associated with RGB-index), hence
each frame is a 3 MB sample. The frame rate is 60 frame/sec,
i.e. the streaming rate of the uncompressed video is 180 Mbps.
We regard each frame as one video symbol (a very large
one) and pile up every n = 180 symbols to form blocks
{Xt}, {Yt} in our model, i.e., a time slot is 1/60 secs
long and a block is 3 secs long. The empirically generated
time-varying joint (marginal) cdf sequences are represented
by {F(t)(x, y)}, {F(t)(x)}, and {F(t)(y)}.

To form the set F , we use a pilot shot over a certain
duration. Due to the huge size of the symbols and the unpre-
dictable environment, developing the exact representation of
set F is not possible. Thus, we quantize the set of all possible
distributions: Firstly, using the pilot sequence, we calculate
the relative entropy of each block t with respect to block 1,
i.e. D

(
F(t)(x, y)||F(1)(x, y)

)
, which gives us the sequence of

relative entropies {D(t)(x, y)}. Next, we quantize the values
of {D(t)(x, y)} into 128 intervals and treat each quantization
level as a single joint distribution, one which is randomly
picked from each interval. Hence, we end up with 128 different
quantized joint cdfs {Fij(x, y)} in order to form the set F .
Finally, we repeat an identical quantization process for the
marginal cdf sequences {Fij(x)} and {Fij(y)}, but we set the
number of quantization intervals to 8 this time. Thus, we have
64 different combinations of marginal cdf pairs. Recall that
F = {F11, . . . F1l1 ;F21, . . . F2l2 ; . . . ;Fm1, . . . Fmlm}, hence
m = 64 after the above quantization process. The empirical
PMF PF (Fij) can be calculated with respect to each Fij ∈ F ,
using the pilot shot. Hence, we use an extremely coarse quan-
tizer in the representation of the sources. One of our main
objectives is to show that, even with such coarse quantization,
it is possible to achieve a substantial compression ratio (e.g.,
reduction in the rate of data transmission from node X to node
Y ) for Xt to be replicated at node Y . After the pilot shot, we
first quantize the observed new frames as described above.
After quantization, the conditional entropy rate we observed
from the combined pilot shots turned out to be 76.5 Mbps,
which we take as the basic limit for the minimum rate node
X needs to transmit for lossless recovery (0-outage) at node
Y . Note that, once we obtain the video traces based on real-
world data and construct set F , we use simulations to evaluate
the performance of the system. We ran these real-world data-
driven simulations for 106 blocks of video symbols.

In our first evaluation, we focus on the heavy-traffic sce-

nario. Transmission rate is fixed at c = 1
1−η × 76.5 Mbps,

for a given heavy-traffic parameter η. The end-to-end delay
experienced by each block was stored and then used to
calculate the average delay over all 106 blocks. Average delay
is plotted vs. η−1 in Fig. 4a for Wait-to-Encode strategy π∗WE ,
Wait-to-Decode strategy πWD, along with their associated
upper/lower bounds we derived in Section V. In the plot, ‘WE’
and ‘WD’stand for ‘Wait-to-Encode’ and ‘Wait-to-Decode’.

As can be observed in Fig. 4a, the expected delay of all
proposed strategies scale as O( 1

η2 ) as η → 0. Note that, even
though πWD achieves better performance than π∗WE in our
experiment, this is not necessarily a common trend for all
possible Wait-to-Encode strategies. In fact, in [1], we provide a
new adaptive-threshold based scheme, which achieves a better
expected delay than πWD when η is relatively large. Also, it
is worth mentioning that the bounds become tighter, as the
traffic load gets lower.

Next, we plot the encoding rate chosen by our Wait-to-
Encode strategy, π∗WE , as a function of time, for various values
of η and outage probability constraint ε. Note that, in Wait-to-
Decode strategy, πWD, the encoding rate is always identical
to c, which we choose to be 1

1−η × 76.5 Mbps in these plots.
In Fig. 4b, we illustrate the encoding rate, measured regularly
across blocks. In particular, we take one sample per 104 blocks
through the entire trace. The channel rate (thus the encoding
rate for πWD) is c = 102 and 77.3 Mbps for η = 0.75 and
0.99, respectively. One can see in Fig 4b, if the traffic is light
(i.e., the average conditional entropy of the source is much
smaller than the channel rate), π∗WE chooses the encoding rate
high, since the fixed channel transmission rate is sufficiently
large to choose encoding rate more aggressively to reduce
delay. Also, as expected, a smaller value of ε requires higher
encoding rate to keep the outage constraint to be met. Finally,
note that the long-term average encoding rate with π∗WE will
always be smaller than that with πWD, but the ratio of the
average encoding rates will be no less than 1− η.
Another interesting observation from this plot is the following.
Recall that the rate of the uncoded video is 180 Mbps; thus,
with the available channel rates, it is not possible for the
uncoded video to be transmitted from node X to node Y .
However, even with the highly coarse quantization that we use
for the source observations, we reduced the average encoding
rate (i.e., the rate at which node X transmits to node Y ) to
between 75-85 Mbps at an outage probability of 0.05, which
corresponds to a compression ratio of approximately 50% at
a reasonably low block delay, which will be analyzed next.

Finally, we focus on the delay for two different values
of ε at η = 0.25, which corresponds to a 75% utilization.
We plot the sample path for the end-to-end block delay in
Fig. 4c for strategies π∗WE and πWD. In these experiments,
c = 102 Mbps. With only a delay of 6-9 secs, we achieve
an outage probability of 0.05. This delay achieved, combined
with the 50% compression ratio demonstrates the efficacy of
our system. We believe much higher compression ratios could
be possible with finer quantizers and higher correlations be-
tween sources. Finally, note that the end-to-end delay becomes
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Fig. 4: Experimental Results. With a delay of a few blocks, the compression ratio of around 50% is achievable for lossless
replication subject to a probability of outage of 0.05.

constant as the transmission rate increases (low utilization),
leading to Illustrative scenario (3), depicted in Section III. In
that case, block-by-block encoding becomes the best scheme.
Discussion: There is another alternative for our system de-
sign that we did not consider here, as it pertains to video
compression. The observed video signal at node X can be
compressed via standard video compression techniques (non-
distributed), independently of the observation of node Y . The
basic limit for the rate after that process is E[H(t)(X)], while
one can achieve a much smaller rate E[H(t)(X|Y )] (i.e., a
much higher compression ratio) with the distributed approach.
One important question that we are planning to answer as a
part of future work is the comparison of our schemes with
standard video compression. We will study systematic ways
to develop quantizers (possibly more complex than we have
here) that are simple, yet provide significant gains over the
best available non-distributed video compression techniques.

VII. CONCLUSIONS

We studied the lossless distributed source coding problem
in which there exists a pair of nodes, observing a random
source with time-varying statistics, unknown to the nodes
before the session starts. We formulated the problem as that
of minimization of end-to-end delay for the observations of
one of the nodes to be replicated at the other node, subject
to a certain desired outage probability. Even though, it is not
possible to come up with well-structured solutions to the basic
problem, due to the generality of the set of distributions, we
developed two different classes of strategies, Wait-to-Encode
and Wait-to-Decode that are provably order optimal in the
heavy traffic limit. After analytically deriving general bounds
for the expected delay achieved by our schemes, we fur-
ther experimentally demonstrate the efficacy of the schemes,
using a setup involving two cameras, obtaining videos of
a common scene at different angles. We showed that, even
with a very low-complexity quantizer, a compression ratio of
approximately 50% is achievable for lossless replication at the
decoder, at an average delay of 5-10 seconds.
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