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Distributed Channel Probing for Efficient
Transmission Scheduling in Wireless Networks

Bin Li, Atilla Eryilmaz

Abstract—It is energy-consuming and operationally cumbersome for all users to continuously estimate the channel quality before each
transmission decision in opportunistic scheduling over wireless fading channels. This observation motivates us to understand whether
and how opportunistic gains can still be achieved with significant reductions in channel probing requirements and without centralized
coordination amongst the competing users. To that end, we first study a simple scenario that motivates us to consider the general setup
and develop probing and transmission schemes that are amenable to distributed implementation. After characterizing the maximum
achievable throughput region under the probing constraints, we provide an optimal probing algorithm. Noting the difficulties in the
implementation of the centralized solution, we develop a novel Sequential Greedy Probing (SGP) algorithm, which is naturally well-suited
for physical implementation and distributed operation. We show that the SGP algorithm is optimal in the important scenario of symmetric
and independent ON-OFF fading channels. Then, we study a variant of the SGP algorithm in general fading channels to obtain its
efficiency ratio as an explicit function of the channel statistics and rates, and note its tightness in the symmetric and independent ON-
OFF fading scenario. We further discuss the distributed implementation of these greedy solutions by using the Fast-CSMA technique.

Index Terms—Opportunistic scheduling, Channel probing, Stochastic control, Distributed algorithm, Network stability.
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1 INTRODUCTION
Opportunistic scheduling has long been observed (e.g.,
[13], [12]) to improve communication performance in
wireless fading systems by selectively transmitting over
channels that are in good condition. This presumes the
knowledge of channel state information (CSI) at the outset
of each transmission decision. However, in the presence
of many contending users that utilize the time-varying
channel, acquiring CSI per user is not only energy-
consuming, but, more importantly, operationally difficult
since it typically requires non-overlapping pilot training
phases to obtain reliable channel quality estimates. More-
over, such persistent probing is likely unnecessary given
that only few of them may be allowed to transmit due to
the interference constraints. Yet, opportunistic gains from
multi-user diversity cannot be realized if sufficient CSI is
not present. This implies a natural tradeoff between ex-
ploring the multi-user diversity and energy consumption
for channel acquisition, and raises a fundamental ques-
tion on the design of opportunistic scheduling towards
the determination of which subset of users to probe the
channel given limited average probing rates.

The seminal works of Tassiulas and Ephremides
(e.g., [22], [23] and [21]) have showed the throughput-
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optimality of the opportunistic scheduling, which pri-
oritizes activation of links with the largest product of
backlog awaiting service and corresponding channel rate
given the full knowledge of CSI, also called Maximum
Weight Scheduling (MWS). Recently, there has been an
increasing understanding on efficient scheduling with
limited CSI (e.g., [6], [11], [2], [18]). In [6], the authors
propose a two-stage throughput-optimal MWS-type algo-
rithm given partial CSI under the assumption that only
users with known channel states can contend for the
channel. However, they do not answer how to select a
subset of users to probe the channel. In [11], the authors
also develop a similar MWS-type algorithm that mini-
mizes the energy consumption. However, the resulting
decision space being exponentially increasing with the
number of users appears to limit its applicability in multi-
user environments. In fact, existing works in the de-
sign of joint probing and transmission strategies assume
centralized controllers that utilize all state information,
and hence are not suitable for distributed operation in
large-scale networks. However, as we shall point out,
the design for distributed probing strategies generates
difficult challenges that require novel techniques beyond
existing approaches discussed next.

In an exciting thread of work, it has been shown that
Carrier Sense Multiple Access (CSMA) based distributed
scheduling strategies (e.g., [7], [17], [5], [19]) can max-
imize long-term average throughput for general non-
fading wireless topologies. Yet, the design of distributed
schedulers in a fading environment has been observed
to be much more difficult. Nevertheless, when CSI is
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available, a distributed Fast-CSMA (FCSMA) algorithm
has also been developed [10] that guarantees throughput-
optimal scheduling over wireless fading channels in a
fully-connected network topology. Yet, to the best of our
knowledge, there does not exist a distributed solution that
also accounts for the energy and operational limitations
in the CSI acquisition.

With this motivation, in this work, we address the
problem of distributed joint probing and transmission
scheduling when users have heterogeneous loads, prob-
ing rate constraints, and channel statistics. The following
items list our main contributions along with references
on where they appear in the text:
• In Section 3, we study an important basic setup with

many users sharing a common resource that motivates
the rest of the work by illustrating that a small probing
rate is sufficient to achieve almost the same performance
as the case when all users continuously probe their chan-
nels. Yet, it is also observed that simplistic randomized
solutions will under-perform, thus motivating more so-
phisticated distributed solutions.
• In Section 4, we first characterize the capacity region

given the allowable probing rate for general fading chan-
nels. Then, we develop a throughput-optimal joint prob-
ing and transmission algorithm assuming a centralized
controller. This algorithm, while impractical as is, forms
the basis for the subsequent design of algorithms that are
suitable for distributed operation.
• In Section 5, based on the maximum-minimums

identity [20], we first develop a novel Sequential Greedy
Probing (SGP) algorithm where users probe the channel
sequentially. Then, we show that the SGP algorithm can
get the optimal probing schedule, leading to throughput-
optimal performance over symmetric and independent
ON-OFF fading channels.
• In Section 6, we introduce and analyze a Modified

SGP (MSGP) algorithm that is adapted to general fading
channels, and explicitly characterize the efficiency ratio
that it achieves as an explicit function of the channel
statistics and rates. The efficiency ratio is tight for sym-
metric and independent ON-OFF channels.
• In Section 7, we utilize the FCSMA strategy [10]

to develop distributed implementations of proposed se-
quential greedy probing algorithms, and analyze the per-
formance of the resulting algorithm.

This work extends our earlier work [8] in several
aspects: (1) we study the throughput region for the
symmetric and independent ON-OFF fading channels,
which provides us several insights; (2) we generalize the
fading channel to the case that allows a certain correlation
among users. In particular, we assume that the events that
channels have zero rate are independent, which is more
general than the previous assumption that the fading
channels are independent over users; (3) We give more
comparisons between the SGP algorithm and its variant

in the general fading channels through simulations.

2 SYSTEM MODEL

We consider a system where a set of N users contend
for data transmission over wireless fading channels. We
assume that the channel for each user has M + 1 possible
rates c0, c1, c2, ..., cM , where c0 < c1 < c2 < ... < cM
and c0 = 0. Let Ci[t] denote the maximum amount of
service available in slot t if user i is scheduled. We assume
that C[t] = (Ci[t])

N
i=1 are independently and identically

distributed (i.i.d.) over time, with pij , Pr{Ci[t] =
cj},∀i = 1, ..., N ; j = 0, 1, ...,M . Let C be the collection
of possible global channel states. We reasonably assume
that the channel for each user is unavailable with a strictly
positive probability1, that is, pi0 > 0,∀i. In the rest of
paper, we also use C to denote the fading channel.

In order to get CSI, each user needs to probe the
channel by transmitting small control packets. Users
cannot probe the channel at the same time due to the
interference constraints. We denote the probing schedule
as X = (Xi)

N
i=1, where Xi = 1 if user i probes the channel

and Xi = 0 otherwise. We also treat X as a set of probing
users. Let X be the collection of probing schedules. Due to
the interference constraints, at most one user can transmit
in each slot. We call a schedule where at most one user
is active in each slot as a feasible schedule and denote it
as S = (Si)

N
i=1, where Si = 1 if user i grabs the channel

at slot t and Si = 0 otherwise. We use S to denote the
collection of feasible schedules.

If the user does not probe the channel at the beginning
of each time slot, it may underestimate the channel rate or
may even fail to transmit due to a bad channel condition.
Thus, it is reasonable to assume (as in [6]) that each
user will not start a transmission if it does not observe
the channel state at the beginning of each time slot.
We denote the allowable probing rate for each user i as
mi ∈ (0, 1],∀i, which puts an upper bound on the average
number of probing operations that each user is allowed
to make, i.e., lim supT→∞

1
T

∑T
t=1 E[Xi[t]] ≤ mi, ∀i. This

bound, as noted in the introduction, may be due to energy
or operational constraints associated with the channel
estimation operation.

We assume that each user i serves its own traffic load
and maintains them in a data queue with Qi[t] denoting
its queue length at the beginning of slot t. Let Ai[t] denote
the number of packets arriving at user i in slot t that are
i.i.d. over time with E[Ai[t]] = λi, and E[A2

i [t]] < Amax for
some Amax < ∞. Then, the evolution of data queue i is

1. In practice, the probing packets and data packets are transmit-
ted in low-rate (e.g., 1Mbps in IEEE 802.11b) and high-rate (e.g.,
2/5.5/11Mbps in IEEE 802.11b) respectively, which implies that the
transmission of probing packets requires lower signal-to-noise-ratio
than that of data packets. Thus, it is reasonable to assume that when
the channel is very poor, the user can still probe the channel but cannot
transmit the data packets.
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described as follows.

Qi[t+ 1] = (Qi[t] +Ai[t]−Xi[t]Si[t]Ci[t])
+,∀i, (1)

where (y)+ , max{y, 0}. Our goal is to find an efficient
joint probing and transmission schedule {X[t],S[t]}t≥1
under the scheduling constraint that at most one user
can be scheduled at each time slot and probing constraint
that the average probing rate of each user should not be
greater than its allowable probing rate. A key difficulty
in the solution of this problem is that the information
available at the transmission scheduling decision S[t] crit-
ically depends on the previously made probing decision
X[t], which in turn must be performed distributively
with only local information. We will address the problem
of optimal centralized control, and then return to the
distributiveness challenge.

We say that data queue i is strongly stable if it satisfies
limsupT→∞

1
T

∑T
t=1 E[Qi[t]] < ∞. The system is stable if

all data queues are strongly stable. We define the capacity
region as a maximum set of arrival rate vectors λ = (λi)

N
i=1

for which the system is stable and the average probing
rate of each user is no greater than its allowable probing
rate under any policy. We call an algorithm optimal if it
can make the system stable for any arrival rate vector that
lies strictly inside the capacity region. An algorithm can
achieve the efficiency ratio ρ if it can stabilize the system
for any λ strictly within a fraction ρ of the capacity region.
Next, we study a basic setup that motivates further
investigations.

3 A MOTIVATING SCENARIO

Here, we consider symmetric and independent ON-OFF
fading channels with probability p of each channel being
ON to support a unit rate in each time slot. Assume
that each user has a uniform arrival rate λ and uniform
allowable probing rate m ∈ (0, 1]. Thus, all users should
be expected to have the same maximum achievable rate,
which is denoted by λmax(m). The next proposition ex-
plicitly characterizes λmax(m) under any strategy with a
long-term average as a piece-wise linear function of m.

Proposition 1: For the above setup, the maximum sup-
portable arrival rate under any stationary policy with
a well-defined long term average is characterized as
follows:

λmax(m) = mp, if 0 ≤ m ≤ 1

N
;

λmax(m) =
1

N
+ (m− i

N
)p(1− p)i − 1

N
(1− p)i,

if
i

N
≤ m ≤ i+ 1

N
, i = 1, ..., N − 1.

Proof: To characterize the capacity region, similar to
[23], [21], [15], [11], it is enough to consider a class of
stationary randomized policies (see Lemma 1), where the
probing decision in each slot is made randomly. Let Ri

and θj be the rate that ith user can achieve and the
probability that j users probe the channel, respectively,
where i = 1, 2, ..., N and j = 0, 1, ..., N . Then, we can get
the total probing rate as follows:

E

[
N∑
i=1

Xi

]
=

N∑
i=1

iθi, (2)

where we use the fact that
∑N
i=1Xi = j with probability

of θj .
When j users probe the channel, by recalling our as-

sumption that only probing users are allowed to transmit,
we have E

[∑N
i=1Ri

∣∣∣∑N
i=1Xi = j

]
= 1 − (1 − p)j . Thus,

the average achievable rate can be expressed as follows:

1

N
E

[
N∑
i=1

Ri

]
=

1

N

N∑
i=1

θi
(
1− (1− p)i

)
. (3)

We want to select a probability distribution {θi}Ni=0

such that the average achievable rate is maximized.

max
θ=(θi)Ni=1

1

N

N∑
i=1

θi
(
1− (1− p)i

)
(4)

Subject to
N∑
i=1

θi ≤ 1 (5)

N∑
i=1

iθi ≤ Nm (6)

θi ≥ 0,∀i = 1, ..., N, (7)

where (5) is true since
∑N
i=0 θi = 1 and θ0 ≥ 0, and (6)

holds2 since the total probing rate is not greater than Nm
given the assumption that every user has the same prob-
ing rate m. By associating Lagrangian Multipliers µ1 ≥ 0
and µ2 ≥ 0 with constraints (5) and (6) respectively, we
get the following partial Lagrangian function L(θ, µ1, µ2):

L(θ, µ1, µ2)

=
1

N

N∑
i=1

θi
(
1− (1− p)i

)
− µ1

(
N∑
i=1

θi − 1

)
− µ2

(
N∑
i=1

iθi −Nm

)

=

N∑
i=1

(
1

N

(
1− (1− p)i

)
− µ1 − µ2i

)
θi + µ1 + µ2Nm.

Then, the dual function q(µ1, µ2) can be expressed as
follows:

q(µ1, µ2) = sup
θ≥0

L(θ, µ1, µ2)

=

 µ1 + µ2Nm , if 1
N

(
1− (1− p)i

)
≤ µ1 + µ2i

∀i = 1, ..., N ;
+∞ , otherwise.

2. We will see that this inequality is tight to achieve the optimality.
Indeed, the optimal Lagrangian parameter µ∗2 associated with inequality
(6) is always greater than 0, which implies that the inequality (6) is tight
under optimality conditions by KKT Theorem.
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Since the original optimization problem is just a linear
programming, there is no duality gap and thus it is
equivalent to solve the following dual problem:

min
µ1≥0,µ2≥0

µ1 + µ2Nm (8)

Subject to µ1 + µ2i ≥
1

N

(
1− (1− p)i

)
,∀i = 1, ..., N.

Since the objective function and constraint function
are linear functions representing lines in R2, we call the
objective function and constraint function as the objective
line and constraint line respectively. Note that the normal
vector of the objective line is [1, Nm]T and the normal
vector of the constraint line i is [1, i]T , where the notation
a = [a1, a2] represents a vector with the first and second
components being a1 and a2, respectively, and aT denotes
the transpose of the vector a. If 0 ≤ Nm ≤ 1, by
the optimality condition [1], the optimal objective line
should pass the point (0, pN ), and thus the maximum
achievable rate is 0 + p

NNm = mp; if i ≤ Nm ≤ i + 1
(i = 1, ..., N − 1), the optimal objective line should pass
the intersection point of two constraint lines µ1 + µ2i =
1
N

(
1− (1− p)i

)
and µ1 + µ2(i + 1) = 1

N

(
1− (1− p)i+1

)
,

which is
(

1−(1+ip)(1−p)i
N , p(1−p)

i

N

)
, and hence the max-

imum achievable rate is 1−(1+ip)(1−p)i
N + p(1−p)i

N Nm =
1
N +

(
m− i

N

)
p(1−p)i− 1

N (1−p)i. In our technical report
[9], we illustrate this process when N = 3.
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Fig. 1: Maximum rate under different number of users

Figure 1 illustrates λmax(m) as a function of the al-
lowable probing rate m for a range of the number of
users, N , when p = 0.8. An interesting observation is that
when the number of users increases a small probing rate
appears enough to achieve almost the same maximum
achievable rate as the case when all users always probe
their channels, i.e., when m = 1. This observation can be
accurately captured in the following corollary.

Corollary 1: The maximum achievable throughput
λmax(m) approaches the upper limit λmax(1)
asymptotically as N increases as long as the scaled
probing rate mN diverges, however slowly. More
explicitly, we have

lim
N→∞

λmax( bh(N)c
N )

λmax(1)
= 1, (9)

where h is any non-negative and non-decreasing function
with h(x) ≤ x, ∀x, and lim

x→∞
h(x) = ∞, and byc is the

maximum integer that cannot be greater than y.
Proof: From Proposition 1, we get λmax( bh(N)c

N ) =
1−(1−p)bh(N)c

N . Then, we have

lim
N→∞

λmax( bh(N)c
N )

λmax(1)
= lim
N→∞

1− (1− p)bh(N)c

1− (1− p)N
= 1.

Note that h(x) can be log x or log log x. Thus, when the
number of users is large, the probing rate bh(N)c

N , however
small, is enough to guarantee the good performance. In
practice, we are interested in the design of a distributed
probing and scheduling algorithm that can support the
maximum achievable rate. One may be inclined to sug-
gest a natural Randomized Probing (RP) policy whereby
each user independently probes the channel with proba-
bility m. From [23], the maximum achievable throughput
of RP policy is given by 1

N

(
1− (1−mp)N

)
.
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Fig. 2: The throughput performance of RP policy

Figure 2 compares this rate to the maximum achievable
rate by any policy to demonstrate that the RP policy falls
short of reaching the maximum achievable rate, especially
for small allowable probing rates. This motivates us in the
rest of the work to develop more sophisticated algorithms
that can support the maximum achievable rates.

4 OPTIMAL PROBING AND TRANSMISSION
In this section, we first study the capacity region given the
allowable probing rate in a general fading channel. Then,
we propose a centralized joint probing and transmission
algorithm that supports any throughput in it.

4.1 Characterization of the Capacity Region
The next lemma gives the capacity region Λ(m,C) under
the allowable probing rate vector m = (mi)

N
i=1 in a

general fading channel C.
Lemma 1: The capacity region Λ(m,C) is a set of arrival

rate vectors λ = (λi)
N
i=1 such that there exist non-negative

numbers α(x) and β(x, c; s) satisfying

λi ≤
∑
x∈X

α(x)
∑
c∈C

Pr{C[t] = c}
∑
s∈S

β(x, c; s)xicisi,∀i,

(10)
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∑
s∈S

β(x, c; s) = 1,∀x, c, (11)∑
x∈X

α(x) = 1, (12)∑
x∈X

α(x)xi ≤ mi,∀i, (13)

where α(x) and β(x, c; s) denote the probability that
selects the probing schedule x and the feasible schedule
s given the probing schedule x and channel state c,
respectively.

Proof: The proof is along the lines of [16]. The details
can be found in our technical report [9].

In (10), the right-hand-side (RHS) is the total average
service provided for each user and the left-hand-side
(LHS) is just the average arrival rate. Thus, to stabilize
the data queue, (10) should be satisfied. In (13), the LHS
is the average probing rate for each user and the RHS
is its allowable probing rate. To meet the constraint of
average probing rates, (13) should be satisfied.

4.2 Optimal Joint Probing and Transmission

To obtain the optimal centralized joint probing and trans-
mission algorithm, we use the standard technique in [14]
to introduce and guarantee stability of a virtual queue
for each user that conveniently measures the degree of
violation of the average probing constraint. Specifically,
we let Ui[t] denote the virtual queue length for user i at
the beginning of slot t. The number of packets entering
the virtual queue i at slot t is just Xi[t]. We use Ii[t] to
denote the service for virtual queue i at slot t that are
i.i.d. over time with E[Ii[t]] = mi, and E[I2i [t]] ≤ Imax for
some Imax <∞. Then, the evolution of the virtual queue
i is as follows:

Ui[t+ 1] = (Ui[t] +Xi[t]− Ii[t])+,∀i. (14)

We say that virtual queue i is mean rate stable if it
satisfies limT→∞

E[Ui[T ]]
T = 0. If the virtual queue i is mean

rate stable, then, by using Theorem 2.5 in [14], the average
probing rate constraint of user i is automatically satisfied.
Thus, we aim to design a joint probing and transmission
policy that provides strong stability for data queues and
mean rate stability for virtual queues under any arrival
rate vector strictly within the capacity region Λ(m,C).

Joint Probing and Transmission (JPT) Algorithm:

In each slot t, given (Q[t],U[t]), perform:
(1) Probing Decision: select the probing vector X∗[t] as

X∗[t] ∈ argmax
X

(
E
[
max

i
Qi[t]XiCi[t]

]
−

N∑
i=1

Ui[t]Xi

)
, (15)

(2) Transmission Scheduling Decision: After the channel
states of the selected users are probed, schedule the

transmission of user i∗[t] that satisfies

i∗[t] ∈ arg max
i

Qi[t]X
∗
i [t]Ci[t]. (16)

Remark: Since at most one user can be scheduled at each
time slot, we can also interpret i∗ as the index such that
S∗i∗ [t] = 1, where

S∗[t] ∈ arg max
S∈S

N∑
i=1

Qi[t]X
∗
i [t]Ci[t]Si[t].

In the JPT algorithm, we first need to solve the opti-
mization problem (15) to get the optimal probing sched-
ule X∗[t] in the probing stage at slot t. Then, we need to
solve the optimization problem (16) to get the optimal
transmission schedule in the transmission stage given
the optimal probing schedule X∗[t] and the observed
channel states. Next, we will show that the JPT algorithm
is optimal in the sense that it can stabilize the system and
the average probing rate of each user is no greater than its
allowable probing rate for any arrival rate vector strictly
within the capacity region. Let Int(R) denote the set of
interior points of the region R.

Proposition 2: The JPT algorithm is optimal, i.e., for any
arrival rate λ ∈ Int(Λ(m,C)), the JPT algorithm stabilizes
the system subject to the average probing rate constraints.

Proof: Consider the Lyapunov function L[t] ,
1
2

∑N
i=1

(
Q2
i [t] + U2

i [t]
)
. It is shown in our technical report

[9] that there exist ε > 0 and Bmax <∞ such that

∆L(Q,U) ,E[L[t+ 1]− L[t]|Q[t] = Q,U[t] = U]

≤− ε
N∑
i=1

Qi +Bmax. (17)

By using Theorem 4.1 in [14], all data queues are strongly
stable and all virtual queues are mean rate stable.

Even though the JPT algorithm is optimal, it cannot
directly be applied in practice due to the complexity of
computing an optimal probing schedule and the need of
centralized coordination. In [10], the authors proposed
a distributed FCSMA algorithm over a wireless fading
channel in a fully-connected network topology. We can
use a similar technique as in [10] to solve transmis-
sion scheduling component (16) of the JPT algorithm
distributively if we know the optimal probing schedule.
However, how to reduce the complexity of computing
an efficient probing schedule and implement it in a
distributed way still remains an open question. Next,
we develop a sequential greedy algorithm that is well-
suited for distributed computation of (15) and analyze
its performance. From now on, we always use the well-
known MWS algorithm or its distributed variants (e.g.,
the FCSMA algorithm) in the transmission stage.
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5 SEQUENTIAL GREEDY PROBING ALGO-
RITHM AND ANALYSIS

In this section, we propose a sequential greedy algorithm
for the probing component of the JPT algorithm, which
can be implemented distributively as we will explain
in Section 7. Then, we show that it can get an optimal
probing schedule in a symmetric and independent ON-
OFF fading channel.

5.1 A Sequential Greedy Probing Algorithm

We need to establish some new notations to introduce
our proposed algorithm. For any non-empty set E ⊆ N ,
{1, 2, · · · , N}, we define the function f(E, e) as follows:

f(E, e) , E[max
i∈E

min{QiCi, QeCe}], (18)

where e /∈ E. Here, it is worth noting that, by using
the maximum-minimums identity [20], f(E, e) can be
computed recursively.

Also, let φi , E[QiCi] − Ui,∀i ∈ N, and consider a set
F ⊆ N of probing users and r ∈ N \ F. Then, we have
the following key relationship:

E
[

max
i∈F

⋃
{r}

QiCi

]
−

∑
i∈F

⋃
{r}

Ui

=

(
E[max

i∈F
QiCi]−

∑
i∈F

Ui

)
+ φr − f(F, r). (19)

Indeed, according to the maximum-minimums identity,
we have

max
i∈F

⋃
{r}

QiCi = max{max
i∈F

QiCi, QrCr}

= max
i∈F

QiCi +QrCr −min{max
i∈F

QiCi, QrCr}

= max
i∈F

QiCi +QrCr −max
i∈F

min{QiCi, QrCr}. (20)

By taking expectation and subtracting the term∑
i∈F

⋃
{r} Ui on both sides of (20), we get (19).

Based on the iterative equation (19), we can define a
directed graph G, where each probing schedule X denotes
a node with an associated value of E[maxi∈XQiCi] −∑
i∈X Ui. Thus, X also represents the collection of all

nodes. Since each node is a binary vector of N dimen-
sions, we have |X | = 2N , where |·| denotes the cardinality
of the set. For two nodes X1 and X2, there is a directed
link from node X1 to node X2 if and only if X1 is a subset
of X2 with the cardinality |X2| − 1. Let q = X2 \X1. We
define the weight of a link from node X1 to node X2 as
φq − f(X1, q). Let E be the collection of edges, and let
node X0 denote the all-zero probing schedule where no
user probes the channel, and thus the value of node X0

is 0. We say node X is in level |X| in the directed graph
G = (X , E). Figure 3 shows the directed graph for N = 3.

Given the directed graph G, the optimization problem
(15) is equivalent to finding a path with the largest total

(1,0,0) (0,1,0) (0,0,1)

(1,1,0) (1,0,1) (0,1,1)

(0,0,0)

(1,1,1)

1 2
3

2 f({1},2)
3 f({1},3)

1 f({2},1)

3 f({2},3)

1 f({3},1)

2 f({3},2)

f({1,2},3)

2 f({1,3},2)

1 f({2,3},1)

Fig. 3: The directed graph G = (X , E) when N = 3

weight emanating from node X0. By noting that the
directed graph is acyclic, if we negate the weight of
edges, the optimization problem (15) is also equivalent
to finding a shortest path from node X0 in the directed
graph, which can be solved by Bellman-Ford algorithm
[3]. However, Bellman-Ford algorithm always goes back
and forth to find a shortest path, which is not allowed in
the probing problem since once a node probes its channel
its energy is consumed. More importantly, the complexity
of Bellman-Ford algorithm is O(|X ||E|) and thus increases
exponentially with the number of users. Fortunately, the
weights of edges are highly correlated with each other
through the queue lengths. Thus, it is possible to design
a sequential greedy probing algorithm as follows that can
still yield good performance.

We first divide each time slot into a control slot and a
data slot. The purpose of the control slot is to determine
the probing schedule to get the channel state used for
data transmission in the data slot. To achieve this goal,
we further subdivide the control slot into N mini-slots.

Sequential Greedy Probing (SGP) Algorithm:
(1) In the first mini-slot, select user i1 such that i1 ∈
arg maxi∈I φi, where I = {i ∈ N : φi > 0} and we recall
that φi , E[QiCi]−Ui,∀i ∈ N. User i1 probes the channel
while also announcing its queue-length. If no users probe
the channel, then all users keep silent in the rest of current
slot and restarts in the next time slot.
(2) In the kth (1 < k ≤ N ) mini-slot, select user ik such
that

ik ∈ arg max
i∈I\{i1,...,ik−1}

(φi − f ({i1, ..., ik−1}, i)) . (21)

If φik > f ({i1, ..., ik−1}, ik), then user ik probes the chan-
nel while also announcing its queue length. Otherwise, all
users stop probing and all probing users with non-zero
channel states are candidates for transmission scheduling
as dictated in (16).

Remark: In the SGP algorithm, we require that each
probing user announces its queue-length information,
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which may cause the heavy message exchange overhead.
Motivated by [24] that utilizes the delayed queue length
information to provide the fair resource allocation, we
may only allow the transmitting user to announce its
queue-length information, and all users utilize this de-
layed queue length information to calculate the probing
schedule. Our simulation results indicate that this mod-
ified version of the SGP algorithm does not degrade the
system performance.

5.2 Optimality of the SGP Algorithm
In this subsection, we will show that the SGP algorithm
can achieve the optimal value of the maximization prob-
lem (15) for symmetric and independent ON-OFF fading
channels. The next lemma and subsequent corollaries
pave the path to this result by establishing a key property
of the directed graph G.

Lemma 2: For symmetric and independent ON-OFF
fading channels with an ON probability p, if node A∗

is the unique node with maximum value in level |A∗|
in graph G, then all nodes with maximum value in level
|A∗| − 1 belong to a subset of nodes A∗, where a subset
of nodes X means a set of nodes with edge ending
with node X, and the value of node X is defined as
E[maxi∈XQiCi]−

∑
i∈X Ui.

Proof: Let A be the class of the nodes in level |A∗|; D
be the class of nodes in level |A∗| − 1; and B be the class
of nodes that are a subset of node A∗ in level |A∗| − 1.
Thus, we need to show that ∃B∗ ∈ B such that

B∗ ∈ arg max
D∈D

(
E[max

i∈D
QiCi]−

∑
i∈D

Ui

)
. (22)

We prove it by contradiction. Suppose there exists a D∗ ∈
D \ B such that

D∗ ∈ arg max
D∈D

(
E[max

i∈D
QiCi]−

∑
i∈D

Ui

)
. (23)

Let d ∈ arg mini∈A∗\D∗ Qi and B , A∗ \ {d}. Since A∗ is
the unique node with the maximum value in level |A∗|,
node D∗

⋃
{d} ∈ A does not have the maximum value in

level |A∗| and thus we have

E[ max
i∈D∗

⋃
{d}

QiCi]−
∑

i∈D∗
⋃
{d}

Ui < E[max
i∈A∗

QiCi]−
∑
i∈A∗

Ui.

According to the iterative equation (19), we have

E[max
i∈D∗

QiCi]−
∑
i∈D∗

Ui + φd − f(D∗, d)

< E[max
i∈B

QiCi]−
∑
i∈B

Ui + φd − f(B, d). (24)

Since D∗ is one of the optimal solutions to (23), we have

E[max
i∈D∗

QiCi]−
∑
i∈D∗

Ui ≥ E[max
i∈B

QiCi]−
∑
i∈B

Ui. (25)

Hence, to let (24) hold, we should have f(D∗, d) >
f(B, d). To arrive at a contradiction, we need to show
that f(D∗, d) ≤ f(B, d), which is not at all obvious and
requires a challenging investigation.

To prove f(D∗, d) ≤ f(B, d), we need to establish
a key lemma and its corollary, which are shown in
our technical report [9]. Consider a set E of users and
e /∈ E over a symmetric ON-OFF fading channel with
Pr{Ci = 1} = p,∀i. We assume that there are K users in E
whose queue lengths are less than or equal to Qe. Without
loss of generality, we assume that Q1 ≤ Q2 ≤ ... ≤ QK ≤
Qe ≤ QK+1 ≤ ... ≤ Q|E|. We denote E1 , {1, 2, ...,K} and
E2 , {K+1,K+2, ..., |E|}. Let H be the event that at least
one users in E2 have the available channel. Let Ii be the
event that Ci = 1, Cj = 0 for K ≥ j > i, i = 1, 2, ...,K − 1,
and IK be the event that CK = 1. Then, we have the
following lemma.

Lemma 3:

max
l∈E

min{QlCl, Qe} =

 Qe , if H happens;
Qi , if Hc

⋂
Ii happens,

for i = 1, 2, ...,K.

Corollary 2:

f(E, e) =

K∑
k=1

p2(1− p)|E|−kQk + p(1− (1− p)|E|−K)Qe. (26)

We are ready to show f(D∗, d) ≤ f(B, d).
(1) If A∗

⋂
D∗ = ∅ or Qd ≤ mini∈BQi, then, by

Corollary 2, we have

f(B, d) = p
(

1− (1− p)|B|
)
Qd. (27)

Without loss of generality, we assume there are K1 users
in D∗ whose queue lengths are less than or equal to Qd,
that is, Qj1 ≤ Qj2 ≤ ... ≤ QjK1

≤ Qd ≤ QjK1+1
≤ Qj|D∗| .

Then, by Corollary 2, we have

f(D∗, d) =

K1∑
k=1

p2(1− p)|D
∗|−kQjk + p

(
1− (1− p)|D

∗|−K1

)
Qd.

Hence, by noting that |D∗| = |B|, we have

f(D∗, d)− f(B, d)

=

K1∑
k=1

p2(1− p)|D
∗|−kQjk + p

(
(1− p)|D

∗| − (1− p)|D
∗|−K1

)
Qd.

Since

−
K1∑
k=1

p2(1− p)|D
∗|−k = p

(
(1− p)|D

∗| − (1− p)|D
∗|−K1

)
,

we have

f(D∗, d)− f(B, d)

=

K1∑
k=1

p2(1− p)|D
∗|−k (Qjk −Qd) ≤ 0. (28)
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Thus, we have f(D∗, d) ≤ f(B, d).
(2) If A∗

⋂
D∗ 6= ∅ and there are some users in A∗

⋂
D∗

whose queue lengths are less than Qd, let T , A∗
⋂
D∗,

B′ , B \ T and D′ , D∗ \ T. Figure 4 characterizes the
relationship among all these sets.

T

D’

B’

T

d

B

D*

A*

Fig. 4: The relations among all sets
We define

g(E,F, e) ,

− E
[
min

(
max
l∈E

min{QlCl, QeCe},max
l∈F

min{QlCl, QeCe}
)]

,

where E
⋂
F = ∅ and e /∈ E, e /∈ F. Then, we have

f(B, d) = E
[
max
l∈B

min{QlCl, QdCd}
]

=E
[
max

(
max
l∈B′

min{QlCl, QdCd},max
l∈T

min{QlCl, QdCd}
)]

=E
[
max
l∈B′

min{QlCl, QdCd}
]

+ E
[
max
l∈T

min{QlCl, QdCd}
]

−E
[
min

(
max
l∈B′

min{QlCl, QdCd},max
l∈T

min{QlCl, QdCd}
)]

=f(B′, d) + f(T, d) + g(B′,T, d), (29)

where we use the maximum-minimums identity. Simi-
larly, we have

f(D∗, d) = f(D′, d) + f(T, d) + g(D′,T, d). (30)

Thus, to show f(D∗, d) ≤ f(B, d), we only need to show

f(D′, d) + g(D′,T, d) ≤ f(B′, d) + g(B′,T, d). (31)

Note that Qd ≤ mini∈B′ Qi. Without loss of generality,
we assume that K2 users in D′ whose queue lengths
are less than or equal to Qd, that is Qj1 ≤ Qj2 ≤
... ≤ QjK2

≤ Qd ≤ QjK2+1
≤ ... ≤ Qj|D′| . We denote

D′1 , {j1, j2, ..., jK2
} and D′2 , {jK2+1, jK2+2, ..., j|D′|}.

By using similar technique in deriving equation (28), we
have

f(D′, d)− f(B′, d) =

K2∑
k=1

p2(1− p)|D
′|−k(Qjk −Qd). (32)

Next, let’s focus on the term g(B′,T, d).

g(B′,T, d)

=− E
[
min

(
max
l∈B′

min{QlCl, QdCd},max
l∈T

min{QlCl, QdCd}
)]

=− pE
[
min

(
max
l∈B′

min{QlCl, Qd},max
l∈T

min{QlCl, Qd}
)]

.

Let J be the event that at least one user in B′ has the
available channel. Then, we have

max
l∈B′

min{QlCl, Qd} =

{
Qd , if event J happens;

0 , otherwise.

Thus, we get

min

(
max
l∈B′

min{QlCl, Qd},max
l∈T

min{QlCl, Qd}
)

=

{
min (Qd,maxl∈T min{QlCl, Qd}) , if event J happens;

0 , otherwise

=

{
maxl∈T min{QlCl, Qd} , if event J happens;

0 , otherwise.

Since Pr{J } = (1− (1− p)|B′|), we have

g(B′,T, d) =− p
(

1− (1− p)|B
′|
)
E[max

l∈T
min{QlCl, Qd}]

=
(

(1− p)|B
′| − 1

)
f(T, d). (33)

Let’s consider the term g(D′,T, d).

g(D′,T, d)

=− E
[
min

(
max
l∈D′

min{QlCl, QdCd},max
l∈T

min{QlCl, QdCd}
)]

=− pE
[
min

(
max
l∈D′

min{QlCl, Qd},max
l∈T

min{QlCl, Qd}
)]

.

Let K be the event that at least one user in D′2 has the
available channel. Let Lk be the event that Cjk = 1, Cji =
0 for k < i ≤ K2, k = 1, 2, ...,K2 and LK2 be the event
that CjK2

= 1. Then, by using Lemma 3, we have

max
l∈D′

min{QlCl, Qd} =

 Qd , if event K happens;
Qjk , if event Kc

⋂
Lk happens,

for k = 1, 2., , , .,K2.

Thus, we get

min

(
max
l∈D′

min{QlCl, Qd},max
l∈T

min{QlCl, Qd}
)

=

 min (Qd,maxl∈T min{QlCl, Qd}) , if K happens;
min (Qjk ,maxl∈T min{QlCl, Qd}) , if Kc

⋂
Lk happens,

for k = 1, 2., , , .,K2

=

 maxl∈T min{QlCl, Qd} , if K happens;
maxl∈T min{QlCl, Qjk} , if Kc

⋂
Lk happens,

for k = 1, 2., , , .,K2.

Hence, we have

g(D′,T, d)

=− pE
[
max
l∈T

min{QlCl, Qd}
]

Pr{K}

−
K2∑
k=1

pE
[
max
l∈T

min{QlCl, Qjk}
]

Pr
{
Kc
⋂
Lk
}

=− Pr{K}f(T, d)−
K2∑
k=1

Pr
{
Kc
⋂
Lk
}
f(T, jk). (34)
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Note that Pr{K} = 1− (1− p)|D
′
|−K2 and Pr{Kc

⋂
Lk} =

p(1− p)|D′|−k. Thus, we have

g(D′,T, d)

=

K2∑
k=1

(−p)(1− p)|D
′|−kf(T, jk) +

(
(1− p)|D

′|−K2 − 1
)
f(T, d).

Note that |B′| = |D′|. Thus, we have

g(D′,T, d)− g(B′,T, d)

=

K2∑
k=1

(−p)(1− p)|D
′|−kf(T, jk)

+
(

(1− p)|D
′|−K2 − (1− p)|D

′|
)
f(T, d). (35)

Note that (1−p)|D′|−K2−(1−p)|D′| = p
∑K2

k=1(1−p)|D′|−k.
Thus, (35) becomes

g(D′,T, d)− g(B′,T, d)

=

K2∑
k=1

(−p)(1− p)|D
′|−k (f(T, jk)− f(T, d)) . (36)

Consider the term f(T, jk) − f(T, d). Without loss of
generality, we assume nk users in T whose queue lengths
are less than or equal to Qjk and nd users whose queue
lengths are less than or equal to Qd, that is, Qi1 ≤ Qi2 ≤
... ≤ Qink

≤ Qjk ≤ Qink+1 ≤ ... ≤ Qind
≤ Qd ≤ Qind+1 ≤

Qi|T| . Note that nk ≤ nd. Thus, by using Corollary 2, we
have

f(T, jk)− f(T, d)

=

nk∑
l=1

p2(1− p)|T|−lQil + p
(

1− (1− p)|T|−nk

)
Qjk

−
nd∑
l=1

p2(1− p)|T|−lQil − p
(

1− (1− p)|T|−nd

)
Qd

=p
(

1− (1− p)|T|−nk

)
Qjk − p

(
1− (1− p)|T|−nd

)
Qd

−
nd∑

l=nk+1

p2(1− p)|T|−lQil

≥p
(

1− (1− p)|T|−nk

)
Qjk − p

(
1− (1− p)|T|−nd

)
Qd

−Qd
nd∑

l=nk+1

p2(1− p)|T|−l

=p
(

1− (1− p)|T|−nk

)
Qjk − p

(
1− (1− p)|T|−nd

)
Qd

− p
(

(1− p)|T|−nd − (1− p)|T|−nk

)
Qd

=p
(

1− (1− p)|T|−nk

)
(Qjk −Qd) . (37)

Thus, we have

g(D′,T, d)− g(B′,T, d)

=

K2∑
k=1

(−p)(1− p)|D
′|−k (f(T, jk)− f(T, d))

≤
K2∑
k=1

p2(1− p)|D
′|−k(Qjk −Qd)

(
(1− p)|T|−nk − 1

)
=

K2∑
k=1

(Qjk −Qd)p2
(

(1− p)|D
′|+|T|−nk−k − (1− p)|D

′|−k
)
.

Hence, we have

f(D∗, d)− f(B, d)

≤
K2∑
k=1

(Qjk −Qd)p2(1− p)|D
′|−k

+

K2∑
k=1

(Qjk −Qd)p2
(

(1− p)|D
′|+|T|−nk−k − (1− p)|D

′|−k
)

=

K2∑
k=1

(Qjk −Qd)p2(1− p)|D
′|+|T|−nk−k ≤ 0. (38)

Thus, we have the desired result.
Corollary 3: For symmetric and independent ON-OFF

fading channels, let A∗ be one of nodes with maximum
value in level |A∗| in the directed graph G, then the node
with maximum value in level |A∗| − 1 should be in the
union of subsets of nodes with maximum value in level
|A∗|.

Proof: The proof is exactly the same as in the proof for
Lemma 2 except that B denotes the class of nodes in level
|A∗| − 1 that are the subset of all nodes with maximum
value in level |A∗|.

Corollary 4: For symmetric and independent ON-OFF
fading channels, if node A∗ has the maximum value in
level |A∗|, then there exists a node with maximum value
in level |A∗|+ 1 that is the superset of node A∗.

Proof: If there is only one node with maximum value
in level |A∗| + 1, then the result directly follows from
Lemma 2. If there are multiple nodes with maximum
value in level |A∗| + 1, then the result follows from
Corollary 3.

It is important to note that Lemma 2 and its corollaries
hold regardless of whether the edge weights are positive
or negative valued. This property will be crucial in the
proof of the following main result of this subsection.

Proposition 3: The SGP algorithm can achieve the opti-
mal value of the maximization problem (15) in symmetric
and independent ON-OFF fading channels.

Proof: If there are multiple nodes with optimal value
in the directed graph G, then we just consider the nodes
with optimal value in the lowest level, say level K. Thus,
for any node with the level lower than K, its value is
strictly less than that of the nodes with optimal value in
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level K. Next, we first assume that the SGP algorithm
can continue to work even when it picks an edge with
a non-positive weight. Under this assumption, we can
show that the SGP algorithm sequentially selects users
i1, i2, ..., iK to get to the node A∗ = {i1, i2, ..., iK}, which
has the optimal value in the directed graph G. Finally,
we will show that all edges in a path leading to node
A∗ have a strictly positive weight and the SGP algorithm
will stop at node A∗.

Note that the proposed SGP algorithm first picks the
user i1, where the node {i1} has the maximum value in
level 1. By corollary 4, there exists a node with maximum
value in level 2 that is a superset of node {i1}. Since the
SGP algorithm picks an edge with maximum weight φi2−
f({i1}, i2), the node {i1, i2} has the maximum value in
level 2. By using similar argument, we can see that the
SGP algorithm sequentially selects users i1, i2, ..., iK to get
to the node A∗ in level K, where the node {i1, ..., ij} has
the maximum value in level j for each j = 1, ...,K. Since
node A∗ has the maximum value in level K and the node
with optimal value is in level K, node A∗ has the optimal
value in the directed graph G.

Let G(A∗) be the subgraph of G that includes all subsets
of the node A∗ and their corresponding edges. Since node
A∗ has the optimal value, we have φi − f(A∗ \ {i}, i) >
0,∀i ∈ A∗. Indeed, if φk − f(A∗ \ {k}, k) ≤ 0 for some
k ∈ A∗, then according to the iterative equation (19), we
have

E[max
j∈A∗

QjCj ]−
∑
j∈A∗

Uj ≤ E[ max
j∈A∗\{k}

QjCj ]−
∑

j∈A∗\{k}

Uj ,

which contradicts that the value of a node with the level
less than K is strictly smaller than that of node A∗.
According to the definition of the function f (see equation
(18)), it is easy to see that if E ⊆ F, then f(E, e) ≤ f(F, e),
where e /∈ F. Thus, for any given i ∈ A∗ and any
H ⊆ A∗ \ {i}, we have

φi − f(H, i) ≥ φi − f(A∗ \ {i}, i) > 0. (39)

Thus, all edges in the subgraph G(A∗) have the strictly
positive weight. Hence, there always exists an edge with
strictly positive weight from node {i1, ..., ik} in level k to
node {i1, ..., ik, ik+1} in level k + 1 (k = 1, 2, ...,K − 1).

In addition, there is no edge with strictly positive
weight from node A∗ in level K. Indeed, if there is an
edge with strictly positive weight from node A∗ in level
K to a node in level K + 1, say node J, then node J
should have the value larger than the optimal value,
which contradicts that node A∗ has the optimal value
in the directed graph G. Thus, when the SGP algorithm
reaches node A∗, it stops.

In a general wireless fading channel, the SGP algo-
rithm cannot always find the optimal value of (15) as
in the above symmetric setup, and thus its performance
is unclear. Instead, we consider a Modified SGP (MSGP)

algorithm in the next subsection to show that the MSGP
algorithm combined with MWS algorithm in the trans-
mission stage can at least achieve a constant efficiency
ratio.

6 THE MODIFIED SGP POLICY AND ANALYSIS

In this section, we consider the more general fading
channels and introduce a slightly modified version of
the SGP algorithm studied in the previous section. Then,
we explicitly characterize the efficiency ratio that this
modified algorithm is guaranteed to achieve as a function
of the channel statistics and rates.

We assume that the general fading channels satisfy the
following assumption.

Assumption 1: The general fading channels are i.i.d.
over time and the events that the channels have zero rate
are independent, that is,

Pr{Ci[t] = 0,∀i ∈ A} =
∏
i∈A

Pr{Ci[t] = 0},∀A ⊆ N. (40)

Remark: If fading channels are independently over users,
then condition (40) trivially holds.

To introduce the proposed algorithm, we first let pmin ,
1 −maxj pj0 and pmax , 1 −minj pj0 to denote the non-
zero rate probability of the worst and the best channel,
respectively. Then, we define two identical and indepen-
dent ON-OFF fading channels Cmin[t] = (Cmin

i [t])Ni=1 and
Cmax[t] = (Cmax

i [t])Ni=1 satisfying:

Pr{Cmin
i [t] = 0} = 1− pmin, Pr{Cmin

i [t] = c1} = pmin, ∀i;

Pr{Cmax
i [t] = 0} = 1−pmax, Pr{Cmax

i [t] = cM} = pmax,∀i,

where we recall that c1 and cM are, respectively, the
smallest and largest transmission rates for any user.

Modified SGP (MSGP) Algorithm:
MSGP algorithm operates exactly the same as the SGP

algorithm, except that steps are computed assuming the
identical and independent ON-OFF fading channels Cmin.

Remark: The MSGP algorithm differs from the SGP algo-
rithm only in the assumed channel statistics and rates.

Proposition 4: The MSGP algorithm combined with the
MWS algorithm in the transmission stage (see equation
(16)) can at least achieve an efficiency ratio ρ , pmin

pmax

c1
cM

in general fading channels under Assumption 1.
Proof: The proof starts with showing that the capacity

region over general fading channels is lower-bounded
and upper-bounded by that over symmetric ON-OFF
fading channels Cmin and Cmax, respectively. Then, we
show that for any arrival rate vector λ ∈ Λ(m,Cmax),
we have ρλ ∈ Λ(m,Cmin). Finally, we show that the
MSGP algorithm combined with the MWS algorithm
can support any arrival rate vector within the region
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Λ(m,Cmin), and thus its efficiency ratio is at least ρ.
Please see our technical report [9] for more details.
Remarks: (1) In symmetric and independent ON-OFF
channels, the MSGP algorithm can achieve the full ca-
pacity region, which matches the result in Proposition 3.

(2) Even though the efficiency ratio is low in highly
asymmetric fading channels, the simulation results show
that the MSGP algorithm is throughput-optimal in such
a scenario.

7 DISTRIBUTED IMPLEMENTATION

Here, we expand on the distributed implementation of
the greedy sequential algorithms developed in the pre-
vious two sections by using the FCSMA technique de-
veloped in [10]. Since the MSGP algorithm has the same
performance as the SGP Algorithm in the special case of
symmetric ON-OFF channels, we focus on the distributed
implementation of the MSGP Algorithm in the control
slot within one time slot.

Distributed MSGP (DMSGP) Algorithm:
In the first mini-slot, each user i with φi > 0 inde-

pendently generates an exponentially distributed random
variable with rate exp(Gφi) (G > 0), and starts transmit-
ting a small probing packet after this random duration
unless it senses another transmission before. The user that
grabs the channel transmits its probing packet until the
end of the mini-slot. After probing, all other users know
the queue length of the current probing user. If no users
transmit the probing packet during this mini-slot, then all
users keep silent in the rest of current slot and restarts in
the next time slot.

In the kth (1 < k ≤ N ) mini-slot, the remaining non-
probing user i with φi − f ({i1, ..., ik−1}, i) > 0 generates
an exponential distributed random variable with rate
exp(G(φi−f ({i1, ..., ik−1}, i))) and uses the same produce
as in the first mini-slot to probe the channel. If no users
probe the channel in the current mini-slot or the control
slot is over, then all the probing users with the available
channel state start to contend for data transmission.

Remark: Here, we assume that the sensing is instantaneous
and the backoff time is continuous, which excludes the
possible collisions. Yet, in practice, the sensing time is
non-zero and the backoff time is typically a multiple
of time units, where a time unit is equal to the time
required to detect the transmission from other links. Thus,
we should use the discrete-time version of the FCSMA
algorithm, whose performance is close to its continuous
counterpart as shown in [10].

The above procedure leads to a probing schedule
XDMSGP by the end of the control slot, where each
selected probing user i knows its channel state Ci. Then,
to determine the one that transmits the data packet each
probing user i distributively runs the FCSMA algorithm

as described in [10] with parameter exp(QiCi). This is
known to solve the transmission decision (16) if the
queue-lengths are large enough. In order to establish the
performance of such a distributed probing and transmis-
sion algorithm, we need an additional assumption.

Assumption 2: The channel rates and their correspond-
ing probability for each user, i.e., cj ,∀j = 1, ...,M and
pij ,∀i = 1, ..., N, j = 0, ...,M , are rational numbers.

Proposition 5: For any ζ > 0 and arrival rate vector λ
satisfying λ+ ζ ∈ ρInt(Λ(m,C)), with the efficiency ratio
ρ given in Proposition 4, there exists a design parameter
G > 0 such that the DMSGP algorithm, combined with
the FCSMA algorithm in the transmission stage, can
support λ subject to the given probing rate constraints
m under Assumptions 1 and 2.

Proof: Assume that the node with the optimal value is
in level K. Given any τ > 0 and δ > 0. Let WDMSGP

k and
WMSGP
k be the weight of an edge selected by DMSGP

algorithm and MSGP algorithm from level k − 1 to level
k respectively. In our technical report [9], we show that
all edge weights with strictly positive value are lower
bounded by a strictly positive constant value under As-
sumption 2. Thus, by using similar argument in [10], we
can show that given any τ ′ > 0, ∃Gk > 0 such that for
any G > Gk, we have

Pr{WDMSGP
k > WMSGP

k (1− δ)} > 1− τ ′. (41)

Let WDMSGP =
∑K
k=1W

DMSGP
k and WMSGP =∑K

k=1W
MSGP
k . Thus, for any G ≥ max{G1, G2, ..., GK},

we have

Pr{WDMSGP > WMSGP (1− δ)}
≥Pr{WDMSGP

k > WMSGP
k (1− δ),∀k = 1, ...,K}

>1−Kτ ′, (42)

where we use the fact [4] that given any two events E
and F such that Pr{E} > 1− ε1 and Pr{F} > 1− ε2, we
have Pr{E

⋂
F} > 1−ε1−ε2. We can pick τ ′ small enough

such that 1−Kτ ′ > 1− τ . Hence, we have

Pr{WDMSGP > WMSGP (1− δ)} > 1− τ. (43)

Then, we have

E[WDMSGP |Q[t],U[t]] ≥ (1− δ)(1− τ)E[WMSGP |Q[t],U[t]].

By choosing the same Lyapunov function as in the proof
for Proposition 2, the remaining argument follows the
similar reasoning as that for Theorem 3 in [10].

8 SIMULATION RESULTS

In this section, we first study the impact of iterative steps
and using the delayed queue length information (i.e., only
the transmitting user broadcasts its queue length infor-
mation) on the performance of the SGP algorithm. Then,
we compare the performance between the SGP algorithm
and the MSGP algorithm in asymmetric ON-OFF fading
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channels and symmetric general fading channels. In the
simulation, we consider three different fading models
that are i.i.d. over time and independently distributed
over users: symmetric and independent ON-OFF chan-
nels with probability p = 0.8 that the channel is available
in each time slot; asymmetric ON-OFF channels that one
user has channel availability probability of 0.1 and all
others have probability of 0.9 and symmetric general
fading channels available to each user with rates 0, 1, 10
and corresponding probability 0.1, 0.2, 0.7. All users have
the same arrival rate and require that the allowable
probing rate cannot exceed m = 0.4. Without loss of
generality, we use arrival process where the number of
arrivals in each slot follows Bernoulli distribution and
Poisson distribution when we consider ON-OFF fading
channels and general fading channels respectively.

8.1 The Impact of Iterative Steps
In this subsection, we study the impact of iterative steps
on the performance of the SGP algorithm. We consider
N = 20 users over a symmetric and independent ON-OFF
fading channel. Under this setup, we can use Proposition
1 to get the capacity region Λ = {λ : λ < 0.05}. We use
K to denote the maximum allowable number of iterative
steps.
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Fig. 5: Impact of iterative steps

From Figure 5a and 5b, we observe that the SGP
algorithm with unlimited iterative steps can achieve full
capacity. In addition, as K increases, the performance of
the SGP algorithm improves. Especially, we can see that
four iterative steps are enough to reach almost optimal
performance. This implies that while the original algo-
rithm may be defined over more steps, in practice, we
can limit the iterative steps to a small number virtually
without hurting the throughput.

8.2 The Impact of Using Delayed Queue Length
In this subsection, we study the impact of using the
delayed queue length information (i.e., each user only
have the queue length information of the transmitting
user) on the performance of the SGP algorithm. Figure

6a and 6b compare the performance between the SGP
algorithm and the SGP algorithm using the delayed
queue length information in the network of N = 20 users
over symmetric ON-OFF fading channels. We can observe
that using the delayed queue length information does not
affect the system performance of the SGP algorithm. This
promising property allows us to significantly reduce the
overhead of exchanging queue length information under
the SGP algorithm.
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Fig. 6: Impact of using delayed queue length information

8.3 The Performance of Greedy Probing Algorithms
In this subsection, we compare the performance among
the SGP algorithm, the MSGP algorithm and the JPT
algorithm. We consider N = 5 users. Figure 7 and Figure
8 compare the performance among the SGP algorithm,
the MSGP algorithm and the JPT algorithm under an
asymmetric ON-OFF channel and a symmetric general
fading channel, respectively. From Figure 7 and 8, we
can see that these algorithms have almost the same
throughput performance. Noting that the JPT algorithm is
throughput-optimal, both SGP and MSGP algorithm are
probably throughput-optimal in general fading channels.
We will investigate whether these greedy algorithms can
achieve maximum throughput in general setups.

In addition, we can observe from Figure 7 that the
SGP algorithm is insensitive to the channel statistics. Fur-
thermore, from Figure 8, we can observe that the MSGP
algorithm has the smallest average actual queue length
and virtual queue length. Thus, while the throughput
performance of the SGP algorithm is not sensitive to the
channel rates, its delay performance may be significantly
affected by the channel rates.

9 CONCLUSION

In this paper, we considered the distributed channel prob-
ing for opportunistic scheduling under heterogeneous
allowable probing rate constraints. We first analyzed a
basic scenario with symmetric arrivals and uniform al-
lowable probing rate to express the maximum achievable
throughput as a function of the allowable probing rate
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Fig. 7: Impact of asymmetric channel statistics
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Fig. 8: Impact of asymmetric channel rates

in symmetric and independent ON-OFF fading channels.
This result not only indicates that almost the same oppor-
tunistic gains can be achieved with significant reductions
in probing rates when the number of users is relatively
large, but also points out that a simplistic randomized
policy cannot achieve the full opportunistic gains.

Then, we characterized the capacity region under the
heterogeneous probing constraints and provided the cen-
tralized throughput-optimal JPT algorithm. Realizing the
operational difficulty of centralized solution, we put
effort in developing a novel SGP algorithm based on
the maximum-minimums identity, which is easy for dis-
tributed implementation. Also, we showed that the SGP
algorithm is optimal in the crucial scenario of symmetric
and independent ON-OFF fading channels. In the case
of more general fading channels, we analyzed a more
tractable variant of the SGP algorithm to obtain its effi-
cient ratio as an explicit function of the channel statistics
and rates and show that this ratio is tight in the symmetric
and independent ON-OFF fading scenario. Finally, we
discussed the distributed implementation of these greedy
probing algorithms by using the FCSMA technique.
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