
A

Mean-Field-Analysis of Coding versus Replication in Large Data
Storage Systems

Bin Li, University of Rhode Island
Aditya Ramamoorthy, Iowa State University
R. Srikant, University of Illinois at Urbana-Champaign

We study cloud-storage systems with a very large number of files stored in a very large number of servers.
In such systems, files are either replicated or coded to ensure reliability, i.e., to guarantee file recovery from
server failures. This redundancy in storage can further be exploited to improve system performance (mean
file access delay) through appropriate load-balancing (routing) schemes. However, it is unclear whether cod-
ing or replication is better from a system performance perspective since the corresponding queueing analysis
of such systems is, in general, quite difficult except for the trivial case when the system load asymptotically
tends to zero. Here, we study the more difficult case where the system load is not asymptotically zero. Using
the fact that the system size is large, we obtain a mean-field limit for the steady-state distribution of the
number of file access requests waiting at each server. We then use the mean-field limit to show that, for a
given storage capacity per file, coding strictly outperforms replication at all traffic loads while improving
reliability. Further, the factor by which the performance improves in the heavy-traffic is at least as large as
in the light-traffic case. Finally, we validate these results through extensive simulations.

CCS Concepts: rNetworks → Network performance evaluation; rInformation Storage Systems →
Information storage technologies;

Additional Key Words and Phrases: Cloud storage systems, load-balancing, file coding, mean-field-analysis,
heavy-traffic analysis

1. INTRODUCTION
Data centers with a huge numbers of servers are used by many modern companies
to serve their storage and computational needs. In this paper, we focus on the stor-
age component of data centers. Consider a company like Facebook which stores a very
large number of files, such as pictures, videos, etc., in a very large number of servers.
Requests for downloading files arrive at the server, and the goal is to serve these re-
quests with as little delay as possible. Additionally, for reliability purposes, each file
is stored in multiple servers, using either simple replication or coding, to ensure that
data is not lost even when some servers suffer from failures. The goal of this paper is to
understand how this redundancy can be exploited to reduce the mean file access delay.
In particular, we are interested in understanding whether coding always outperforms
replication in terms of mean file access delay, under the same storage requirements.

To illustrate the difference between coding and replication, let us first consider the
replication scheme. Suppose that each file is replicated in two servers, and assume

An earlier version of this paper has appeared in the Proceedings of the 35th IEEE International Conference
on Computer Communications (INFOCOM) Conference, San Francisco, CA , USA, April 2016 [Li et al. 2016].
Author’s addresses: B. Li, Department of Electrical, Computer and Biomedical Engineering, University of
Rhode Island, Kingston, RI 02881 USA (e-mail: binli@uri.edu); A. Ramamoorthy, Department of Electrical
and Computer Engineering, Iowa State University, Ames, IA 50011 USA (e-mail: adityar@iastate.edu); R.
Srikant, Department of Electrical and Computer Engineering and Coordinate Science Lab, University of
Illinois at Urbana-Champaign, IL 61801 USA (e-mail:rsrikant@illinois.edu).
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or repub-
lish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
c© YYYY ACM. 2376-3639/YYYY/01-ARTA $15.00
DOI: http://dx.doi.org/10.1145/0000000.0000000

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:2 B. Li et al.

that the time to download a file from a server is exponentially distributed with mean
1 and is independent across servers. Suppose that the load-balancing policy is to route
an arriving request to server with the smallest queue length (i.e., the server with the
smallest number of waiting requests). If the arrival rate of file download requests is
very small, then the queue lengths (i.e., the number of requests awaiting service) at
each server will be close to zero and therefore, an arriving request can be routed at
random to any server containing the file. In this case, it is clear that the mean file
access delay is just 1.

Next, let us consider the coding case. In particular, assume that the file is coded
into 4 chunks, where the size of each chunk is half the size of the original file, and
further the code is such that the file can be recovered from any two chunks. This can be
achieved via Maximum Distance Separable (MDS) codes (e.g., [Lin and Costello 2004])
with parameters (4, 2), where the file is partitioned into two equal-size chunks A1 and
A2, and the coded chunks A1, A2, A1 +A2 and A1 + 2A2 (the “+” operation is performed
over an appropriate finite field) are stored in 4 different servers, respectively. Since
each chunk is half the size of the original file, we assume that the amount of time
required to download a chunk from a server is exponential with mean 1/2. The natural
load-balancing policy in this case is to choose the two least loaded of the four servers
containing the file, and route an arriving request for the file to these two servers.
Again, if the arrival rate of file download requests is close to zero, then all queue
lengths will be close to zero and each arriving request can be routed to any two servers
containing the file. Since we need both servers to complete serving the chunks that
they contain, the mean file access delay is given by E[max(X1, X2)], where X1 and X2

are i.i.d. exponential random variables with mean 1/2. A straightforward calculation
shows that this delay is equal to 0.75. Thus, it is quite clear that the mean file access
delay is improved by 25% under coding compared with replication when the arrival
rate is asymptotically negligible. However, it is unclear whether such a result extends
to the case of non-zero request arrival rates. In such a case, queueing effects cannot be
ignored. This poses significant challenges for the delay analysis. The main purpose of
this paper is to address this open and difficult problem. Our contributions in this work
can be summarized as follows:
• We first present a model of storage, routing, and file access in very large data

centers. The interesting aspect of the model is that individual files become irrelevant,
and the system can be viewed as a queueing model with a very large number of servers,
thus facilitating the so-called mean-field analysis.
• Next, we carry out the mean-field analysis of the queueing system under both

coding and replication, and derive their analytical expressions whose solutions yield
the steady-state queue length distribution of each queue.
• Then, we utilize the mean-field-limit to show that coding strictly outperforms repli-

cation in terms of mean file access delay under the same storage requirements in the
case of exponential file downloading time. We further characterize the improvement
factor in the heavy-traffic regime, which is at least as large as that in the light-traffic
regime. To the best of our knowledge, this is the first analytical result in the area
of mean-field analysis that deals with the expected job delay rather than the expected
task delay, where a job corresponds to a file access request containing a certain number
of tasks (chunk downloading requests) depending on the coding scheme.
• Finally, we perform extensive simulations to validate our results, where we also

study various service distributions, and more than one load-balancing scheme.
While this work is built upon our INFOCOM’2016 paper [Li et al. 2016], the follow-

ing contributions are new: (1) We show that the asymptotic independence assumption
for the mean field analysis holds in a specific file placement mechanism. However, ow-
ing to space limitations, we only provide the proof in our technical report [Li et al.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:3

2017, Section IV]; (2) We include the detailed proofs of several key results which were
not included in [Li et al. 2016].

2. SYSTEM MODEL
File storage scheme: We consider a cloud storage system with L servers, each of
which stores a very large number of different types of files. Each file is stored using
the Maximum Distance Separable (MDS) code with parameters (n, k) (see [Lin and
Costello 2004]), i.e., each file is encoded into n chunks of equal size stored at different
servers, one for each server, and any k out of the n chunks are sufficient to recover the
entire file. Since the storage space consumed at each server is 1/k of the size of the file,
we assume that the time required for downloading data chunks are i.i.d. exponentially
distributed with mean of 1/k. Note that the (n, 1) code corresponds to the replication
case, where each file is replicated at n different servers and thus we can download the
desired file from any one of these n servers with exponential downloading time with
mean 1.

Fig. 1(a) shows a small portion of the large storage system with (2, 1) code, where
file A is stored in servers 1 and 2, and file B is stored in servers 3 and 4. In order to
download the file A, the scheduler can forward the file access request to either server 1
or server 2. Fig. 1(b) shows a part of the (4, 2) coded system, where file A is divided into
two equal-size halves A1 and A2, and the coded chunks A1, A2, A1 + A2, and A1 + 2A2

are stored in four different servers, respectively. In order to access file A, the scheduler
needs to forward the file download request to any two of four servers. File A is obtained
only when these two download requests are processed, i.e., when we receive two chunks
of file A from two different servers.

A A B B

server 1 server 2 server 3 server 4

Req A

Req A

Req A

Req A

Req B

Req B

Req B

Req B

scheduler

file requests

(a) (2, 1) code

A1

+

A2

A1

+

2A2

A2 B2A1 B1

B1

+

B2 22

B1

+

2B2

server 1 server 2 server 3 server 4

Req A Req B

Req A

Req A

Req B Req A

Req B

Req B

scheduler

file requests

(b) (4, 2) code

Fig. 1: A small portion of a storage system. The symbol inside the server box corre-
sponds to the file it stores. Each server maintains a queue for download requests for
the files it stores.

Arrival process: Recall that each file is stored in n servers under the (n, k) code.
Thus, there are a total of

(
L
n

)
subsets of servers where a file could be stored. We assume

that there are only I = Ω(L2) files in the system and I is an increasing function of
L. These I files are stored such that the load on each server is approximately the

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:4 B. Li et al.

same. Thus, we can model the arrival process as follows: we assume that the arrival
process of file download requests is Poisson with total arrival rate of Lλ, where λ ∈
(0, 1). Further, each arrival requests a file uniformly at random from I files. Due to the
property of the Poisson processes, this ensures that the load of any subset of servers of
size n is independent with the same arrival rate.

Load-balancing algorithm: We assume that each server maintains a queue for
file download requests that desire to download the chunks stored at the server, and
processes these requests in the First-In-First-Out (FIFO) manner. Due to the MDS
storage coding scheme, any k out of the n chunks are enough to obtain the entire file.
Therefore, a natural load-balancing scheme is to forward an incoming file downloading
request to the k least-loaded servers among n servers containing the file. In queueing
theory jargon, upon job (file download request) arrival consisting of k tasks (data chunk
retrieval request), forward these k tasks to the k least-loaded servers among n servers
that can process this incoming job, one for each server. Each task processing time
(chunk downloading time) follows exponential distribution with mean 1/k. This load-
balancing scheme is similar to the well-known Batch Sampling (BS) (e.g., [Ousterhout
et al. 2013; Ying et al. 2015]). The main difference lies in that our considered load-
balancing scheme uniformly selects one location containing n servers among I = Ω(L2)

rather than
(
L
n

)
different locations upon each job arrival, where a location refers to a

subset of servers with size of n in which a file is stored using (n, k) code and
(
L
n

)
is

much larger than I when n > 2. This is because there are only a total of I files in the
cloud storage system. Nevertheless, we still refer our load-balancing scheme as Batch
Sampling in the rest of the paper.

Here, we make a comment on the scenario that is being modeled in our paper and
some of the other prior works (e.g., [Shah et al. 2013; Vulimiri et al. 2013; Joshi et al.
2014; Chen et al. 2014; Liang and Kozat 2014; Sun et al. 2015]). Our work views the
problem from the point of view of storage service provider. On the other hand, the
previous works (e.g., [Shah et al. 2013; Vulimiri et al. 2013; Joshi et al. 2014; Chen
et al. 2014; Liang and Kozat 2014; Sun et al. 2015]) view the problem from the point
of view of a customer who uses a cloud storage system. Thus, in these other works, the
service time of a file is a complicated function of one’s own file size, the storage server’s
speed and the service provided to other customers. Thus, their assumptions regarding
service times can be quite different from ours.

Goal: It is quite obvious that coding can significantly improve system reliability
compared with replication. In this paper, we would like to investigate whether coding
also reduces file access delay under BS load-balancing algorithm. While we derive
queue length distributions for general (n, k) codes, we mainly compare the mean file
access delays of (nk, k) and (n, 1) (replication) codes1, both of which have the same
storage requirements, where k ≥ 2. In particular, for the (nk, k) code, the file needs to
be subdivided into k chunks, each of which is 1/k-th the size of the original file. Coding
is then applied on these k chunks to obtain nk coded chunks. Here, it is worth pointing
out that none of existing works rigorously deal with the important and analytically
hard problem of characterizing the mean job delay performance of the load-balancing
schemes.

Let W (n,k) be the mean file access delay under the (n, k) code. We first consider a
trivial case, where the file request arrival rate is close to zero (also referred as the
light-traffic regime). In such a case, queue lengths under both (nk, k) and (n, 1) codes

1If files are stored using (n, 1) code such that arrival loads on each server are the same, then these files can
also be stored using (nk, k) code to guarantee that arrival loads on each server are the same.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:5

are close to zero and thus the queueing effect can be ignored. Therefore, it is obvious
that W (n,1)

= 1 under the replication scheme.
Under the (nk, k) code, we need to download k chunks from k different servers to

recover the entire file, and thus

W
(nk,k)

= E
[

max
i=1,2,··· ,k

Xi

]
,

where Xi,∀i, are i.i.d. with exponential distribution with mean 1/k. According to [Ross
2014], we have

W
(nk,k)

=
H(k)

k
,

where H(m) ,
∑m
l=1 1/l denotes mth harmonic number. Thus, the (nk, k) code reduces

delay by 100(1−H(k)/k)% compared with the (n, 1) code in the light-traffic regime. In
order to get a sense of how much delay improvement in this case, we plot the delay
improvement percentage 100(1 − H(k)/k)% as a function of k. From Fig. 2, we can
observe that the delay improvement is 25% when k = 2, 38.89% when k = 3, and the
relative improvement becomes marginal as k further increases.

2 3 4 5 6 7
0

10

20

30

40

50

60

70

25.00%

38.89%

47.92%

54.33%

59.17%

62.96%

k

D
e
la

y
 I

m
p
ro

v
e
m

e
n
t

(%
)

Fig. 2: Delay improvement under the (nk, k) code in the light-traffic regime (i.e., λ ↓ 0)

This interesting observation raises the following two natural questions in the mod-
erate and heavy traffic cases where the queueing effect cannot be ignored: (i) does the
(nk, k) code always outperform the (n, 1) code in terms of mean file access delay? (ii)
if it does, then how much performance improvement can it achieve? The goal of this
paper is to address these two open questions. In particular, we show that the (nk, k)
code always outperforms the (n, 1) code in terms of mean file access delay at all traffic
loads, and the improvement factor in the heavy-traffic regime is at least as large as in
the light-traffic regime.

3. MEAN-FIELD ANALYSIS
In this section, we will use mean-field analysis to study the mean file access delay
performance under the (n, k) code. The underlying assumptions behind the mean-field
analysis are validated in both our technical report [Li et al. 2017, Section IV] and
Section 4.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:6 B. Li et al.

Let Q(L)
l (t) be the length of the lth queue at time t in a system with L queues. It is

easy to check that the queue-length process {Q(L)(t)}t≥0 is an irreducible and nonex-
plosive Markov chain. The following proposition further states that this Markov chain
is positive recurrent and hence has a unique steady-state distribution.

PROPOSITION 3.1. The Markov chain {Q(L)(t)}t≥0 is positive recurrent. Moreover,
the mean steady-state queue-length is finite, i.e.,

E

[
L∑
l=1

Q̃
(L)
l

]
≤ L(1 + λ)

2(1− λ)
, (1)

where Q̃(L)
l is steady-state queue length of the lth queue.

PROOF. We first consider a quadratic Lyapunov function and study its conditional
expected drift. Then, the desired result follows from the Foster-Lyapunov theorem.
Please see Appendix A for details.

Due to the symmetry, all queues have the same steady-state distribution. Let
{π(L)

m }m≥0 be the steady-state queue-length distribution of one queue, where π(L)
m de-

notes the probability that queue-length is exactly equal to m. Let s(L)
m ,

∑∞
j=m π

(L)
m

be the probability that queue-length is at least m. Note that s(L)
0 = 1 and s

(L)
m is non-

increasing with respect to m, i.e., 1 = s
(L)
0 ≥ s

(L)
1 ≥ s

(L)
2 ≥ · · · ≥ 0. In addition, we have∑∞

j=m s
(L)
j <∞,∀m = 1, 2, · · · . Indeed, according to Proposition 3.1, we have

∞∑
j=m

s
(L)
j ≤

∞∑
j=1

s
(L)
j = E

[
Q̃

(L)
l

]
<∞, ∀m ≥ 1,

where we use the fact that E[Z] =
∑∞
m=1 Pr{Z ≥ m} for any non-negative integer-

valued random variable Z.
In this paper, our goal is to investigate the mean file access delay performance un-

der the (n, k) code. In order to evaluate it accurately, it is important to obtain the
queue-length distribution, i.e., the distribution of number of waiting download re-
quests (queue-length) at each queue. However, queue lengths are correlated across
queues and their distribution is hard to obtain in a system with finite number of
queues. Fortunately, such correlations among queues become increasingly weak as the
number of servers increases. Indeed, as shown in our technical report [Li et al. 2017,
Section IV], any fixed number of queues become independent of each other as the num-
ber of servers goes to infinity, i.e., L → ∞, under a particular file storage manner. In
such a case, the queue-length distribution can be exactly characterized. Such an anal-
ysis in the large-system limit is commonly referred as mean-field analysis. In addition,
a cloud storage system typically contains a very large number of servers, and there-
fore the mean-field analysis is sufficiently accurate, as will be demonstrated in Section
4 via simulations. However, we would like to point out that the extension to general
file downloading time distribution is hard, where the queue-length information is not
sufficient to characterize the system state of the underlying Markov process.

3.1. Main Results
In this subsection, we present our main results on the mean file access delay under
coding in the large-system limit (cf. Proposition 3.5). In particular, we characterize
the delay improvement between (nk, k) and (n, 1) codes, both of which have the same
storage requirements.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:7

PROPOSITION 3.2. (i) The mean file access delay under the (nk, k) code is at least
(1−H(k)/k) smaller than that under the (n, 1) code for any arrival rate λ ∈ (0, 1), i.e.,

W
(nk,k) −W (n,1) ≤ −

(
1− H(k)

k

)
. (2)

(ii) In the light-traffic regime (i.e., λ ↓ 0), the mean file access delay under the (nk, k)
code improves 100 (1−H(k)/k) % compared with the (n, 1) code, i.e.,

lim
λ↓0

W
(nk,k) −W (n,1)

W
(n,1)

= −
(

1− H(k)

k

)
. (3)

In the heavy-traffic regime (i.e., λ ↑ 1), the mean file access delay improvement under
the (nk, k) code is at least 100 (1−H(k)/k) % compared with the (n, 1) code, i.e.,

lim
λ↑1

W
(nk,k) −W (n,1)

W
(n,1)

≤ −
(

1− H(k)

k

)
. (4)

The proof of Proposition 3.2 utilizes the steady-state queue-length distribution in the
large-system limit (Section 3.2) and the fact that the tail distribution of queue-length
under the (nk, k) code decays at least as fast as that under the (n, 1) code (see Lemma
3.6), and is available in Section 3.3.

Our analysis shows that the (nk, k) code strictly outperforms the replication code at
all traffic loads and its delay improvement in the heavy-traffic regime is at least as
large as in the light-traffic regime. However, simulations in Section 4 indicate that the
performance improvement in heavy-traffic is even better.

3.2. Steady-State Queue-Length Distribution
In this subsection, we obtain the queue-length distribution under the (n, k) code in the
large-system limit, i.e., L→∞.

Recall that all queues have the same steady-state distribution because of symme-
try. Let Q(n,k) be a random variable with the same distribution as the steady-state
distribution of the queue-length under the (n, k) code in the large-system limit. Let
πm , Pr{Q(n,k)

= m} be the steady-state probability that queue length is equal to m
in the large-system limit, where m = 0, 1, 2, · · · . Under the (n, k) code, whenever there
is an arriving file access request, we forward these tasks to the k least-loaded servers
among n servers containing the file, one for each server. Note that the time required
for downloading the chunks are i.i.d. with exponential distribution with mean 1/k. We
assume that n servers containing the file requested by the incoming job have inde-
pendent queue-length distributions, as proved in our technical report [Li et al. 2017,
Section IV]. Note that the queue-length of each server increases or decreases at most
by one. Each queue forms an independent Markov chain, as shown in Figure 3.

m+2m+1m10

q0,1

k kkk k k

q1,2 qm-1,m qm,m+1 qm+1,m+2 qm+2,m+3

Fig. 3: The queue-length Markov chain of a single server in the large-system limit

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:8 B. Li et al.

According to the local balance equation, we have

πmqm,m+1 = kπm+1. (5)

Therefore, in order to characterize the steady-state distribution {πm}m≥0 in the
large-system limit, we need to first obtain the transition rate qm,m+1 when a file access
request (job) arrives to a server with queue-length of m. Consider a particular server
with queue-length of m. Its queue-length increases by 1 only when there is an arrival
job and this server is one of the k least-loaded server among n servers containing the
file that an incoming job requests. Note that πm can also be interpreted as the fraction
of servers with queue-length exactly equal to m in the large-system limit, which sim-
ply follows from the Strong Law of Large Numbers. Hence, Lπm is the average number
of servers with queue-length of m and Lπmqm,m+1∆ is the average number of these
servers that become of size m + 1 due to an arrival in a small time interval ∆, which
can also be represented as Lλ∆

∑k
i=1 Pr{Q(n,k)

(i) = m} . Thus, we have

πmqm,m+1 = λ

k∑
i=1

Pr{Q(n,k)

(i) = m}, (6)

where Q(n,k)

(i) is the ith smallest queue-length among n servers containing the file re-
quested by the incoming job, i.e.,

Q
(n,k)

(1) ≤ Q(n,k)

(2) ≤ · · · ≤ Q(n,k)

(i) ≤ · · · ≤ Q(n,k)

(n) .

The next lemma gives the exact expression for
∑k
i=1 Pr{Q(n,k)

(i) = m}.

LEMMA 3.3. The term
∑k
i=1 Pr{Q(n,k)

(i) = m} can be expressed as follows:

k∑
i=1

Pr{Q(n,k)

(i) = m} = f (n,k)(sm)− f (n,k)(sm+1), (7)

where f (n,k)(x) ,
∑k
l=1

(
n

n−k+l

)(
n−k+l−2

l−1

)
(−1)l−1xn−k+l, x ∈ [0, 1], and sm ,

∑∞
j=m πj

denotes the steady-state probability that queue-length is at least m in the large-system
limit.

PROOF. We first simplify the expression of Pr{Q(i) ≥ m} by using the mean-field
assumption, and then derive the expression for

∑k
i=1 Pr{Q(i) ≥ m} through some rela-

tively involved algebra. Please see Appendix B for details.

For example, f (n,1)(x) = xn and f (n,2)(x) = nxn−1−(n−2)xn. In general, the function
f (n,k)(x) is quite complicated. However, it has several nice properties, which play an
important role in later analysis.

LEMMA 3.4. The function f (n,k)(x) (cf. Lemma 3.3) has the following properties:

(i) f (n,k)(x) is strictly increasing, differentiable and convex on the interval [0, 1];
(ii) f (n,k)(0) = 0 and f (n,k)(1) = k;

(iii) f (n,k)(x) has a bounded derivative, i.e.,

0 ≤
(
f (n,k)(x)

)′
≤ n, ∀x ∈ [0, 1].

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:9

PROOF. We consider the first and second derivatives of the function f (n,k)(x), and
then utilize the subset-of-a-subset identity to get the desired result. Please see Ap-
pendix C for the proof.

10 x

k

nxf kn)(0),()(),(xf kn

Fig. 4: The graph of the function f (n,k)(x)

Fig. 4 sketches the graph of the function f (n,k)(x). We are now ready to characterize
the steady-state queue-length distribution in the large-system limit.

PROPOSITION 3.5. The steady-state queue-length distribution of a single server un-
der the (n, k) code in the large-system limit is unique and can be characterized as fol-
lows: {

sm+1 = λf (n,k)(sm)/k for m = 0, 1, 2, · · · ;
s0 = 1 .

(8)

PROOF. According to (5), (6) and Lemma 3.3, we have

λ
(
f (n,k)(sm)− f (n,k)(sm+1)

)
= k(sm+1 − sm+2), (9)

for any m = 0, 1, 2, · · · . Clearly if λf (n,k)(sm)/k = sm+1, then equation (9) holds. On the
other hand, according to Lemma 3.4, the function λf (n,k)(x)/k has a bounded deriva-
tive and thus it is Lipschitz. Also, λf (n,k)(x)/k ∈ [0, 1] since f (n,k)(x) ≤ k for all x ∈ [0, 1]
and λ ∈ (0, 1). Therefore, the function λf (n,k)(x)/k maps the convex and compact set
[0, 1] to itself, and hence, according to the Schauder fixed point theorem, there exists a
fixed point for the system of equations (8).

Next, we will show that this fixed point is unique. First, we note that

sm+1 =
λ

k
f (n,k)(sm)

(a)

≤ λsn/km

(b)

≤ λsm, (10)

where step (a) utilizes the inequality f (n,k)(x) ≤ kxn/k for any x ≥ 0 (see Lemma D.1
in Appendix D), and (b) is true since n > k and 0 ≤ sm ≤ 1. Inequality (10) directly

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:10 B. Li et al.

implies
∑∞
j=m sj <∞. Hence, we have

∑∞
j=m f

(n,k)(sj) <∞. Indeed,
∞∑
j=m

f (n,k)(sj)
(a)
=

∞∑
j=m

(
f (n,k)(zj)

)′
sj ≤ n

∞∑
j=m

sj <∞,

where step (a) uses the fact that f (n,k)(sj) − f (n,k)(0) =
(
f (n,k)(zj)

)′
sj for some zj ∈

[0, sj] according to the Mean-Value Theorem and the fact that f (n,k)(0) = 0; (b) uses
bounded derivative property of the function f (n,k)(x) (cf. Lemma 3.4). Therefore, by
summing (9) over all m ≥ 0, we obtain s1 = λ

k f
(n,k)(s0). The uniqueness of the fixed

point then follows from (9) by mathematical induction.

Proposition 3.5 provides an iterative formula for exactly calculating the steady-state
queue-length distribution under the (n, k) code. For example, under the (n, 1) code,
i.e., power of n choices, according to Proposition 3.5, we have sm+1 = λsnm for all m ≥
0 and s0 = 1, which implies that sm = λ

nm−1
n−1 . This exactly matches the results in

[Mitzenmacher 1996] and [Vvedenskaya et al. 1996]. Under the (n, 2) code, we have
sm+1 = λ

2 (nsn−1
m − (n− 2)snm) for all m ≥ 0 and s0 = 1 from the Proposition 3.5.

We are now ready to evaluate the mean file access delay.

3.3. Mean File Access Delay Analysis
In this subsection, we prove Proposition 3.2. We first show an important fact that the
tail distribution of queue-length under the (nk, k) code decays at least as fast as that
under the (n, 1) code, which implies that the average queue-length under the (nk, k)
code is not greater than that under the (n, 1) code.

LEMMA 3.6. The tail of queue-length distribution under the (nk, k) code decays at
least as fast as that under the (n, 1) code, i.e.,

sm ≤ ŝm, m = 0, 1, 2, . . . , (11)

where sm and ŝm denote the probability that the steady-state queue length is at least m
under (nk, k) and (n, 1) codes in the large-system limit, respectively.

The proof of Lemma 3.6 is available in Appendix D. Now, we are ready to show
Proposition 3.2.

Proof of Proposition 3.2: Recall that under the (n, k) code, each job (file download
request) contains k i.i.d. tasks (chunk download request) with exponential download-
ing time distribution with mean 1/k. Upon job arrival, we forward its k tasks to the
least-loaded k servers among n servers containing the file that the job request. Since a
job is complete only when these k tasks are processed, if the queue lengths of these n
servers are Q̂(n,k)

(i) , ∀i = 1, 2, · · · , n when a job arrives, then this job experiences a delay
equal to

max
i=1,2,··· ,k

Q̂
(n,k)

(i)
+1∑

j=1

X
(k,i)
j , (12)

where X(k,i)
j , ∀i, j, are i.i.d. exponential random variables with mean 1/k, and Q̂(n,k)

(i) is

the ith smallest queue-length among n servers seen by an incoming job, i.e., Q̂(n,k)
(1) ≤

Q̂
(n,k)
(2) ≤ · · · ≤ Q̂(n,k)

(n) .

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:11

Note that (12) is true since the remaining service time for the task in service is still
exponential. We also note that Q̂(n,k)

(i) , ∀i = 1, 2, · · · , n and X(k,i)
j ,∀i, j, are independent.

Therefore, the mean job delay W (n,k) can be written as follows:

W
(n,k)

= E

 max
i=1,2,··· ,k

Q̂
(n,k)

(i)
+1∑

j=1

X
(k,i)
j

 . (13)

Next, we compare the mean job delay under (nk, k) and (n, 1) codes.

W
(nk,k)

= E

 max
i=1,2,··· ,k

Q̂
(nk,k)

(i)
+1∑

j=1

X
(k,i)
j

(a)

≤ E

max

Q̂

(nk,k)

(1)
+1∑

j=1

X
(k,1)
j , max

i=2,··· ,k

Q̂
(nk,k)

(1)
+1∑

j=1

X
(k,i)
j + max

i=2,··· ,k

Q̂
(nk,k)

(i)
+1∑

j=Q̂
(nk,k)

(1)
+2

X
(k,i)
j

(b)

≤ E

 max
i=1,2,··· ,k

Q̂
(nk,k)

(1)
+1∑

j=1

X
(k,i)
j

+ E

 max
i=2,··· ,k

Q̂
(nk,k)

(i)
+1∑

j=Q̂
(nk,k)

(1)
+2

X
(k,i)
j

 , (14)

where step (a) utilizes the fact that Q̂(nk,k)
(1) ≤ Q̂

(nk,k)
(2) ≤ · · · ≤ Q̂

(nk,k)
(k) , and follows from

the fact that maxi(xi + yi) ≤ maxi xi + maxi yi, for any non-negative real numbers xi
and yi; (b) utilizes the fact that max{x, y+z} ≤ max{x, y}+z, for any non-negative real
numbers x, y and z. By repeating steps in deriving (14) on the term

E

 max
i=2,··· ,k

Q̂
(nk,k)

(i)
+1∑

j=Q̂
(nk,k)

(1)
+2

X
(k,i)
j

 ,
we obtain

W
(nk,k) ≤ E

 max
i=1,2,··· ,k

Q̂
(nk,k)

(1)
+1∑

j=1

X
(k,i)
j

+

k∑
l=2

E

 max
i=l,l+1,··· ,k

Q̂
(nk,k)

(l)
+1∑

j=Q̂
(nk,k)

(l−1)
+2

X
(k,i)
j

≤ E

Q̂
(nk,k)

(1)
+1∑

j=1

max
i=1,2,··· ,k

X
(k,i)
j

+

k∑
l=2

E

 Q̂
(nk,k)

(l)
+1∑

j=Q̂
(nk,k)

(l−1)
+2

max
i=l,l+1,··· ,k

X
(k,i)
j

 , (15)

where the last step follows from the fact that

max
i=1,2,··· ,a

b∑
j=1

x
(i)
j ≤

b∑
j=1

max
i=1,2,··· ,a

x
(i)
j

holds for any positive integers a, b, and non-negative real numbers x
(i)
j , ∀i =

1, 2, · · · , a,∀j = 1, 2, · · · , b.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:12 B. Li et al.

Since X
(k,i)
j are i.i.d. exponential random variables, according to [Lugo 2011], we

have

E
[

max
i=1,2,··· ,m

X
(k,i)
j

]
=

1

k
H(m), (16)

where we recall that H(m) ,
∑m
i=1 1/i is the mth harmonic number. Note that since

X
(k,i)
j , i = l, l+1, · · · , k, are i.i.d. and independent of Q̂(nk,k)

(l) , by utilizing (16), inequality
(15) becomes

W
(nk,k) ≤ 1

k

((
1 + E

[
Q̂

(nk,k)
(1)

])
H(k) +

k∑
l=2

(
E
[
Q̂

(nk,k)
(l)

]
− E

[
Q̂

(nk,k)
(l−1)

])
H(k − l + 1)

)

=
1

k

(
H(k) +

k∑
l=1

1

k − l + 1
E
[
Q

(nk,k)

(l)

])
, (17)

where we recall that Q(nk,k)

(l) is the lth smallest steady-state queue-length among nk

servers, and the last step follows from PASTA property since the arrival process to any
subset of queues of size nk is a Poisson process under the (nk, k) coding scheme.

On the other hand, the mean delay under the (n, 1) code can be written as follows:

W
(n,1)

= E

Q̂
(n,1)

(1)
+1∑

j=1

X
(1,1)
j

 (a)
= E

[
Q̂

(n,1)
(1)

]
+ 1

(b)
= E

[
Q

(n,1)

(1)

]
+ 1, (18)

where step (a) follows from the fact that Q̂(n,1)
(1) and X

(1,1)
j ,∀j, are independent and

the Wald’s Equation [Ross 1995, Theorem 3.3.2]; (b) follows from the PASTA property
since the arrival process to any subset of queues of size n is a Poisson process under
the (n, 1) coding scheme.

By using (17) and (18), we have

W
(nk,k) −W (n,1) ≤ −

(
1− H(k)

k

)
+

1

k

k∑
l=1

1

k − l + 1
E
[
Q

(nk,k)

(l)

]
− E

[
Q

(n,1)

(1)

]
. (19)

Note that

1

k

k∑
l=1

1

k − l + 1
E
[
Q

(nk,k)

(l)

]
≤ 1

k

k∑
l=1

E
[
Q

(nk,k)

(l)

]
≤ E

[
Q

(n,1)

(1)

]
, (20)

where the last step utilizes Lemma 3.7. By substituting (20) into (19), we have (2).

LEMMA 3.7. The average queue-length of k shortest queues among nk servers under
the (nk, k) code is not greater than the queue-length of the shortest queue among n
servers under the (n, 1) code, i.e.,

1

k

k∑
i=1

E
[
Q

(nk,k)

(i)

]
≤ E

[
Q

(n,1)

(1)

]
. (21)

The proof of Lemma 3.7 directly follows from Lemma 3.6, and is available in Appendix
E.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:13

The mean job delay improvement under the (nk, k) code compared with the (n, 1)
code in the light-traffic regime directly follows from the discussions in Section 2. Next,
we will investigate the mean job delay improvement in the heavy-traffic regime, i.e.,
λ ↑ 1. According to (19), we have

W
(nk,k) −W (n,1)

W
(n,1)

≤−
(

1− 1

k
H(k)

)
+

1

k

∑k
l=1

1
k−l+1E

[
Q

(nk,k)

(l)

]
−H(k)E

[
Q

(n,1)

(1)

]
1 + E

[
Q

(n,1)

(1)

] , (22)

which implies

lim
λ↑1

W
(nk,k) −W (n,1)

W
(n,1)

≤ −
(

1− 1

k
H(k)

)
+

1

k
lim
λ↑1

∑k
l=1

1
k−l+1E

[
Q

(nk,k)

(l)

]
E
[
Q

(n,1)

(1)

] −H(k)

1

E
[
Q

(n,1)

(1)

] + 1
.

By utilizing Lemma 3.8, we have the desired result.

LEMMA 3.8. (i) The mean queue-length of the shortest queue among n servers under
the (n, 1) code in the heavy-traffic regime satisfies

lim
λ↑1

E
[
Q

(n,1)

(1)

]
− log(1− λ)

=
1

log n
; (23)

(ii) The mean queue lengths of the k shortest queues among n servers under the (nk, k)
code satisfy

lim
λ↑1

∑k
i=1

1
k−i+1E

[
Q

(nk,k)

(i)

]
E
[
Q

(n,1)

(1)

] ≤ H(k). (24)

The proof of Lemma 3.8 is available in Appendix F.

4. SIMULATION RESULTS
In this section, we provide simulation results to compare the mean file access delay
performance between coding and replication in the system with L = 1, 000 servers and
I = 1, 000, 000 files. In particular, we first verify the accuracy of the mean-field analy-
sis and then investigate the delay improvement under coding. Then, we evaluate the
impact of correlation of the chunk downloading time on the mean delay performance
for two different load-balancing algorithms.

4.1. Validation of the Mean-Field Analysis
In this subsection, we first validate the accuracy of the mean-field analysis, and then
illustrate the differences in mean file access delay performance between coding and
replication, where we assume that the chunk downloading time follows exponential
distribution. Given the queue-length distribution (cf. Proposition 3.5), we are able to
calculate the mean file access delay under the (n, k) code according to (13) through
Monte Carlo methods. In particular, at each time slot, generate n i.i.d. queue-length
random variables according to its steady-state probability distribution in the large-
system limit (cf. Proposition 3.5), then pick k smallest ones and calculate the delay
through (13). Then, the time-average delay can be regarded as the mean delay. The
lines in Fig. 5 (corresponding to theoretical results) were obtained in this manner,

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:14 B. Li et al.

whereas the simulation results were obtained via an event-driven simulation of the
whole system.

From Fig. 5, we first observe that the simulation results match the theoretical
results very well under different coding schemes, which validates the accuracy of
the mean-field analysis in the system with a large number of servers. In addition,
Fig. 5 shows the mean file access delay performance under the (nk, k) code, where
k = 1, 2, 3, 4, 5. Recall that k = 1 corresponds to the replication code. We can see from
Fig. 5 that the mean file access delay performance improves as k increases, where
the delay improvement is most significant from k = 1 to k = 2. This is also expected
from our theoretical analysis. In addition, for a fixed storage coding scheme, its de-
lay improvement compared with the replication code increases as the arrival rate λ
increases. We also consider the case with i.i.d. chunk downloading time with distri-
bution the same as 1/(2k) + Exp(2k), where Exp(2k) is exponential distributed with
mean 1/(2k). This downloading time distribution was used in [Liang and Kozat 2014]
to model the data downloading time in Amazon AWS system. The simulation results
are shown in Fig. 6, where we have similar observations with the case with exponential
downloading time (cf. Fig. 5).

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Arrival rate λ

0

0.5

1

1.5

2

2.5

3

3.5

M
ea

n
F

ile
 A

cc
es

s
D

el
ay (2,1) code

(4,2) code
(6,3) code
(8,4) code
(10,5) code

Line: theoretical results
Marker: simulation results

Fig. 5: Exp downloading time

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Arrival rate λ

M
ea

n
fil

e
ac

ce
ss

 d
el

ay

(2,1) code
(4,2) code
(6,3) code
(8,4) code
(10,5) code

Fig. 6: Constant+Exp downloading time

4.2. Impact of Correlated Downloading Time Distribution
In this subsection, we consider another popular load-balancing scheme, called Redun-
dant Request with Killing (RRK), under the storage scheme with (n, k) code. Recall
that under the RRK load-balancing scheme, upon a file access request arrival, it for-
wards n requests to n servers containing the file and the entire file is obtained once k
out of n downloading requests are processed.

Here, we consider both i.i.d. and correlated downloading time cases. In the case
with i.i.d. downloading time, the time required for downloading data chunks are i.i.d.
with exponential with mean 1/k. In the case with correlated downloading time, the
time required for downloading chunks associated with a file are exactly the same and
follows exponential distribution with mean 1/k.

Fig. 7 studies the impact of correlations on delay performance of the Batch Sampling
(BS) and RRK load-balancing algorithms under the (4, 2) storage scheme. From Fig.
7(a), we can observe that for the BS load-balancing policy, the mean delay under the
correlated downloading time is always better than that under the i.i.d. downloading

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:15

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

Arrival rate λ

M
e
a
n
 f

ile
 a

c
c
e
s
s
 d

e
la

y

i.i.d. downloading time

correlated downloading time

(a) BS load-balancing scheme

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Arrival rate λ

M
e
a
n
 f

ile
 a

c
c
e
s
s
 d

e
la

y

BS load balancing policy

RRK load balancing policy

(b) Correlated downloading time

Fig. 7: Impact of correlated downloading time on the delay performance of (4, 2) code

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Arrival rate λ

M
ea

n
fil

e
ac

ce
ss

 d
el

ay

i.i.d. downloading time
correlated downloading time

(a) BS load-balancing scheme

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

10

Arrival rate λ

M
ea

n
fil

e
ac

ce
ss

 d
el

ay

BS load−balancing policy
RRK load−balancing policy

(b) Correlated downloading time

Fig. 8: Impact of correlated downloading time on the delay performance of (6, 3) code

time, with larger improvement in the lower traffic regime. In this sense, the corre-
lation of the chunk downloading time actually helps improve the delay performance
of the BS policy. Thus, the results in the paper may be interpreted as characterizing
the worst-case performance of the BS policy. However, from Fig. 7(b), we can see that
this correlation significantly degrades the system performance of the RRK algorithm
especially when the traffic load is high. We have the same observations from Fig. 8
that shows the simulation results for the storage scheme with (6, 3) code. Thus, the
efficiency of the RRK policy heavily depends on the independence assumption on the
chunk downloading time as we discussed in Section 2. For this reason, we only analyt-
ically study the BS policy in this paper.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:16 B. Li et al.

5. RELATED WORK
5.1. Delay reduction in cloud storage systems
The main goal of a cloud storage system is to provide high data reliability and fast
file access. Recently, much work has gone into the design of algorithms that speed up
the file access in cloud storage systems. For example, references (e.g., [Jain et al. 2005;
Ananthanarayanan et al. 2012; Vulimiri et al. 2013]) have performed simulation or
testbed experiments to compare the delay performance of different coding schemes.
Some other works have investigated the file access delay performance analytically. For
example, the authors in [Huang et al. 2012] showed that the MDS code has a smaller
mean file access delay than the simple file replication. In [Joshi et al. 2012; Shah et al.
2014], the authors provided delay bounds under the MDS code. In [Kadhe et al. 2015],
the authors compared the delay performance of MDS codes and replication schemes.
References (e.g., [Shah et al. 2013; Vulimiri et al. 2013; Joshi et al. 2014; Xiang et al.
2014; Chen et al. 2014; Liang and Kozat 2014; Joshi et al. 2015a; Sun et al. 2015;
Gardner et al. 2015]) studied the delay performance of redundant requests in various
settings.

5.2. Efficient low-complexity load-balancing schemes
A load-balancing algorithm distributes arriving jobs across servers with the goal of
minimizing queueing delays. The analysis of load-balancing algorithms in any finite
systems is quite challenging in general. References [Vvedenskaya et al. 1996] and
[Mitzenmacher 1996] first considered the celebrated power-of-d-choices (d ≥ 2) load-
balancing algorithm in the large-system limit, where each arriving job is forwarded to
the shortest d randomly sampled queues. In such cases, any fixed number of queues
become independent from each other and thus the delay characterization is tractable.
There has been a considerable amount of recent work following the results in [Vveden-
skaya et al. 1996] and [Mitzenmacher 1996] studying various different load-balancing
schemes with different amounts of overhead (e.g., [Bramson et al. 2010; Lu et al. 2011;
Ying et al. 2015; Stolyar 2015]). More recently, Redundant Request with Killing (RRK)
(e.g., [Shah et al. 2013; Liang and Kozat 2014; Gardner et al. 2015; Gardner et al.
2016]) and its variants (e.g., cancel-on-start [Joshi et al. 2015b; Gardner et al. 2016])
have received significant research attention, where each arriving job is replicated to d
servers, and when any one of d jobs is processed, the rest of the jobs are killed. But, to
the best of our knowledge, none of the previous papers have studied the joint perfor-
mance of load balancing and storage schemes in the large-system limit.

6. CONCLUSIONS
In this paper, we studied the mean file access delay performance under coding in cloud
storage systems with a very large number of files stored in a very large number of
servers. We formulated an appropriate load-balancing problem, and studied its delay
performance in the large-system limit, i.e., when the number of servers goes to in-
finity. In particular, we obtained the steady-state distribution of the number of file
access requests waiting at each server, and utilized this to show that coding always
improves the mean file access delay compared with the simple replication scheme at
all traffic loads, without sacrificing any storage and reliability. We further show that
the improvement factor by coding in the heavy-traffic regime is at least as large as in
the light-traffic regime. Finally, extensive simulations are performed to validate our
theoretical results.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:17

7. ACKNOWLEDGEMENTS
This work is supported by the NSF grants: CIF-1409106, ECCS-1739189, CCF-
1718470, CCF-1149860, CCF-1320416; and DTRA Grant HDTRA1-15-1-0003.

A. PROOF OF PROPOSITION 3.1
We ignore the superscript (L) of Q(L)

l (t) for simplicity. Consider the Quadratic Lya-
punov function V (Q(t)) =

∑L
l=1Q

2
l (t).

Let x,y be the state of the underlying Markov chain, and qx,y denote the transition
rate from state x to state y. According to the Foster-Lyapunov theorem (see [Srikant
and Ying 2013, Theorem 9.1.8]) for continuous-time Markov chain, we consider its
Lyapunov drift as follows:∑

y 6=x

qx,y (V (y)− V (x))

=

L∑
l=1

qx,x−el

(
V
(
(x− el)

+
)
− V (x)

)
+
∑
y∈Θx

qx,y (V (y)− V (x)) , (25)

where the last step is true for z+ , max{z, 0}, el being a L× 1 vector such that el[l] = 1
and el[l

′] = 0 for any l′ 6= l, and Θx being the set of possible states of the Markov chain
that can be reached from the state x when there is a job arrival (file access request).

For the term
∑L
l=1 qx,x−el

(V ((x− el)
+)− V (x)), we have

L∑
l=1

qx,x−el

(
V
(
(x− el)

+
)
− V (x)

) (a)

≤
L∑
l=1

k
(
(xl − 1)2 − x2

l

)
=− 2k

L∑
l=1

xl + kL, (26)

where step (a) uses the fact that the departure rate of each task (chunk download
request) at each queue is k, and the fact that (z+)

2 ≤ z2 for any real number z.
For the term

∑
y∈Θx

qx,y (V (y)− V (x)), we have

∑
y∈Θx

qx,y (V (y)− V (x)) ≤Lλ
L∑
l=1

(
(xl + 1)2 − x2

l

)
× k

L

=2kλ

L∑
l=1

xl + kLλ, (27)

where the first step is established by comparing the batch-sampling (BS) with the
randomized load-balancing (RL) policy that forwards k tasks to randomly selected k
queues with replacement, one for each queue. Indeed, conditioned on the n sampled
queues, e.g., Q1 ≤ Q2 ≤ · · · ≤ Qn, the Lyapunov drift can be represented as

E

[
n∑
l=1

(
(Ql + al)

2 −Q2
l

)∣∣∣∣∣(Q1, Q2, ..., Qn)

]
= 2E

[
n∑
l=1

Qlal

∣∣∣∣∣(Q1, Q2, ..., Qn)

]
+ k, (28)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:18 B. Li et al.

whenever there is an arrival event under any load-balancing policy, where
∑n
l=1 al = k

and al ∈ {0, 1}. It is easy to see that

E

[
n∑
l=1

Qla
(BS)
l

∣∣∣∣∣(Q1, Q2, ..., Qn)

]
=

k∑
l=1

Qk, (29)

under our considered load-balancing scheme. Under the above randomized load-
balancing policy,

E
[
Qla

(RL)
l

∣∣∣(Q1, Q2, . . . , Qn)
]

=
k

L
Ql,∀l = 1, 2, ..., n. (30)

On the other hand,

E
[
Qla

(RL)
l

]
=
∑
G∈G

E
[
Qla

(RL)
l |G

]
Pr{G}, (31)

where G = the set of n sampled servers containing server l. Note that each server
contains In/L files and each file is stored in n−tuple of servers, where we recall that
I is the number of files in the system. This implies that each server belongs to In/L
n−tuple of servers and thus |G| = In/L.

Also, due to the symmetry, E
[
Qla

(RL)
l |G

]
,∀G ∈ G, have the same value. Therefore,

combining equations (30), (31), and the fact that |G| = In/L and Pr{G} = 1/I, ∀G ∈ G,
we have E

[
Qla

(RL)
l

∣∣∣(Q1, Q2, ..., Qn)
]

= k
nQl,∀l = 1, 2, ..., n, which implies that

E

[
n∑
l=1

Qla
(RL)
l

∣∣∣∣∣(Q1, Q2, ..., Qn)

]
=
k

n

n∑
l=1

Ql, (32)

under the randomized load-balancing policy. By using the assumption that Q1 ≤ Q2 ≤
· · · ≤ Qn, we have

k

n

n∑
l=1

Ql ≥
k

n

(
k∑
l=1

Ql + (n− k)Qk+1

)

≥k
n

(
k∑
l=1

Ql +
n− k
k

k∑
l=1

Ql

)
=

k∑
l=1

Ql. (33)

This implies that, conditioned on n sampled queues, the Lyapunov drift upon an arrival
under our considered load-balancing scheme is not greater than that under the above
mentioned randomized load-balancing policy.

Therefore, we have∑
y 6=x

qx,y (V (y)− V (x)) ≤ −2k(1− λ)

L∑
l=1

xl + kL(1 + λ). (34)

Since λ ∈ (0, 1), according to the Foster-Lyapunov theorem (see [Srikant and Ying
2013, Theorem 9.1.8]), the underlying Markov chain is positive recurrent, and hence
its steady-state distribution exists. Then, (1) follows from [Hajek 2006, Proposition
2.2.3].

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:19

B. PROOF OF LEMMA 3.3

In the rest of proof, we omit the superscript (n, k) of Q(n,k)

(i) ,∀i = 1, 2, · · · , n, for simplic-
ity. Since there are n sampled queues with Q(1) ≤ Q(2) ≤ · · · ≤ Q(n), we have

Pr{Q(i) ≥ m}
(a)
= Pr{n− i+ 1 or more of Ql’s are ≥ m}

(b)
=

n∑
j=n−i+1

(
n

j

)
sjm(1− sm)n−j

(c)
=

n∑
j=n−i+1

(
n

j

)
sjm

n−j∑
l=0

(
n− j
l

)
(−sm)l

=

n∑
j=n−i+1

n−j∑
l=0

(
n

j

)(
n− j
l

)
(−1)l sj+lm

(d)
=

n∑
d=n−i+1

sdm

d∑
j=n−i+1

(
n

j

)(
n− j
d− j

)
(−1)d−j

(e)
=

n∑
d=n−i+1

(
n

d

)
sdm

d∑
j=n−i+1

(
d

j

)
(−1)d−j , (35)

where step (a) follows from the fact that the ith order statistic is greater than or equal
to m if and only if there are n − i + 1 or more of Ql’s that are greater than or equal to
m; (b) is true due to the fact that n sampled queues are i.i.d. and thus the number of
Ql’s that are greater than or equal to m follows binomial distribution with parameters
n and sm; (c) utilizes Binomial Theorem; (d) is true by letting d = j+ l; (e) follows from
the subset-of-a-subset identity [Knuth et al. 1989]

(
n
j

)(
n−j
d−j
)

=
(
n
d

)(
d
j

)
.

By utilizing equation (35), we have
k∑
i=1

Pr{Q(i) ≥ m}

=

k∑
i=1

n∑
d=n−i+1

(
n

d

)
sdm

d∑
j=n−i+1

(
d

j

)
(−1)d−j

(a)
=

n∑
d=n−k+1

(
n

d

)
sdm

k∑
i=n+1−d

d∑
j=n−i+1

(
d

j

)
(−1)d−j

(b)
=

k∑
l=1

(
n

n− k + l

)
sn−k+l
m

k∑
i=k+1−l

n−k+l∑
j=n−i+1

(
n− k + l

j

)
(−1)n−k+l−j , (36)

where step (a) is true by exchanging the order of the first and second summation; (b)
is true for l = d− (n− k).

Next, we are going to show that
k∑

i=k+1−l

n−k+l∑
j=n−i+1

(
n− k + l

j

)
(−1)n−k+l−j =

(
n− k + l − 2

l − 1

)
(−1)l−1. (37)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:20 B. Li et al.

Indeed,
k∑

i=k+1−l

n−k+l∑
j=n−i+1

(
n− k + l

j

)
(−1)n−k+l−j

(a)
=

n−k+l∑
j=n−k+1

(k + j − n)

(
n− k + l

j

)
(−1)n−k+l−j

(b)
=

l∑
j′=1

j′
(
n− k + l

n− k + j′

)
(−1)l−j

′

=

l∑
j=1

j

(
n− k + l

l − j

)
(−1)l−j

=l

(
n− k + l

0

)
+

l−1∑
j=1

j

(
n− k + l

l − j

)
(−1)l−j

(c)
= l

(
n− k + l − 1

0

)
+

l−1∑
j=1

j

((
n− k + l − 1

l − j

)
+

(
n− k + l − 1

l − j − 1

))
(−1)l−j

=

l−1∑
j=0

(
n− k + l − 1

j

)
(−1)j

=

(
n− k + l − 1

0

)
+

l−1∑
j=1

(
n− k + l − 1

j

)
(−1)j

(d)
=

(
n− k + l − 2

0

)
+

l−1∑
j=1

((
n− k + l − 2

j

)
+

(
n− k + l − 2

j − 1

))
(−1)j

=

(
n− k + l − 2

l − 1

)
(−1)l−1, (38)

where step (a) follows by switching the order of summations; (b) is true by letting
j′ = j − (n− k); both (c) and (d) utilize the Pascal’s rule, i.e.,(

n

k

)
=

(
n− 1

k − 1

)
+

(
n− 1

k

)
,

for all integers n, k: 1 ≤ k ≤ n− 1.
By substituting (38) into (36), we have
k∑
i=1

Pr{Q(i) ≥ m} =

k∑
l=1

sn−k+l
m

(
n

n− k + l

)(
n− k + l − 2

l − 1

)
(−1)l−1 = f (n,k)(sm), (39)

where f (n,k)(x) is defined in Lemma 3.3. By noting that Pr{Q(i) = m} = Pr{Q(i) ≥
m} − Pr{Q(i) ≥ m− 1} and utilizing (39), we have the desired result.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:21

C. PROOF OF LEMMA 3.4
By the definition of the function f (n,k)(x), we have(

f (n,k)(x)
)′

=

k∑
l=1

(−1)l−1

(
n

n− k + l

)(
n− k + l − 2

l − 1

)
(n− k + l)xn−k+l−1

=

k∑
l=1

(−1)l−1

(
n

n− k + l

)(
n− k + l

n− k + l − 1

)(
n− k + l − 2

n− k − 1

)
xn−k+l−1

,
∫ x

0

g(n,k)(z)dz, (40)

where g(n,k)(x) is defined as

g(n,k)(x) ,
k∑
l=1

(−1)l−1

(
n

n− k + l

)(
n− k + l

n− k + l − 1

)(
n− k + l − 1

n− k + l − 2

)(
n− k + l − 2

n− k − 1

)
xn−k+l−2 .

Once we obtain the closed-form expression for g(n,k)(x), we can easily get f (n,k)(x).
Next, let’s focus on g(n,k)(x).

g(n,k)(x)
(a)
=C(n, k)

k∑
l=1

(−1)l−1

(
k − 1

l − 1

)
xn−k+l−2

(b)
=C(n, k)xn−k−1

k−1∑
l′=0

(−1)l
′
(
k − 1

l′

)
xl
′

(c)
=C(n, k)xn−k−1(1− x)k−1, (41)

where step (a) is true for C(n, k) ,
(

n
n−k−1

)(
k+1

1

)(
k
1

)
and utilizes the subset-of-a-subset

identity shown as follows.(
n

n− k + l

)(
n− k + l

n− k + l − 1

)(
n− k + l − 1

n− k + l − 2

)(
n− k + l − 2

n− k − 1

)
=

(
n

n− k − 1

)(
k + 1

1

)(
k

1

)(
k − 1

l − 1

)
;

(b) is true by letting l′ = l − 1; (c) utilizes Binomial Theorem.
By using (41), we have(

f (n,k)(x)
)′

=

∫ x

0

g(n,k)(z)dz = C(n, k)

∫ x

0

zn−k−1(1− z)k−1dz. (42)

Hence,
(
f (n,k)(x)

)′
> 0 for any x ∈ (0, 1] and therefore f (n,k)(x) is strictly increasing in

x ∈ [0, 1].
Moreover, (

f (n,k)(x)
)′′

= C(n, k)xn−k−1(1− x)k−1 ≥ 0 (43)

holds for any x ∈ [0, 1], which implies that f (n,k)(x) is also convex on the interval [0, 1].

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:22 B. Li et al.

In addition, it is easy to see that f (n,k)(0) = 0 from the definition of f (n,k)(x), and

f (n,k)(1) =

∫ 1

0

(
f (n,k)(x)

)′
dx

=C(n, k)

∫ 1

0

dx

∫ x

0

zn−k−1(1− z)k−1dz

(a)
=C(n, k)

∫ 1

0

zn−k−1(1− z)kdz

(b)
=k, (44)

where step (a) interchanges the order of integrals; (b) uses the fact that∫ 1

0

za(1− z)bdx =
a!b!

(a+ b+ 1)!
, (45)

for any non-negative integers a and b, and the definition of C(n, k).
Furthermore, since

(
f (n,k)(x)

)′′ ≥ 0 for any x ∈ [0, 1],
(
f (n,k)(x)

)′ is non-decreasing
on the interval [0, 1], which implies(

f (n,k)(x)
)′
≤
(
f (n,k)(1)

)′
= C(n, k)

∫ 1

0

zn−k−1(1− z)k−1dz = n, (46)

where the last step again uses (45) and the definition of C(n, k).

D. PROOF OF LEMMA 3.6
We use mathematical induction to show this lemma. First, note that s0 = ŝ0 = 1.
Assume that sm ≤ ŝm for some m ≥ 0. Then, we have

sm+1 =
λ

k
f (nk,k)(sm)

(a)

≤ λsnm
(b)

≤ λŝnm = ŝm+1, (47)

where step (a) uses Lemma D.1; (b) follows from the induction hypothesis.

LEMMA D.1.
1

k
f (n,k)(x) ≤ xn/k (48)

holds for any x ∈ [0, 1].

PROOF. Since f (n,k)(0) = 0 (cf. Lemma 3.4), inequality (48) holds when x = 0. In the
rest of the proof, we consider the case when x ∈ (0, 1]. We will show that f (n,k)(x)/k ≤
xn/k, which is equivalent to proving

h(x) ,
1

k

f (n,k)(x)

xn/k
≤ 1. (49)

Since h(1) = f (n,k)(1)/k = 1 (cf. Lemma 3.4), it is sufficient to show that h′(x) ≥ 0 for
any x ∈ (0, 1]. Noting that

h′(x) =
1

k

x(f (n,k)(x))′ − n
k f

(n,k)(x)

xn/k+1
, (50)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:23

It is equivalent to showing that

x(f (n,k)(x))′ ≥ n

k
f (n,k)(x), (51)

holds for any x ∈ (0, 1].
According to (42) in the proof of Lemma 3.4, we have

(f (n,k)(x))′ =C(n, k)

∫ x

0

zn−k−1(1− z)k−1dz

=C(n, k)

k−1∑
l=0

(
k − 1

l

)
(−1)l

∫ x

0

zn−k−1+ldz

=C(n, k)

k−1∑
l=0

(
k − 1

l

)
(−1)l

xn−k+l

n− k + l
, (52)

where we recall that C(n, k) ,
(
n
k+1

)(
k+1

1

)(
k
1

)
, and the second step follows from the

Binomial Theorem. Hence, we have

f (n,k)(x) =

∫ x

0

(f (n,k)(z))′dz

=C(n, k)

k−1∑
l=0

(
k − 1

l

)
(−1)l

1

n− k + l

xn−k+l+1

n− k + l + 1
. (53)

By substituting (52) and (53) into (51), it is equivalent to showing that

w(x) ,
k−1∑
l=0

(
k − 1

l

)
(−1)l

1

n− k + l

(n/k − 1)(k − 1) + l

n− k + l + 1
xn−k+l+1 ≥ 0.

Next, we will study some basic properties of w(x). First, we note that

w′′(x) =xn−k−1
k−1∑
l=0

(
k − 1

l

)
(−1)l ((n/k − 1)(k − 1) + l)xl

=xn−k−1
(
(n/k − 1)(k − 1)(1− x)k−1 − x(k − 1)(1− x)k−2

)
=(k − 1)xn−k−1(1− x)k−2 ((n/k − 1)− nx/k) , (54)

where the second last step follows from the Binomial Theorem and the fact that
k−1∑
l=0

(
k − 1

l

)
l(−x)l = −x(k − 1)(1− x)k−2.

Note that w′′(x) ≥ 0 if x ∈ (0, 1 − k/n], and w′′(x) ≤ 0 if x ∈ (1 − k/n, 1], which
implies that w′(x) is non-decreasing on the interval (0, 1− k/n], and non-increasing on
(1− k/n, 1].

Since

w′(x) =

∫ x

0

w′′(z)dz = (k − 1)

∫ x

0

zn−k−1(1− z)k−2
(n
k
− 1− n

k
z
)
dz, (55)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:24 B. Li et al.

we have w′(0) = 0 and

w′(1) =(k − 1)

((n
k
− 1
)∫ 1

0

zn−k−1(1− z)k−2dz − n

k

∫ 1

0

zn−k(1− z)k−2dz

)
=

(k − 1)!(n− k)!

(n− 2)!k

(
1− n

n− 1

)
< 0, (56)

where the second step uses (45). Therefore, there must exist a point x0 ∈ (1 − k/n, 1)
such that w′(x) ≥ 0 for any x ∈ (0, x0] and w′(x) < 0 for any x ∈ (x0, 1], which implies
that w(x) is non-decreasing on the interval (0, x0] and non-increasing on (x0, 1].

Since w(0) = 0, we have w(x) ≥ 0 for any x ∈ (0, 1] if w(1) ≥ 0. Indeed, we have

w(1) =

∫ 1

0

w′(x)dx

=(k − 1)

∫ 1

0

dx

∫ x

0

zn−k−1(1− z)k−2
((n

k
− 1
)
− n

k
z
)
dz

(a)
= (k − 1)

((n
k
− 1
)∫ 1

0

zn−k−1(1− z)k−1dz − n

k

∫ 1

0

zn−k(1− z)k−1dz

)
(b)
=0, (57)

where step (a) interchanges the order of integrals; (b) uses (45).

E. PROOF OF LEMMA 3.7
First, recall that sm and ŝm are the probabilities that steady-state queue length is at
least m under (nk, k) and (n, 1) codes in the large-system limit, respectively. We note
that

1

k

k∑
i=1

E
[
Q

(nk,k)

(i)

]
(a)
=

1

k

k∑
i=1

∞∑
m=1

Pr
{
Q

(nk,k)

(i) ≥ m
}

(b)
=

1

k

∞∑
m=1

f (nk,k)(sm), (58)

where step (a) uses the fact that E [Z] =
∑∞
m=1 Pr{Z ≥ m} for any non-negative

integer-valued random variable Z; (b) interchanges the order of summations (since
Pr
{
Q

(nk,k)

(i) ≥ m
}
≥ 0,∀i,m) and follows from Lemma 3.3. By Proposition 3.5, under

(nk, k) code,

sm+1 =
λ

k
f (nk,k)(sm),∀m = 0, 1, 2, · · · (59)

By combining (58) and (59), we have

1

k

k∑
i=1

E
[
Q

(nk,k)

(i)

]
=

1

λ

∞∑
m=1

sm+1 (60)

On the other hand, under (n, 1) code,

E
[
Q

(n,1)

(1)

]
=

∞∑
m=1

Pr
{
Q

(n,1)

(1) ≥ m
}

=

∞∑
m=1

ŝnm =
1

λ

∞∑
m=1

ŝm+1, (61)

where the last step uses the fact that ŝm+1 = λŝnm,∀m = 0, 1, 2, · · · under (n, 1) code ac-
cording to Proposition 3.5. Hence, the desired result follows from (60), (61), and Lemma
3.6.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:25

F. PROOF OF LEMMA 3.8
We first note that sm and ŝm are the probabilities that steady-state queue length is at
least m under (nk, k) and (n, 1) codes in the large-system limit, respectively. Therefore,
according to Proposition 3.5, we have

ŝm = λ
nm−1
n−1 ,∀m = 0, 1, 2, · · · (62)

According to equation (61), we have

E
[
Q

(n,1)

(1)

]
=

∞∑
m=1

ŝnm =

∞∑
m=1

λ
nm−1
n−1 n, (63)

which implies that

lim
λ↑1

E
[
Q

(n,1)

(1)

]
− log(1− λ)

= lim
λ↑1

∑∞
m=1 λ

nm−1
n−1 n

− log(1− λ)
=

1

log n
, (64)

where the last step utilizes Lemma F.1.

LEMMA F.1.

lim
λ↑1

∑∞
m=1 λ

nm−1
n−1 a

− log(1− λ)
=

1

log n
, (65)

holds for any real number a > 0.

The proof of Lemma F.1 is similar to [Mitzenmacher 1996, Theorem 3.9] and is pro-
vided next for completeness.

PROOF.

lim
λ↑1

∑∞
m=1 λ

nm−1
n−1 a

− log(1− λ)
= lim
λ↑1

∑∞
m=1

(
λ

a
n−1
)nm

− log(1− λ)

1

λ
a

n−1

(a)
= lim

λ′↑1

∑∞
m=1(λ′)n

m

− log(1− λ′)
log(1− λ′)
log(1− λ)

1

λ
a

n−1

(b)
= lim

λ↑1

∑∞
m=1 λ

nm

− log(1− λ)

(c)
=

1

log n
, (66)

where step (a) is true by setting λ′ = λ
a

n−1 ; (b) follows from the fact that the last two
terms go to 1 as λ ↑ 1; (c) utilizes [Mitzenmacher 1996, Lemma 3.10].

Next, we consider the heavy-traffic behavior of the expression
∑k
i=1

1
k−i+1E

[
Q

(nk,k)

(i)

]
.

First, we note that
k∑
i=1

1

k − i+ 1
E
[
Q

(nk,k)

(i)

]
(a)
=

k∑
i=1

1

k − i+ 1

∞∑
m=1

Pr
{
Q

(nk,k)

(i) ≥ m
}

(b)
=

∞∑
m=1

k∑
i=1

1

k − i+ 1
Pr
{
Q

(nk,k)

(i) ≥ m
}
, (67)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:26 B. Li et al.

where step (a) uses the fact that E [Z] =
∑∞
m=1 Pr{Z ≥ m} for any non-negative

integer-valued random variable Z; (b) interchanges the order of summations since
Pr
{
Q

(nk,k)

(i) ≥ m
}
≥ 0,∀i,m.

Next, we express
∑k
i=1

1
k−i+1 Pr

{
Q

(nk,k)

(i) ≥ m
}

as a function of the queue length dis-
tribution under the (nk, k) code, where we follows a similar procedure as in the proof
of Lemma 3.3.

k∑
i=1

1

k − i+ 1
Pr
{
Q

(nk,k)

(i) ≥ m
}

(a)
=

k∑
i=1

1

k − i+ 1

nk∑
d=nk−i+1

(
nk

d

)
sdm

d∑
j=nk−i+1

(
d

j

)
(−1)d−j

(b)
=

nk∑
d=nk−k+1

(
nk

d

)
sdm

k∑
i=nk+1−d

d∑
j=nk−i+1

1

k − i+ 1

(
d

j

)
(−1)d−j

(c)
=

k∑
l=1

(
nk

nk − k + l

)
snk−k+l
m

k∑
i=k+1−l

nk−k+l∑
j=nk−i+1

1

k − i+ 1

(
nk − k + l

j

)
(−1)nk−k+l−j , (68)

where step (a) follows from equation (35); (b) interchanges the order of the first and
second summation; (c) is true for l = d− (nk − k).

Next, we are going to simplify the term
∑k
i=k+1−l

∑nk−k+l
j=nk−i+1

1
k−i+1

(
nk−k+l

j

)
(−1)nk−k+l−j .

k∑
i=k+1−l

nk−k+l∑
j=nk−i+1

1

k − i+ 1

(
nk − k + l

j

)
(−1)nk−k+l−j

(a)
=

nk−k+l∑
j=nk−k+1

(
nk − k + l

j

)
(−1)nk−k+l−jH(j − (nk − k))

(b)
=

l∑
j′=1

(
nk − k + l

nk − k + j′

)
(−1)l−j

′
H(j′)

=

l∑
j=1

(
nk − k + l

l − j

)
(−1)l−jH(j)

=H(l)

(
nk − k + l

0

)
+

l−1∑
j=1

H(j)

(
nk − k + l

l − j

)
(−1)l−j

(c)
=H(l)

(
nk − k + l − 1

0

)
+

l−1∑
j=1

H(j)

((
nk − k + l − 1

l − j

)
+

(
nk − k + l − 1

l − j − 1

))
(−1)l−j

=

l∑
j=1

1

j

(
nk − k + l − 1

l − j

)
(−1)l−j , (69)

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:27

where step (a) is true by switching the order of summations and recalling that H(m) ,∑m
l=1 1/l is the lth harmonic number; (b) is true for letting j′ = j − (nk− k); (c) utilizes

the Pascal’s rule, i.e.,
(
n
k

)
=
(
n−1
k−1

)
+
(
n−1
k

)
for all integers n and k satisfying 1 ≤ k ≤ n−1.

By substituting (69) into (68), we have
k∑
i=1

1

k − i+ 1
Pr
{
Q

(nk,k)

(l) ≥ m
}

= ϕ(sm), (70)

where ϕ(x) =
∑k
l=1 Clx

nk−k+l, x ∈ [0, 1] and Cl ,
(

nk
nk−k+l

)∑l
j=1

1
j

(
nk−k+l−1

l−j
)
(−1)l−j .

The next lemma reveals two important properties of the function ϕ(x), which is
important in establishing the desired result.

LEMMA F.2. The function ϕ(x) has the following two properties:

(i) The function ϕ(x) is increasing on the interval [0, 1];
(ii) ϕ(0) = 0 and ϕ(1) = H(k).

The proof of Lemma F.2 is available in Appendix G.
Since 0 ≤ sm ≤ ŝm ≤ 1,∀m ≥ 0 (cf. Lemma 3.6), according to Lemma F.2, we have

ϕ(sm) ≤ ϕ(ŝm) and thus
k∑
i=1

1

k − i+ 1
Pr
{
Q

(nk,k)

(l) ≥ m
}
≤ ϕ(ŝm). (71)

This combined with (67) implies that
k∑
i=1

1

k − i+ 1
E
[
Q

(nk,k)

(i)

]
≤
∞∑
m=1

ϕ(ŝm)

=

k∑
l=1

Cl

∞∑
m=1

ŝnk−k+l
m

=
k∑
l=1

Cl

∞∑
m=1

λ
nm−1
n−1 (nk−k+l), (72)

where we use (62), i.e., ŝm = λ
nm−1
n−1 ,∀m = 0, 1, 2, · · · .

Hence, we have

lim
λ↑1

∑k
l=1

1
k−l+1E

[
Q

(nk,k)

(l)

]
− log(1− λ)

≤
k∑
l=1

Cl lim
λ↑1

∑∞
m=1 λ

nm−1
n−1 (nk−k+l)

− log(1− λ)

(a)
=

1

log n

k∑
l=1

Cl =
1

log n
ϕ(1)

(b)
=
H(k)

log n
, (73)

where step (a) follows from Lemma F.1 ; (b) follows from Lemma F.2. Combining (73)
and (64), we have the desired result.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:28 B. Li et al.

G. PROOF OF LEMMA F.2
By the definition of the function ϕ(x), we have

ϕ′(x) =

k∑
l=1

l∑
j=1

xnk−k+l−1(nk − k + l)

(
nk

nk − k + l

)(
nk − k + l − 1

l − j

)
(−1)l−j

j

(a)
=

k∑
j=1

k∑
l=j

xnk−k+l−1

(
nk

nk − k + l

)(
nk − k + l

nk − k + l − 1

)(
nk − k + l − 1

nk − k + j − 1

)
(−1)l−j

j

(b)
=

k∑
j=1

1

j

(
nk

nk − k + j − 1

)(
k + 1− j

1

) k∑
l=j

(
k − j
l − j

)
(−1)l−jxnk−k+l−1, (74)

where step (a) switches the order of summations; (b) utilizes the subset-of-a-subset
identity stated below.(

nk

nk − k + l

)(
nk − k + l

nk − k + l − 1

)(
nk − k + l − 1

nk − k + j − 1

)
=

(
nk

nk − k + j − 1

)(
k + 1− j

1

)(
k − j
l − j

)
.

Since
k∑
l=j

(
k − j
l − j

)
(−1)l−jxnk−k+l−1 =

k−j∑
l′=0

(
k − j
l′

)
(−1)l

′
xl
′
xnk−k−1+j

=xnk−k−1+j(1− x)k−j , (75)

we have

ϕ′(x) =

k∑
j=1

1

j

(
nk

nk − k + j − 1

)(
k + 1− j

1

)
xnk−k−1+j(1− x)k−j . (76)

Since ϕ′(x) ≥ 0 for all x ∈ [0, 1], ϕ(x) is increasing on the interval [0, 1].
In addition, we have

ϕ(x) =

∫ x

0

ϕ′(z)dz

=

k∑
j=1

1

j

(
nk

nk − k + j − 1

)(
k + 1− j

1

)∫ x

0

znk−k−1+j(1− z)k−jdz. (77)

Therefore, ϕ(0) = 0 and

ϕ(1) =

k∑
j=1

1

j

(
nk

nk − k + j − 1

)(
k + 1− j

1

)∫ 1

0

znk−k−1+j(1− z)k−jdz

=

k∑
j=1

1

j

(
nk

nk − k + j − 1

)(
k + 1− j

1

)
(nk − k − 1 + j)!(k − j)!

(nk)!

=H(k), (78)

where the second step utilizes (45).

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

Mean-Field-Analysis of Coding versus Replication in Large Data Storage Systems A:29

REFERENCES
G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. 2012. Why let resources idle? Aggressive cloning

of jobs with Dolly. In Proc. USENIX Conference on Hot Topics in Cloud Ccomputing (HotCloud). Boston,
MA, USA.

M. Bramson, Y. Lu, and B. Prabhakar. 2010. Randomized load balancing with general service time distri-
butions. In Proc. ACM International Conference on Measurement and Modeling of Computer Systems
(SIGMETRICS). New York, NY, USA.

S. Chen, Y. Sun, U. C. Kozat, L. Huang, P. Sinha, G. Liang, X. Liu, and N. B. Shroff. 2014. When queueing
meets coding: Optimal-latency data retrieving scheme in storage clouds. In Proc. IEEE International
Conference on Computer Communications (INFOCOM). Toronto, Canada.

K. Gardner, M. Harchol-Balter, M. Velednitsky A. Scheller-Wolf, and S. Zbarsky. 2016. Redundancy-d: The
Power of d Choices for Redundancy. To appear in Operations Research (2016).

K. Gardner, S. Zbarsky, S. Doroudi, M. Harchol-Balter, E. Hyytia, and A. Scheller-Wolf. 2015. Reducing La-
tency via Redundant Requests: Exact Analysis. In Proc. ACM International Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS). Portland, OR, USA.

B. Hajek. 2006. Notes for ECE 467: Communication Network Analysis. University of Illinois at Urbana-
Champaign.

L. Huang, S. Pawar, H. Zhang, and K. Ramchandran. 2012. Codes can reduce queueing delay in data centers.
In Proc. IEEE International Symposium on Information Theory (ISIT). Cambridge, MA, USA.

S. Jain, M. Demmer, R. Patra, and K. Fall. 2005. Using redundancy to cope with failures in a delay toler-
ant network. In Proc. ACM Conference on Applications, Technologies, Architectures, and Protocols for
Computer Communications (SIGCOMM). Philadelphia, PA, USA.

G. Joshi, Y. Liu, and E. Soljanin. 2012. Coding for fast content download. In Communication, Control, and
Computing (Allerton), 2012 50th Annual Allerton Conference on. IEEE, 326–333.

G. Joshi, Y. Liu, and E. Soljanin. 2014. On the delay-storage trade-off in content download from coded
distributed storage systems. IEEE Journal on Selected Areas in Communications 32, 5 (2014), 989–997.

G. Joshi, E. Soljanin, and G. Wornell. 2015a. Efficient replication of queued tasks to reduce latency in cloud
systems. In 53rd Annual Allerton Conference on Communication, Control, and Computing.

G. Joshi, E. Soljanin, and G. Wornell. 2015b. Queues with redundancy: Latency-cost analysis. ACM SIG-
METRICS Performance Evaluation Review 43, 2 (2015), 54–56.

S. Kadhe, E. Soljanin, and A. Sprintson. 2015. Analyzing the download time of availability codes. In Infor-
mation Theory (ISIT), 2015 IEEE International Symposium on. IEEE, 1467–1471.

D. Knuth, R. Graham, O. Patashnik, and others. 1989. Concrete mathematics. Adison Wesley (1989).
B. Li, A. Ramamoorthy, and R. Srikant. 2016. Mean-Field-Analysis of Coding versus Replication in Cloud

Storage Systems. In Proc. IEEE International Conference on Computer Communications (INFOCOM).
San Francisco, CA, USA.

B. Li, A. Ramamoorthy, and R. Srikant. 2017. Mean-Field-Analysis of Coding versus Replication in Cloud
Storage Systems. http://www.ele.uri.edu/faculty/binli/papers/StorageCodingReport.pdf (2017).

G. Liang and U. C. Kozat. 2014. TOFEC: Achieving optimal throughput-delay trade-off of cloud storage us-
ing erasure codes. In Proc. IEEE International Conference on Computer Communications (INFOCOM).
Toronto, Canada.

S. Lin and D. J. Costello. 2004. Error Control Coding, 2nd Ed. Prentice Hall.
Y. Lu, Q. Xie, G. Kliot, A. Geller, J. R. Larus, and A. Greenberg. 2011. Join-Idle-Queue: A novel load balanc-

ing algorithm for dynamically scalable web services. Performance Evaluation 68, 11 (2011), 1056–1071.
M. Lugo. 2011. A Note for Stat 134 Fall 2011: The Expectation of the Maximum of Exponentials. University

of California at Berkeley.
M. Mitzenmacher. 1996. The power of two choices in randomized load balancing. Ph.D. Thesis, University

of California at Berkeley.
K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. 2013. Sparrow: distributed, low latency scheduling. In

Proc. ACM Symposium on Operating Systems Principles (SOSP). Pennsylvania, PA, USA.
S. Ross. 1995. Stochastic processes. John Wiley & Sons.
S. Ross. 2014. Introduction to probability models. Academic press.
N. B. Shah, K. Lee, and K. Ramchandran. 2013. When do redundant requests reduce latency?. In Proc.

Allerton Conference on Communication, Control, and Computing (Allerton). Monticello, IL, USA.
N. B. Shah, K. Lee, and K. Ramchandran. 2014. The MDS queue: Analysing the latency performance of

erasure codes. In Proc. IEEE International Symposium on Information Theory (ISIT). Honolulu, HI,
USA.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

A:30 B. Li et al.

R. Srikant and L. Ying. 2013. Communication Networks: An Optimization, Control, and Stochastic Networks
Perspective. Cambridge University Press.

A. L. Stolyar. 2015. Pull-based load distribution in large-scale heterogeneous service systems. Queueing
Systems 80, 11 (2015), 341–361.

Y. Sun, Z. Zheng, C. E. Koksal, K. Kim, and N. B. Shroff. 2015. Probably Delay Efficient Data Retrieving
in Storage Clouds. In Proc. IEEE International Conference on Computer Communications (INFOCOM).
Hong Kong, China.

A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. 2013. Low latency via re-
dundancy. In Proc. ACM Conference on Emerging Networking Experiments and Technologies (CoNEXT).
Santa Barbara, CA, USA.

N. D. Vvedenskaya, R. L. Dobrushin, and F. I. Karpelevich. 1996. Queueing system with selection of the
shortest of two queues: An asymptotic approach. Problemy Peredachi Informatsii 32, 1 (1996), 20–34.

Y. Xiang, T. Lan, V. Aggarwal, and Y. F. R. Chen. 2014. Joint latency and cost optimization for erasurecoded
data center storage. ACM SIGMETRICS Performance Evaluation Review 42, 2 (2014), 3–14.

L. Ying, R. Srikant, and X. Kang. 2015. The Power of Slightly More than One Sample in Randomized Load
Balancing. In Proc. IEEE International Conference on Computer Communications (INFOCOM). Hong
Kong.

ACM Trans. Model. Perform. Eval. Comput. Syst., Vol. V, No. N, Article A, Publication date: January YYYY.

