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Optimal Scheduling for Unmanned Aerial
Vehicle Networks with Flow-Level Dynamics
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Abstract—Unmanned Aerial Vehicle (UAV) Networks have recently attracted great attention as being able to provide convenient and
fast wireless connections. One central question is how to allocate a limited number of UAVs to provide wireless services across a large
number of regions, where each region has dynamic arriving flows and flows depart from the system once they receive the desired
amount of service (referred to as the flow-level dynamic model). In this paper, we propose a MaxWeight-type scheduling algorithm
taking into account sharp flow-level dynamics that efficiently redirect UAVs across a large number of regions. However, in our
considered model, each flow experiences an independent fading channel and will immediately leave the system once it completes its
service, which makes its evolution quite different from the traditional queueing model for wireless networks. This poses significant
challenges in our performance analysis. Nevertheless, we incorporate sharp flow-dynamic into the Lyapunov-drift analysis framework,
and successfully establish both throughput and heavy-traffic optimality of the proposed algorithm. Extensive simulations are performed
to validate the effectiveness of our proposed algorithm.

Index Terms—Wireless UAV networks, Flow-level dynamics, Scheduling design, Throughput, Mean delay, Heavy-traffic analysis.
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1 INTRODUCTION

R ECENT advances in Unmanned Aerial Vehicles (UAVs)
technologies have demonstrated enormous potential

for the development of airborne communication networks
in both military and civilian domains. UAVs can be de-
ployed to quickly form a mobile network to provide wireless
data connections for users on the ground in situations such
as traffic monitoring, remote sensing, and disaster recovery
[34]. Especially, a flying UAV equipped with an access point
(AP) can provide “connectivity from the sky” [6] for users
that require the access to the backbone/core network, where
UAVs are connected to the core network by means of such as
point-to-point satellite relaying [14] or point-to-multipoint
microwave/mmWave backhauling [4]. This has emerged as
a promising solution to agile cellular/Internet services pro-
visioning in areas of high/urgent network demand without
having to pre-install any wireless access infrastructure [11].

The main advantage of UAV networks is that their
deployment can be agile and re-configurable due to the flex-
ible mobility of UAVs. Recently, the deployment of UAVs
(serving as APs or small cell base stations) has attracted
many research attention to address challenges such as 3-
D deployment [5], spectral efficiency improvement [11],
coverage optimization [22], service time maximization [7],
optimal placement considering energy efficienty [20], and
offloading cellular networks [4], [12], [31]. Besides, UAV
trajectory design considering various communication and
networking constraints is extensively studied [10], [30], [32],
and the resource allocation such as channel assignment and
power control is also considered [24], [33]. In addition, exist-
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ing research has demonstrated the feasibility of UAV-based
small cells [21]. To prolong the service duration or even
provide persistent service during the mission, advanced
charging technologies have been proposed. The state-of-the
art solutions include equipping UAVs with solar panels [2],
charging the battery during night by using a high energy
laser beam [23], and charging the battery by more powerful
fixed-wing UAVs via wireless power transfer [1]. However,
none of the existing works focuses on the design of optimal
scheduling/repositioning algorithms for UAVs in response
to the dynamics of network traffic, where users dynamically
arrive and depart from the network once they receive the
desired amount of service (referred to as flow-level dynamic
model). To this end, in this work, we concentrate on an
important problem of efficiently allocating a limited number
of UAVs to serve dynamic network users across a certain
geographic area.

Scheduling wireless traffic in the presence of flow-level
dynamics has received great attention in recent years, since
it is more accurate to characterize the dynamics of real
wireless traffic than the traditional wireless networks (e.g.,
[25], [26], [27]) consisting of a fixed number of persistent
user that continuously inject packets into the network and
would never leave. In [28], the authors pointed out that the
traditional queue-length-based MaxWeight scheduling for
persistent users is no longer throughput-optimal when deal-
ing with dynamic flows over time-varying channels. Even
in the absence of time-varying channels, the MaxWeight
scheduling still fails to achieve the maximum throughput
under certain network settings [29]. Subsequent works (e.g.,
[3], [15], [16], [17], [18], [19]) have developed throughput-
optimal scheduling algorithms for dynamic flows in various
scenarios. The closest one to our work is the flow-aware
CSMA Algorithm developed in [3] that only addressed
the throughput performance in non-fading scenarios, which
does not meet the desired performance of UAV networks in
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the presence of dynamic flows. Note that the reason why
the CSMA Algorithm works in the presence of flow-level
dynamics without wireless fading lies in that each flow
maintains an exponential clock and thus the chance of a
region served by a UAV is proportional to the number of
flows in the region, which mimics the MaxWeight Algorithm
[26]. Here, we use the fact that the minimum of n inde-
pendently and identically distributed exponential random
variables with rate 1 is a exponential random variable with
rate n. However, in the presence of general channel fading,
this fact does not take the channel rate into account and thus
it is unclear that how to generalize the CSMA Algorithm to
the case with wireless fading.

In this paper, we consider the problem of scheduling
a limited number of UAVs, each equipped with an AP, to
serve data traffic flows in a specific geographic area parti-
tioned into a number of small regions, each of which can be
fully covered by a UAV. In particular, we consider a time-
slotted system and adopt a flow-level dynamic model: each
flow dynamically arrives at a particular region, experiences
an independent fading channel, and immediately leaves
the system once it completes its service. The assignment of
UAVs to the regions is made every T consecutive time slots
guided by the scheduling algorithm in response to the flow-
level dynamics. The objective of this paper is to develop an
optimal scheduling algorithm to achieve the optimal system
performance, i.e., the maximum system throughput (sup-
porting flows as many as possible) and the minimum system
workload (reducing flow latency as much as possible).

The main contributions of this paper are listed as follows:

• We formulate a problem of wireless scheduling de-
sign for UAVs in the presence of dynamic flow-level
traffic.

• We propose a MaxWeight-type scheduling algorithm
for deploying UAVs to serve dynamic flows, which
not only achieves maximum throughput but also
minimizes total mean system workload in the heavy-
traffic regime.

• We conduct extensive simulations that not only con-
firm our analytical results but also demonstrate the
excellent performance of our proposed algorithm in
general setups.

The reminder of this paper is organized as follows. In
Section 2, we formulate the problem and state our model.
In Section 3, we present a MaxWeight-type scheduling algo-
rithm to find the optimal scheduling decision. In Section
4, we show extensive simulation results to confirm our
analytical observations. In Section 5, we show the proof
of two equivalent capacity regions. In Section 6 and 7, we
provide detailed proofs of our algorithm. In Section 8, we
conclude our paper and discuss future work.

2 SYSTEM MODEL

We consider a UAV network with M UAV-based wire-
less Access Points (APs) serving dynamic flows across N
(N > M ) different regions, where flows dynamically arrive
at each region and depart once they receive the desired
amount of network service. Here, a flow models an active
network service session. It can be a service requested by a

new user or an existing user that keeps silent for a while. We
assume that the system operates in a time-slotted manner.
Fig. 1 shows two snapshots of a system with six regions and
three UAVs at two different time instances.

(a) Snapshot at time t1 (b) Snapshot at time t2 (t2 > t1)

Fig. 1: A system with six regions and three UAVs at two
different time instants: flow f1 in region 1 and f2 in region 2
receive services at time t1, and complete their services before
time t2, while flow f3 joins region 4. In the meanwhile, UAV A
moves from Region 1 to Region 4 by the time instant t2.

Note that it could be energy-consuming to frequently
redirect UAVs across regions on a time slot basis and
therefore we assume that UAV redirection decisions are
made every T time slots. To this end, we group every T
consecutive time slots into a frame, as shown in Fig 2. Note
that the UAV hovering usually consumes much less energy
when it flies cross the regions. Therefore, by allowing a
UAV to fly across regions every T time slots, the larger
the T , the less energy the UAV consumes. Let Sn[k] = 1
if a UAV is hovering over region n in time frame k, and
Sn[k] = 0 otherwise. We assume that the traveling time of
a UAV to each region is negligible compared to the length
of a time frame. We assume that flows randomly arrive at
the beginning of each time slot. In particular, we let An[k; t]
be the set of flows arriving at region n in tth time slot of
the frame k. We use An[k; t] to denote the cardinality of
the set An[k; t], i.e., An[k; t] = |An[k; t]|. We assume that
{An[k; t], t = 1, 2, . . . , T, k ≥ 0} are independently and
identically distributed (i.i.d.) over time with mean λn > 0,
and An[k; t] ≤ Amax

n ,∀n, t, k, for some Amax
n > 0. We

use Fn,f [k; t] to denote the number of packets of a newly
arriving flow f (also referred to as the file size of flow f ) in
region n in the tth time slot of frame k, which is i.i.d. over
time with mean ηn > 0 and Fn,f [k; t] ≤ Fmax

n ,∀n, t, k, for
some Fmax

n > 0. In addition, the number of flows and their
file sizes are independently distributed across regions.

Fig. 2: Relationship between each time slot and one frame

Flows in region n can receive network service only when
there is a UAV hovering over that region. Due to wireless
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interference, without loss of generality, we assume that at
most one flow can be served in each region in each time
slot. We also assume that each region at most has one
UAV in each frame, and all M UAVs in different regions
do not interfere with each other and thus can serve their
flows simultaneously. We call a set of regions that can
be served by UAVs simultaneously in frame k a feasible
schedule denoted by S[k] , (Sn[k])Nn=1, where exact M of its
components equal to 1. Let S be the collection of all feasible
schedules. All UAVs are assumed directly connected to a
central controller via point-to-multipoint micro/millimeter-
wave backhauling with sufficient bandwidth [4].

Due to a limited number of modulation and coding
schemes, each flow has a finite number of transmission
rates. We use Cn,f [k; t] to denote the channel rate (in unit
of packets per time slot) of flow f in region n in the tth

time slot of frame k, which is i.i.d. with the maximum
and minimum channel rates of cmax

n > 0 and 0, respec-
tively. Here, we also assume that both probability of each
flow having the maximum and minimum channel rates are
strictly positive, i.e., pmax

n , Pr{Cn,f [k; t] = cmax
n } > 0

and pmin
n , Pr{Cn,f [k; t] = 0} > 0. Note that the traffic

characteristics being considered depend on the region where
the traffic is generated, which we believe is a proper model
to characterize real-world location-specific applications. Let
Rn,f [k; t] denotes the number of residual packets of flow f
in region n in the tth time slot of frame k.

TABLE 1: Notations for System Model

Symbol Description
M number of UAVs
N number of Regions
k time frame index
t time slot index within a frame, t = 1, 2, . . . , T
T number of slots in each frame

An[k; t] set of flows arrived at region n in the tth slot of frame
k

An[k; t] cardinality of An[k; t]
λn mean of An[k; t], λn > 0
Amax the maximum possible value for An[k; t]

Fn,f [k; t] file size of flow f in region n at tth slot of frame k
Fmax
n the maximum possible value for Fn,f [k; t]
Sn[k] service decision for region n at frame k, Sn[k] ∈ {0, 1}
S[k] feasible schedule in frame k, S[k] , (Sn[k])Nn=1
S set of all feasible schedules

Cn,f [k; t] channel rate of flow f at region n in the tth slot of
frame k

cmax
n the maximum possible value for Cn,f [k; t]
pmax
n probability that Cn,f [k; t] achieves the maximum rate
pmin
n probability that Cn,f [k; t] has value 0

Rn,f [k; t] residual packets flow f at region n in the tth slot of
frame k

νn[k; t] workload arrived at region n at the tth slot of frame k
νn[k] total workload arrived at region n in frame k
ρn mean workload of arriving flow in region n at each

slot
ρ mean workload vector, ρ , (ρn)Nn=1, or traffic inten-

sity vector
Wn[k; t] total workload at region n at the tth slot of frame k
Wn[k] total workload in region n at the beginning of frame k
W[k] workload vector, Wn[k] , (Wn[k])Nn=1
Nn[k; t] set of flows in region n at the tth slot of frame k
µn[k; t] workload decreased in region n at the tth slot of frame

k
µn[k] total workload decreased in region n in frame k

Λ capacity region

To characterize the underlying dynamic of flows, we

use workload to measure the minimum time slots needed
to serve the newly arriving (or existing) flows. In par-
ticular, let νn[k; t] ,

∑
f∈An[k;t]dFn,f [k; t]/cmax

n e and
Wn[k; t] ,

∑
f∈Nn[k;t]dRn,f [k; t]/cmax

n e denote the newly
arriving workload and the total workload in region n in
the tth time slot of frame k, respectively, where Nn[k; t]
denotes the set of flows in region n in the tth time slot of
frame k. We use µn[k; t] to denote the amount of workload
decreasing in region n in the tth time slot of time frame k.
Here, µn[k; t] depends on whether there is a flow in region
n that receives service from a UAV and its residual file size
and associated channel rate if there is. Note that in each
time slot, there is at most one UAV hovering over one region
and each UAV can at most serve one flow. Thus, µn[k; t] is
equal to either 0 or 1. We use Wn[k] , Wn[k; 1] to denote
the total workload in region n at the beginning of frame k. Let
νn[k] ,

∑T
t=1 νn[k; t] and µn[k] ,

∑T
t=1 µn[k; t] be the total

workload of newly arriving flows and the total amount of
workload decreasing in frame k, respectively. Therefore, the
evolution of workload can be described as follows:

Wn[k + 1] = Wn[k] + νn[k]− Sn[k]µn[k], (1)

holds for n = 1, 2, . . . , N .
We call region n stable if its average workload is finite,

i.e.,

lim
K→∞

1

K

K−1∑
k=1

E[Wn[k]] <∞. (2)

We call the system stable if all its regions are stable. The
capacity region Λ is the maximum set of mean arriving
workload under which the system can be stabilized by some
policy, and can be represented as

Λ ,

{
ρ = (ρn)Nn=1 :

N∑
n=1

ρn ≤M and 0 ≤ ρn ≤ 1,∀n
}
,

where ρn , E[νn[k; t]] is the mean workload of all newly
arriving flows in region n in each time slot (also referred to
as traffic intensity). In each time slot, the workload can at
most reduce by 1 in each region and thus the workload of
newly arriving flows in each region cannot be greater than
1, i.e., ρn ≤ 1,∀n = 1, 2, . . . , N . Besides, there are at most
M UAVs in the system and therefore total system workload
can at most decrease by M in each time slot and hence we
have

∑N
n=1 ρn ≤M to maintain the system stability. We say

an algorithm is throughput-optimal if it stabilizes the system
for any traffic intensity vector strictly within the capacity
region Λ. Notations for system model are listed in Table 1.

In this paper, we are interested in developing a schedul-
ing algorithm that efficiently allocates M UAVs to serve N
regions in each time frame and each UAV in each region
needs to decide how to serve its flows in each time slot
with the following two goals: (i) maximizing the system
throughput (i.e., supporting flows as many as possible); (ii)
minimizing the system workload (i.e., reducing the flow
latency as much as possible).

3 OPTIMAL SCHEDULING DESIGN

In this section, we first develop a workload-aware schedul-
ing algorithm. Then, we prove that the proposed algorithm
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not only achieves throughput optimality but also minimizes
the mean total workload in the heavily-loaded conditions,
where the latency is most pronounced.

Motivated by the well-known MaxWeight algorithm (see
[26]) that prioritizes the users with high congestion levels,
the efficient algorithm should send UAVs to serve the most
heavily-loaded regions, which is described as follows.

UAV-Optimal-Scheduling (UOS) Algorithm: In each
time frame k, given the current workload vector
W[k] , (Wn[k])Nn=1,

(1) Send M UAVs to serve the top M congested regions,
i.e. select S∗[k] , (S∗n[k])Nn=1 such that

S∗[k] ∈ arg max
S∈S

〈W[k],S〉, (3)

breaking ties uniformly at random.
(2) In tth time slot of time frame k, each UAV with

S∗n[k] = 1 serves a flow with the maximum channel rate,
breaking ties uniformly at random.

In the UOS Algorithm, the central controller collects
workload information from all regions in each time frame,
and sends M UAVs to serve the M most congested regions.
The proposed algorithm differs from the traditional queue-
length-based MaxWeight algorithm in that the traditional
queue-length-based MaxWeight algorithm is designed
for the system with First-Come-First-Served queueing
discipline, while each flow in our considered scenario
suffers from an independent channel fading and thus
has a time-varying service rate. Although the authors in
[3] proposed a similar algorithm dealing with the flow-
level dynamic model, they only established throughput
optimality of the proposed algorithm in non-fading setups.
In this paper, we show that our proposed algorithm can
achieve desired performance in the general setups. Next,
we first show that the proposed algorithm can achieve
maximum system throughput as well as the boundedness
of all steady-state workloads. Note that the proposed UOS
Algorithm has a computational complexity of at most
O(
(N
M

)
), since the algorithm needs to traverse at most

(N
M

)
schedules to find the maximum weight.

Proposition 1. The UOS Algorithm is throughput-optimal, i.e. it
stabilizes the system for any arrival traffic intensity vector strictly
within the capacity region Λ. Moreover, all moments of steady-
state workload are strictly bounded.

Proof: The proof is available in Section 6.
Having established the throughput optimality and the

moment existence of the steady-state workload of the UOS
Algorithm, we can proceed to analyze the mean workload
performance in the heavy-traffic regime.

We consider the workload process {W(ε)[k]}k≥0 with
arrival process ν(ε)[k] = (ν

(ε)
n [k])Nn=1 parameterized with

ε > 0. Here, ε is called the heavy-traffic parameter that mea-
sures the Euclidean distance of traffic intensity vector ρ(ε)

to the hyperplane H(d) , {ρ : 〈ρ,d〉 = bd} with normal
vector d and bd > 0, where H(d) lies on the boundary of
capacity region Λ. We illustrate all these notations in a three-
dimensional capacity region in the case of two UAVs serving
three regions, as shown in Fig. 3. In this work, we analyze

( )

Arrival intensity ( )

0

1

1

11

Arrival intensity ( )

hyperplaneH(d)

feasible schedule

d: normal vector of hyperplaneH(d)

Distance = || ( ) ||

Fig. 3: Geometric structure of the capacity region

the heavy-traffic performance of our UOS Algorithm as
ε ↓ 0, i.e., the traffic intensity vector ρ(ε) approaches ρ(0)

(i.e., ρ(0) = ρ(ε) + εd) strictly lying inside hyperplane
H(d). Let (σ

(ε)
n )2 denote the variance of the arrival process

{ν(ε)
n [k; t], t = 1, 2, . . . , T, k ≥ 0}. Let σ(ε) , (σ

(ε)
n )Nn=1.

Notations for heavy-traffic analysis are listed in Table 2.

Proposition 2. Let W̃(ε) , (W̃
(ε)
n )Nn=1 be a random vector

with the same distribution as the steady-state distribution of
the workload evolution under the UOS Algorithm. Consider the
heavy-traffic limit that ε ↓ 0 and then suppose the variance vector(
σ(ε)

)2
converges to a constant vector σ2. Then,

lim
ε↓0

εE[〈d,W̃(ε)〉] ≤ 〈d
2,σ2〉
2

. (4)

Proof: The proof is available in Section 7.
Notice that upper bound given in Proposition 2 is also

the lower bound of the system under any feasible schedul-
ing policy. In particular, we can show the bound is tight
by constructing a single server queue {Φ[k]}k≥0 with total
arrival workload νΣ[k] , 〈d,ν(ε)[k]〉 to approach the arrival
rate onH(d). The single server queue evolution is as follows:

Φ[k + 1] = max {Φ[k] + νΣ[k]− Tbd, 0} . (5)

Then, it is easy to show that 〈d,W[k]〉 ≥ Φ[k],∀k ≥ 0. This
combines with the lemma in [9, Lemma 4], leading to the
following result.

Proposition 3. Let W̃(ε) be a random vector with the same dis-
tribution as the steady-state distribution of the workload evolution
under any scheduling algorithm. Consider the heavy-traffic limit
that ε ↓ 0 and then suppose the variance vector (σ(ε))2 converge
to a constant vector σ2. Then,

lim
ε↓0

εE[〈d,W̃(ε)〉] ≥ 〈d
2,σ2〉
2

. (6)

By Proposition 2 and 3, we can conclude that the pro-
posed UOS Algorithm is heavy-traffic optimal.

4 SIMULATION RESULTS

In this section, we conduct various simulations to verify the
efficiency of our purposed UOS Algorithm. In the simula-
tion, we assume that the number of flows arriving at each
region n in each time slot follows Bernoulli distribution
with mean λn. The file size of each arriving flow is equal
to 5cmax with probability 1/4 and cmax otherwise. Then,
the mean workload of a newly arriving flow is equal to 2.
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TABLE 2: Notations for Heavy-traffic Analysis

Symbol Description
ε heavy-traffic parameter

ρ(ε) traffic intensity vector with heavy-traffic parameter ε
d normal vector
H(d) hyperplane with normal vector d
ρ(0) heavy-traffic intensity vector that strictly lying inside

of H(d)

bd a constant value that describes the hyperplane H(d)

(σ
(ε)
n )2 variance of arrival process ν(ε)

n [k; t]

(σ(ε))2 vector of (σ
(ε)
n )2

σ2 the limit of (σ(ε))2 when ε ↓ 0

W̃
(ε)
n random variable with the same distribution as the

steady-state distribution of the workload evolution
under the UOS Algorithm

W̃(ε) vector of W̃ (ε)
n

ν
(ε)
n [k] arriving workload parameterized with ε arrived at

region n in frame k
ν(ε)[k] vector of arrival process parameterized with ε in frame

k
νΣ total workload of arriving flows in frame k

Φ[k] constructed single server queue with arrival workload
νΣ[k]

λ vector of λn, λ , (λn)Nn=1

Each flow in each region experiences i.i.d. channel fading
with rates of 10, 5, 1, 0 and corresponding probabilities of
0.2, 0.6, 0.1, 0.1. In our simulations, We consider M = 3
UAVs serving N = 10 regions, unless specified otherwise.

4.1 Throughput Performance

We consider the following two arrival cases: symmet-
ric arrival λ = φ × (0.15, 0.15, 0.15, 0.15, 0.15, 0.15,
0.15, 0.15, 0.15, 0.15), and asymmetric case λ = φ ×
(0.05, 0.1, 0.05, 0.05, 0.35, 0.05, 0.25, 0.15, 0.15, 0.3), where
φ ∈ (0, 1) is the arrival load factor. Fig. 4 shows the mean
total workload performance versus φ under our proposed
UOS Algorithm with different time frame lengths. From Fig.
4, We can observe that the UOS Algorithm can stabilize the
system for any φ ∈ (0, 1) in both symmetric and asym-
metric arrival cases, no matter what the time frame length
is. This verifies that the proposed UOS Algorithm indeed
achieves maximum system throughput (cf. Proposition 1)
and indicates that the time frame length does not affect
the throughput performance. However, we can see that the
UOS Algorithm with shorter time frame has smaller mean
workload. This is because that the UOS Algorithm with the
shorter time frame makes the UAV redirection decisions
more frequently and thus can quickly response to the fast
flow dynamics, yielding the better network performance.
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Fig. 4: The workload performance of the UOS Algorithm

4.2 Heavy-Traffic Performance
In this subsection, we study the impact of the heavy-traffic
parameter ε on the mean workload performance. In partic-
ular, we consider both symmetric arrival rate vector λ =
(0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15, 0.15) − εd
and asymmetric arrival rate vector λ = (0.05, 0.1,
0.05, 0.05, 0.35, 0.05, 0.25, 0.15, 0.15, 0.3) − εd, where d =
(1/
√

10)10
n=1 is the normal vector of one of plane facets of

the capacity region. From Fig. 5, we can observe that under
our proposed UOS Algorithm with different frame lengths,
the mean workloads converge to the same theoretical lower
bound as the heavy-traffic parameter ε diminishes to zero in
both symmetric and asymmetric arrival cases. This validates
the heavy-traffic optimality of our proposed algorithm (cf.
Propositions 2 and 3) and indicates that the frame length
does not affect the heavy-traffic optimality.
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Fig. 5: The performance of UOS Algorithm under heavy
traffic arrival processes

4.3 Mean Delay Performance
In this subsection, we study the mean delay performance
of proposed UOS Algorithm with different frame lengths
under both symmetric and asymmetric arrival processes.
We can see from Fig. 6 that the frame length has a similar
impact on the mean delay performance as that on the mean
workload performance (cf. Fig. 4). The reason lies in that the
smaller system workload leads to the shorter waiting time
of each flows.
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Fig. 6: The mean delay performance of the UOS Algorithm

4.4 Impact of the Number of UAVs
In this subsection, we study the impact of the number of
UAVs on the network performance. From Fig. 7, we can
observe that the system requires a larger number of UAVs to
support a larger traffic intensity. For example, the minimum
number of UAVs required to support the arrival rate of
λ = 0.2 is 5 while it is 6 when λ = 0.25. Moreover, the
addition of one UAV can dramatically improve the system



6

performance and further increasing the number of UAVs
brings marginal performance improvement. Indeed, when
λ = 0.2, deploying 6 UAVs can improve the mean workload
by 42.37% and the mean delay by 42.21% compared with
the case with 5 UAVs, while the additional one UAV only
leads to additional 14.65% workload improvement and
16.01% delay improvement.
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Fig. 7: Impact of the number of UAVs

4.5 Impact of the Length of Time Frame

We study the impact of the number of the time slots per
frame on the network performance in this subsection. As
shown in Fig. 8, both the mean total workload and mean
flow delay increase as the number of slots per frame in-
creases under different traffic intensity values. This obser-
vation matches our simulation results in both Fig. 4 that
the proposed UOS Algorithm with shorter time frame size
redirects UAVs more frequently and quickly responses to
the sharp flow dynamics, which is at the cost of increas-
ing the energy consumption of the UAVs. Moreover, we
can observe from Fig. 8 that the time frame length more
significantly affects the mean delay performance when the
traffic intensity is lower.
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Fig. 8: Impact of the length of time frame

4.6 Comparison with the CSMA Algorithm

In this subsection, we compare the CSMA Algorithm and
the proposed UOS Algorithm in the non-fading case. Since
the CSMA Algorithm only considers the scheduling deci-
sion, we run CSMA to obtain flow scheduling decisions
and allocate UAVs to serve their corresponding regions.
We let the number of UAVs M = 3 and the number of
regions N = 4. The arrival rate vector is set as λ =
φ × (0.375, 0.375, 0.375, 0.375), where φ ∈ (0, 1) is the
arrival load factor.

We can see from the Fig. 9 that both the UOS Algo-
rithm and the CSMA Algorithm achieve the full capacity
region and thus are throughput-optimal. However, its mean
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Fig. 9: Performance comparison between CSMA and UOS
Algorithm in a non-fading case

workload and flow latency performance is worse than that
of the UOS Algorithm. This is because the proposed UOS
Algorithm aims at serving as many users as possible in the
fastest way, which can be interpreted as serving as many
user as possible.

5 PROOF OF EQUIVALENT CAPACITY REGIONS

In this section, we show the following two capacity regions
are equivalent, where

Λ1 ,

{
ρ = (ρn)Nn=1 :

N∑
n=1

ρn ≤M and 0 ≤ ρn ≤ 1,∀n
}

Λ2 ,

{
ρ = (ρn)Nn=1 : ∃α(S),

∑
S∈S

α(S) = 1,

ρn ≤
∑
S∈S

α(S)Sn,∀n
}
.

First, we show Λ2 ⊆ Λ1. Let ρ ∈ Λ2, we have

ρn ≤
∑
S∈S

α(S)Sn
(a)

≤
∑
S∈S

α(S) = 1

where (a) uses the fact that Sn ≤ 1,∀n = 1, 2, . . . , N .
Besides,

N∑
n=1

ρn ≤
N∑
n=1

∑
S∈S

α(S)Sn

=
∑
S∈S

α(S)
N∑
n=1

Sn
(b)

≤
∑
S∈S

α(S)M = M.

where (b) uses the fact that
∑N
n=1 Sn ≤M . Hence, we have

ρ ∈ Λ1 and thus Λ2 ⊆ Λ1.
Next, we show Λ1 ⊆ Λ2 by contradiction. Assume that

ρ ∈ Λ1 and ρ /∈ Λ2, then there exists ρn such that

ρn >
∑
S∈S

α(S)Sn,∀α(S),S ∈ S,

then select α(S′) = 1 for the schedule S′ with S′n = 1, and
we obtain that ρn > 1, which leads to the contradiction.
Thus, Λ1 ⊆ Λ2.
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6 PROOF OF THROUGHPUT OPTIMALITY

We consider the Lyapunov function V (k) , ‖W[k]‖ and its
conditional expected drift

E[∆V (W)|W[k] = W]

, E[‖W[k + 1]‖ − ‖W[k]‖ |W[k] = W]

= E[
√
‖W[k + 1]‖2 −

√
‖W[k]‖2 |W[k] = W]

≤ 1

2‖W[k]‖
E[‖W[k + 1]‖2 − ‖W[k]‖2 |W[k] = W], (7)

where the last step follows from the fact that f(x2)−f(x1) ≤
(x2 − x1)f ′(x1) = (x2 − x1)/2

√
x1 due to the concavity of

the function f(x) ,
√
x for x > 0. For an easier exposition,

let L(k) , ‖W[k]‖2. In the rest of the proof, we omit the
frame index [k] for conciseness.

E[∆L(W) |W] , E
[
‖W[k + 1]‖2 − ‖W[k]‖2

∣∣W[k] = W
]

= E

[
N∑
n=1

(Wn + νn − S∗nµn)2 −
N∑
n=1

W 2
n

∣∣∣∣∣W
]

= E

[
N∑
n=1

(
2Wn(νn − S∗nµn) + (νn − S∗nµn)

2
)∣∣∣∣∣W

]
(a)
= E

[
N∑
n=1

(
2Wn

T∑
t=1

(νn[k; t]− S∗nµn[k; t]) + (νn − S∗nµn)
2

)∣∣∣∣∣W
]

(b)

≤ 2T
N∑
n=1

Wnρn − 2E

[
N∑
n=1

T∑
t=1

WnS
∗
nµn[k; t]

∣∣∣∣∣W
]

+B1,

(8)

where step (a) follows from the definitions of νn and
µn; (b) is true for B1 , N(ν2

max + T 2), νmax ,
T maxnA

max
n dFmax

n /cmax
n e and due to the fact that the

newly arriving workload is independent of the current
system state.

Next, we consider the first term on the right-hand-side
(RHS) of (8).

2T
N∑
n=1

Wnρn
(a)

≤ 2T
N∑
n=1

Wn

(∑
S∈S

α(S)Sn − ε/T
)

=− 2ε
N∑
n=1

Wn + 2T
∑
S∈S

α(S)
N∑
n=1

WnSn

(b)

≤ − 2ε
N∑
n=1

Wn + 2T
N∑
n=1

WnS
∗
n (9)

where step (a) follows from the fact that ρ = (ρn)Nn=1 is
strictly inside the capacity region Λ and hence there exists
an ε > 0 and probability distribution {α(S)}S∈S such that
ρn ≤

∑
S∈S α(S)Sn − ε/T (see Section 5 for the proof), and

(b) follows from the definition of the UOS Algorithm and
the fact that

∑
S∈S α(S) = 1.

Concerning the second term on the RHS of (8), we have

2
N∑
n=1

T∑
t=1

E[Wnµn[k; t]S∗n|W]

(a)

≥2
N∑
n=1

E

[
T∑
t=1

(
1− (1− pmax

n )|Nn[k;t]|
)
WnS

∗
n

∣∣∣∣∣W
]

(b)

≥2
N∑
n=1

E
[
T
(

1− (1− pmax
n )Dn

)
WnS

∗
n1{|Nmin

n |>Dn}

∣∣∣W]
(c)
=2

(
1− 1

2T
ε

) N∑
n=1

E
[
WnS

∗
nT1{|Nmin

n |>Dn}

∣∣∣W]
=2

(
1− 1

2T
ε

) N∑
n=1

E
[
WnS

∗
nT (1− 1{|Nmin

n |≤Dn})
∣∣∣W]

(d)

≥2

(
1− 1

2T
ε

) N∑
n=1

WnS
∗
nT −B2

≥− ε
N∑
n=1

Wn + 2T
N∑
n=1

WnS
∗
n −B2, (10)

where step (a) uses the fact that in each slot of each time
frame, the workload reduces by one in region n if at least
one of its flows has the maximum channel rate; (b) is true
for some Dn > 0 with (1 − pmax

n )Dn = ε/2T and follows
from the fact that (1− pmax

n )x decreases in x ∈ [0,∞) as x ↑
and |Nmin

n | , mint=1,2,...,T |Nn[k; t]|; (c) uses the definition
of Dn; (d) is true for B2 , 2T dFmax

n /cmax
n e

∑N
n=1(Dn +

TAmax
n ).
By substituting (9) and (10) into (8), we have

E[∆L(W)|W] ≤− ε
N∑
n=1

Wn +B1 +B2

≤− ε‖W‖+B1 +B2, (11)

where the last step is true because ‖W‖1 ≥ ‖W‖.
By substituting (11) into (7), we have

E[∆V (W)|W] ≤ − ε
2

+
B1 +B2

2‖W‖
. (12)

This implies when the value of Lyapunov function V (W) =
‖W‖ is sufficient large, its conditional expected drift is
strictly negative.

Next, we show that the absolute drift of V (W) is
bounded by some constant.

|∆V (W)| =
∣∣‖W[k + 1]‖ − ‖W[k]‖

∣∣1{W[k]=W}
(a)

≤ ‖W[k + 1]−W[k]‖1{W[k]=W}
(b)

≤ ‖W[k + 1]−W[k]‖11{W[k]=W}

≤ N max
n
|νn − Snµn|

≤ N(νmax + T ), (13)

where step (a) follows from the triangle inequality for
vectors, and (b) uses the fact that the l2-norm of a vector
is less or equal to its l1-norm.

In the end, (13) together with (12) implies the desired
result by using [13, Theorem 2.3].

7 PROOF OF HEAVY-TRAFFIC OPTIMALITY

In this section, we prove that our proposed UOS Algorithm
minimizes the mean workload in the heavy-traffic regime.
To this end, we first prove that the steady-state workload
processes collapse into the normal vector of the hyperplane
that the traffic intensity vector approaches (referred to as
state-space collapse), in the sense that the deviation of the
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steady-state workload vector away from the normal vector
has all its moments bounded. Then based on this state-space
collapse result, we obtain the desired result via the steady-
state analysis of stochastic networks taking into account the
sharp flow-level dynamics.

7.1 State Space Collapse
In this subsection, we show that the steady-state work-
loads collapse to the normal vector d, i.e., the deviation of
steady-state workload away from the vector d is uniformly
bounded, independently of the heavy-traffic parameter ε.
For a vector x, we use x‖ and x⊥ to represent its projection
and perpendicular vectors, respectively, i.e.,

x‖ , 〈x,d〉d, and x⊥ , x− x‖. (14)

Due to Proposition 1, we have W(ε)[k] ⇒ W̃(ε),
where ⇒ denotes convergence in probability. According
to the continuous mapping theorem (see [8]), we have
W

(ε)
‖ [k] ⇒ W̃

(ε)
‖ and W

(ε)
⊥ [k] ⇒ W̃

(ε)
⊥ . Next, we prove

that all moments of ‖W̃⊥‖ are bounded by some constants,
independent from the heavy traffic parameter ε.

Proposition 4. For any arrival intensity vector ρ(ε) param-
eterized with heavy-traffic parameter ε that is strictly inside
the capacity region Λ, there exists a sequence of finite con-
stants {Kr}r=1,2,.. that are independent from ε such that
E
[
‖W̃⊥‖r

]
≤ Kr .

Proof: In the rest of the proof, we omit ε associ-
ated with the workload processes and drop time index
for brevity. We consider the Lyapunov function V⊥(W) ,
‖W⊥‖, and we begin with showing the absolute drift of
V⊥(W) is strictly bounded by some positive constant, then
prove that its conditional expected drift becomes negative
when V⊥(W) is sufficiently large. These lead to the desired
result by [13, Theorem 2.3].

First, we consider the absolute drift of V⊥(W).∣∣V⊥(W)
∣∣ , |V⊥(W[k + 1])− V⊥(W[k])|1{W[k]=W}

=
∣∣∣∥∥∥W⊥[k + 1]

∥∥∥− ∥∥∥W⊥[k]
∥∥∥∣∣∣1{W[k]=W}

(a)

≤
∥∥∥W⊥[k + 1]−W⊥[k]

∥∥∥1{W[k]=W}

=
∥∥∥W[k + 1]−W[k]−

(
W‖[k + 1] + W‖[k]

)∥∥∥1{W[k]=W}

(b)

≤
(∥∥∥W[k + 1]−W[k]

∥∥∥+
∥∥∥(W[k + 1]−W[k]

)
‖

∥∥∥)1{W[k]=W}

≤ 2
∥∥∥W[k + 1]−W[k]

∥∥∥1{W[k]=W}

(c)

≤ 2
∥∥∥W[k + 1]−W[k]

∥∥∥
1
1{W[k]=W}

≤ 2N max
n

∣∣∣Wn[k + 1]−Wn[k]
∣∣∣1{W[k]=W}

≤ 2N(νmax + T ), (15)

where step (a) uses the fact that |‖x1‖−‖x2‖| ≤ ‖x1−x2‖;
(b) is true because of ‖x1 − x2‖ ≤ ‖x1‖ + ‖x2‖; (c) follows
from the fact that ‖x‖ ≤ ‖x‖1 for any vector x.

Next, we show that the conditional expected drift of
V⊥(W) is strictly negative whenever V⊥(W) is large

enough. However, we note that it is hard to prove this
directly. Instead, we use the drifts of ‖W‖ and ‖W‖‖ to
upper-bound that of V⊥(W).

∆V⊥(W) =

(√
‖W⊥[k + 1]‖2 −

√
‖W⊥[k]‖2

)
1{W[k]=W}

≤ 1

2‖W⊥‖
(
∆L(W)−∆L‖(W)

)
, (16)

where the last step is true for L(W) , ‖W‖2, L‖(W) ,
‖W‖‖2 and their drifts are defined by ∆L(W) ,
(L(W[k + 1])− L(W[k]))1{W[k]=W} and ∆L‖(W) ,(
L‖(W[k + 1])− L‖(W[k])

)
1{W[k]=W}, and follows from

the concavity of the function f(x) ,
√
x, i.e., f(x2) −

f(x1) ≤ (x2 − x1)f ′(x1) = (x2 − x1)/2
√
x1 with x1 =

‖W⊥[k]‖2 and x2 = ‖W⊥[k + 1]‖2.
Then we study the conditional expected drifts ∆L(W)

and ∆L‖(W), respectively.

E [∆L(W)|W]

= E
[
‖W[k + 1]‖2 − ‖W[k]‖2

∣∣∣W]
(a)
= E

[
‖W + ν − S∗ ⊗ µ‖2 − ‖W‖2

∣∣∣W]
= E

[
2〈W,ν − S∗ ⊗ µ〉+ ‖ν − S∗ ⊗ µ‖2

∣∣∣W]
(b)

≤ 2E [〈W,ν〉|W]− 2E [〈W,S∗ ⊗ µ〉|W] +B1

= 2T (〈W,ρ〉 −E [〈W,S∗〉|W])

+ 2E [〈W,S∗ ⊗ (T1− µ)〉|W] +B1, (17)

where step (a) is true for ⊗ denoting elementary multi-
plication between two vectors and (b) is true for B1 ,
N(ν2

max + T 2).
Now we provide the upper bound on each term in the

RHS of (17).

〈W,ρ〉 −E [〈W,S∗〉|W]

(a)
= 〈W,ρ(0) − εd〉 − 〈W,E [S∗|W]〉
= −ε‖W‖‖+ 〈W,ρ(0) −E [S∗|W]〉
(b)
= −ε‖W‖‖+ min

r∈Λ
〈W,ρ(0) − r〉

(c)

≤ −ε‖W‖‖+ min
r∈Bδ
〈W,ρ(0) − r〉

(d)
= −ε‖W‖‖+ min

r∈Bδ
〈W⊥,ρ

(0) − r〉

(e)
= −ε‖W‖‖ − δ‖W⊥‖, (18)

where step (a) follows from the definition of ρ(0); (b) uses
the definition of the UOS Algorithm, i.e., 〈W,E[S∗|W]〉 =
max
r∈Λ
〈W, r〉; (c) is true for Bδ , {r ∈ H(d)∩Λ : ‖r−ρ(0)‖ ≤

δ} since we assume that ρ(0) is the relative interior point
of H(d) ∩ Λ; (d) is true because W‖ is perpendicular to the
vector ρ(0)− r, i.e., 〈W‖,ρ

(0)− r〉 = 0; and (e) follows from
the definition of Bδ .

For the term E [〈W,S∗ ⊗ (T1− µ)〉|W], we have

E [〈W,S∗ ⊗ (T1− µ)〉|W]

= E

[
N∑
n=1

WnS
∗
n(T − µn)

∣∣∣∣∣W
]
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(a)
= E

[
N∑
n=1

WnS
∗
n

T∑
t=1

(1− µn[k; t])

∣∣∣∣∣W
]

(b)

≤ E
[
N∑
n=1

WnS
∗
n

T∑
t=1

(1− pmax
n )|Nn[k;t]|

∣∣∣∣∣W
]

(c)

≤ E
[
N∑
n=1

T∑
t=1

Wn(1− pmax
n )(Wn−T )/wmax

∣∣∣∣W
]

(d)
= E

[ N∑
n=1

T∑
t=1

Wn(1− pmax
n )(Wn−T )/wmax1{Wn≤wn}

+
N∑
n=1

T∑
t=1

Wn(1− pmax
n )(Wn−T )/wmax1{Wn>wn}

∣∣∣∣W]
(e)

≤
N∑
n=1

T∑
t=1

wn(1− pmax
n )−T/wmax +

N∑
n=1

T∑
t=1

1 , B3, (19)

where step (a) uses the fact that µn[k] =
∑T
t=1 µn[k; t]; (b)

follows from the fact that µn[k; t] equals to one when a UAV
is serving region n and at least one flow in region n has the
maximum channel rate in time slot t; (c) is true for wmax ,
dFmax/cmaxe denoting the maximum workload of a single
arriving flow and follows from the fact that S∗n ≤ 1 and
the facts that |Nn[k; t]| ≥ Wn[k; t]/wmax and Wn[k; t] ≥
Wn[k] − T, ∀t = 1, 2, . . . , T ; (d) is true for some constants
wn such thatWn(1−pmax

n )(Wn−T )/wmax ≤ 1 whenWn > wn
due to the fact that limx→∞ xβhx = 0 for x > 0, 0 < β < 1
and h is some constant; and (e) uses definition of wn.

Substituting (18) and (19) into (17), we have

E[∆L(W)|W] ≤ −2Tε‖W‖‖ − 2Tδ‖W⊥‖+B1 + 2B3.
(20)

Next, we consider the conditional expected drift
E[∆L‖(W)|W].

E
[
∆L‖(W)

∣∣W]
= E

[
〈d,W[k + 1]〉2 − 〈d,W[k]〉2

∣∣∣∣W]
= E

[
〈d,W + ν − S∗ ⊗ µ〉2 − 〈d,W〉2

∣∣∣∣W]
= E

[
2〈d,W〉〈d,ν − S∗ ⊗ µ〉+ 〈ν − S∗ ⊗ µ〉2

∣∣∣∣W]
(a)

≥ E

[
2〈d,W〉〈d,ν − S∗ ⊗ µ〉

∣∣∣∣W]
(b)
= 2‖W‖‖〈d, Tρ−E[S∗ ⊗ µ|W]〉
(c)

≥ −2Tε‖W‖‖+ 2T‖W‖‖
(
〈d,ρ(0)〉 − 〈d,E[S∗|W]〉

)
(d)

≥ −2Tε‖W‖‖, (21)

where step (a) is true because 〈ν − S∗ ⊗ µ〉2 ≥ 0; (b)
follows from the fact that the workload arrival process ν is
independent from current workload; (c) uses the definition
of ρ(0) and the fact that µn ≤ T for all n; (d) follows from
the fact that all feasible schedules are inside the capacity
region Λ and should be below the hyperplane H(d).

Finally, apply the result in (20) and (21) to (16), we have

E [∆V⊥(W)|W] ≤ −Tδ +
B1 + 2B3

2‖W⊥‖
. (22)

Thus when V⊥(W) = ‖W⊥‖ is sufficiently large, the
expectation of its drift is strictly negative, independent of
heavy traffic parameter ε.

7.2 Upper Bound Analysis
Having established the state-space collapse result under our
proposed UOS Algorithm, we are ready to analyze the mean
workload performance in the heavy-traffic regime. To facil-
itate our proof, we introduce Un[k; t] , S∗n[k](1 − µn[k; t])
and Un[k] ,

∑T
t=1 Un[k; t], and thus the evolution of the

workload under the UOS Algorithm can be rewritten as
follows:

W[k + 1] = W[k] + ν[k]− TS∗[k] + U[k], (23)

where U[k] , (Un[k])Nn=1. Note that U[k] is quite different
from the unused service in the traditional queueing system
(e.g., [9], [15]). In fact, if the flow served by the UAV in
region n in time slot t of frame k has a file size larger
than the maximum channel rate cmax

n and the service rate
is less than cmax

n , then µn[k; t] equals to 0 and thus Un[k; t]
is 1. On the other hand, this flow indeed receives the full
amount of service from the UAV in time slot t and does not
incur any unused service. Therefore, the analytical method
developed in [9] dealing with the unused service is no
longer suitable in our considered flow-level dynamic model,
and hence new techniques are required for analyzing heavy-
traffic performance of our proposed UOS Algorithm in the
presence of dynamic flows.

In the rest of the proof, we drop the heavy-traffic param-
eter ε associated with the workload process for simplicity. In
order to derive an upper bound for E[〈d,W̃〉], we use the
following identity:

E[〈d,W̃〉〈d, T S̃∗−ν〉] =
1

2
E[〈d,ν − T S̃∗〉2] +

1

2
E[〈d, Ũ〉2]

+E[〈d,W̃ + ν − T S̃∗〉〈d, Ũ〉], (24)

which is derived by setting the expected drift of 〈d,W̃〉2 to
zero (also see [9, Lemma 8]). This is doable since the second
moment of W̃ is bounded according to the Proposition 1.

Next, we provide a claim:

Claim 1. Let qd , Pr
{
〈d, S̃∗〉 = bd

}
and γd ,

min
{
bd − 〈d, r〉 : for all r ∈ S, r /∈ H(d)

}
is strictly positive.

Then, for any ε ∈ (0, γd), we have

1− qd ≤
ε

γd
. (25)

The proof of Claim 1 uses the stability condition, i.e.,
E
[
〈d, S̃∗〉

]
≥ 〈d,ρ〉 = bd − ε, and follows from the same

line of arguments in [9, Claim 1]. We skip the proof for
brevity. Claim 1 immediately implies that

E

[(
bd − 〈d, S̃∗〉

)2
]

=E

[(
bd − 〈d, S̃∗〉

)2
∣∣∣∣〈d, S̃∗〉 6= bd

]
(1− qd)

≤ ε

γd

(
b2d + ‖d‖21

)
≤ ε

γd

(
b2d +N

)
, (26)
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where the last step uses the Cauchy-Schwarz inequality that
‖d‖21 = (

∑N
n=1 dn · 1)2 ≤ (

∑N
n=1 12)(

∑N
n=1 d

2
n) = N‖d‖2

and the fact that ‖d‖ = 1.
Then we provide a lower bound on the left-hand-side of

the identity (24).

E
[
〈d,W̃〉〈d, T S̃∗ − ν〉

]
= E

[∥∥W̃‖
∥∥(Tbd − 〈d,ν〉)]−E[‖W̃‖‖(Tbd − 〈d, T S̃∗〉)]

(a)
= TεE[‖W̃‖‖]− TE[‖W̃‖ cos(θ)(bd − 〈d, S̃∗〉)]
(b)
= TεE[‖W̃‖‖]− TE[‖W̃‖ cos(θ)1{θ>θ}(bd − 〈d, S̃

∗〉)]
(c)
= TεE[‖W̃‖‖]− TE[‖W̃⊥‖ cot(θ)1{θ>θ}(bd − 〈d, S̃

∗〉)]
(d)

≥ TεE[‖W̃‖‖]− cot(θ)TE[‖W̃⊥‖1{θ>θ}(bd − 〈d, S̃
∗〉)])

≥ TεE[‖W̃‖‖]− cot(θ)TE[‖W̃⊥‖(bd − 〈d, S̃∗〉)]
(e)

≥ TεE[‖W̃‖‖]− cot(θ)T

√
E
[∥∥W̃⊥

∥∥2]
E[(bd − 〈d, S̃∗〉)2]

(f)

≥ TεE[‖W̃‖‖]− cot(θ)T

√
K2ε

γd
(b2d +N), (27)

where step (a) is true because the definition of the hyper-
plane H(d) and θ , arccos(‖W̃‖‖/‖W̃‖) denotes the angle
between W̃ and W̃‖; (b) is true for some θ ∈ (0, π/2] satis-
fying 〈d, S̃∗〉 = bd for all W̃ such that ‖W̃‖‖/‖W̃‖ ≥ cos(θ)
(due to our proposed UOS Algorithm); (c) follows from the
fact that ‖W̃‖ sin(θ) = ‖W̃⊥‖; (d) uses the fact that cot(θ)
is strictly decreasing in θ ∈ (0, π/2]; (e) uses Cauchy-Swartz
inequality; (f) uses Proposition 4 and (26).

Next, we provide upper bounds of each term on the RHS
of the identity (24).

For the term E
[
〈d,ν − T S̃∗〉2

]
, we have

E
[
〈d,ν − T S̃∗〉2

]
=E

[(
〈d,ν〉 − Tbd + Tbd − 〈d, T S̃∗〉

)2
]

=E
[
(〈d,ν〉 − Tbd)2

]
+ T 2E

[
(bd − 〈d, S̃∗〉)2

]
+ 2T 2(〈d,ρ〉 − bd)E[(bd − 〈d, S̃∗〉)]

(a)
=E[(〈d,ν〉 − Tbd)2] + T 2E

[
(bd − 〈d, S̃∗〉)2

]
− 2εT 2E[(bd − 〈d, S̃∗〉)]

(b)

≤E
[
(〈d,ν − Tρ〉+ 〈d, Tρ〉 − Tbd)2

]
+ T 2E

[
(bd − 〈d, S̃∗〉)2

]
(c)
=E

[
〈d,ν − Tρ〉2

]
+ T 2ε2 + T 2E

[
(bd − 〈d, S̃∗〉)2

]
(d)

≤T 〈d2,σ2〉+ T 2ε2 + T 2 ε

γd

(
b2d +N

)
, (28)

where step (a) is true because the definition of bd (c.f.
Section 3); (b) stands because for any feasible scheduling S̃,
its projection on the normal vector d should be less than bd,
i.e., 〈d, S̃〉 ≤ bd; (c) again uses the definition of bd; (d) uses
(26) and the facts that E

[
〈d,ν − Tρ〉2

]
=
∑N
n=1

∑T
t=1 d

2
nσ

2
n

since both number of flows and their file sizes are i.i.d. over
time and independently across regions.

To get the upper bound of E[〈d, Ũ〉2], we first show that

E[〈d, Ũ〉] = E[〈d, T S̃∗ − ν〉] = E[〈d, T S̃∗〉]− 〈d, Tρ〉
(a)
= T (E[〈d, S̃∗〉]− (bd − ε))

(b)

≤ Tε, (29)

where step (a) follows from the definition of bd; (b) is true
any feasible schedule should lie below the hyperplaneH(d),
i.e., 〈d,S〉 ≤ bd for any feasible schedule S. Then the upper
bound of E[〈d, Ũ〉2] is given by

E[〈d, Ũ〉2] ≤ 〈d, T1〉E[〈d, Ũ〉] ≤ εT 2‖d‖1 ≤ εT 2
√
N,

(30)

where the first step holds because Ũn is less than T by its
definition and the second step uses (29).

Next, we show the upper bound of E[〈d,W̃ + ν −
T S̃∗〉〈d, Ũ〉] in (24), and we define the following terms:

d̂ , (dn)n∈D+ ,Ŵ , (W̃n)n∈D+ , and Û , (Ũn)n∈D+ ,

where D+ , {n ∈ {1, 2, . . . , N} : dn > 0},

then we have

E[〈d,W̃ + ν − T S̃∗〉〈d, Ũ〉]
(a)
=E

[
〈d,W̃+〉〈d, Ũ〉

]
−E

[
〈d, Ũ〉2

]
≤E

[
〈d,W̃+〉〈d, Ũ〉

]
(b)
=E

[
〈Ŵ+
‖ , Û‖〉

]
= E

[
〈Ŵ+
‖ , Û− Û⊥〉

]
(c)
=E

[
〈Ŵ+
‖ , Û〉

]
= E

[
〈Ŵ+ − Ŵ+

⊥, Û〉
]

=E
[
〈Ŵ+, Û〉

]
−E

[
〈Ŵ+
⊥, Û〉

]
, (31)

where step (a) is true for W̃+ denoting W̃[k + 1]; (b) uses
the definition of d̂, Ŵ+

‖ , 〈d̂,Ŵ+〉 and Û‖ , 〈d̂, Û〉; (c) is
true because 〈x‖,x⊥〉 = 0 for all vector x.

Besides, based on (29), we have

E

 ∑
n∈D+

Ũn

 ≤ 1

dmin
E

 ∑
n∈D+

dnŨn

 =
1

dmin
E[〈d, Ũ〉]

≤ Tε

dmin
, (32)

where the first step is true because dmin , min{n∈D+} dn is
strictly positive, and the last step uses (29).

Now we focus on each term on the RHS of (31).

E
[
〈Ŵ+, Û〉

]
= E

 ∑
n∈D+

W̃n[k + 1]Ũn[k]


≤ E

 ∑
n∈D+

(
W̃n[k] + νn[k]

)
Ũn[k]


(a)

≤ E

 ∑
n∈D+

W̃nŨn

+

√√√√√E
 ∑
n∈D+

ν2
n

E
 ∑
n∈D+

Ũ2
n


(b)

≤ E

 ∑
n∈D+

W̃nŨn

+

√
Nν2

max

εT 2

dmin
, (33)
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where step (a) uses Cauchy-Schwartz inequality; (b) follows
from the fact that νn ≤ νmax, |D+| ≤ N , Ũn ≤ T , and
inequality (32).

For the first term in (33), we have

E

 ∑
n∈D+

W̃nŨn

 = E

 ∑
n∈D+

W̃nS̃
∗
n

T∑
t=1

(1− µ̃n[k; t])


(a)

≤ E

 ∑
n∈D+

W̃nS̃
∗
n

T∑
t=1

(1− pmax
n )|Ñn[k;t]|


= E

 ∑
n∈D+

W̃nS̃
∗
n

T∑
t=1

(1− pmax
n )

|Ñn[k;t]|
2 (1− pmax

n )
|Ñn[k;t]|

2


(b)

≤ E

 ∑
n∈D+

T∑
t=1

W̃nS̃
∗
n(1− pmax

n )
W̃n−T
2wmax (1− pmax

n )
|Ñn[k;t]|

2


(c)

≤ ŵE

 ∑
n∈D+

T∑
t=1

S̃∗n(1− pmax
n )

|Ñn[k;t]|
2


(d)

≤ ŵE

 ∑
n∈D+

T∑
t=1

S̃∗n(1− pmax
n )l|Ñn[k;t]|

 1
2l

(T |D+|)
2l−1
2l

(e)

≤ ŵE

 ∑
n∈D+

T∑
t=1

S̃∗n(pmin
n )|Ñn[k;t]|

 1
2l

(TN)
2l−1
2l

(f)

≤ ŵE

 ∑
n∈D+

Ũn

 1
2l

(TN)
2l−1
2l

(g)

≤ ŵ
( Tε

dmin

) 1
2l

(TN)
2l−1
2l

= ŵT
( ε

dmin

) 1
2l

N
2l−1
2l , B

(ε)
4 , (34)

where step (a) is true because µn[k; t] = 1 whenever at
least one flow in region n in tth time slot of time frame
k achieves maximum channel rate; (b) uses the facts that
the minimum number of flows in system given workload
is W̃n/wmax and W̃n[k; t] ≥ W̃ [k] − T, ∀t = 1, 2, 3, . . . , T ;
(c) is true for some positive constant ŵ due to the fact
that limW̃n→∞ W̃n(1 − pmax

n )(W̃n−T )/2wmax = 0; (d) uses
Hölder’s inequality for some number l > 1 such that
(1 − pmax

n )l ≤ pmin
n ; (e) uses the definition of l; (f) uses

the fact that if all flows in region n do not have an available
channel, then E[Un[k; t]] ≥ E[S∗n(pmin

n )Ñ [k;t]], and the fact
that Un[k] ,

∑T
t=1 Un[k; t]; (g) uses (32).

For the second term on the RHS of the identity (31), we
have

E
[
〈−Ŵ⊥, Û〉

] (a)

≤
√
E
[
‖Ŵ⊥‖2

]
E
[
‖Û‖2

]
=

√
E
[
‖Ŵ⊥‖2

]
E
[ ∑
n∈D+

Ũ2
n

]
(b)

≤

√
K2

εT 2

dmin
(35)

where step (a) uses Cauchy-Swartz inequality; (b) uses
Ũn ≤ T , inequality (32) and Proposition 4.

Substituting (33), (34), and (35) into (31), we have

E[〈d,W̃ + ν − T S̃∗〉〈d, Ũ〉] ≤ B(ε)
5 , (36)

where B(ε)
5 , B

(ε)
4 +

√
Nν2

max
εT 2

dmin
+
√
K2

εT 2

dmin
.

In the end, we substitute (27), (28), (30) and (36) into (24)
and bring the heavy-traffic parameter ε back to reinforce the
result for proving Proposition 2 as follows:

εE[〈d,W̃(ε)〉] ≤ 〈d
2,σ2〉
2

+B(ε), (37)

where

B(ε) ,
1

2
Tε2 + T

ε

2γd

(
b2d +N

)
+

1

2
εT
√
N +

1

T
B

(ε)
5

+ cot(θ)

√
K2ε

γd
(b2d +N). (38)

As ε ↓ 0, we obtain the desired result.

8 CONCLUSION

In this paper, we considered the optimal scheduling design
for wireless UAV networks in the presence of dynamic traf-
fic flows, where each flow with a certain amount of service
demand dynamically arrives at the system and departs once
it completes its service. We developed a MaxWeight-type
scheduling algorithm taking into account the sharp flow-
level dynamics and showed that it not only achieves the
maximum system throughput but also minimizes the mean
workload in the heavy-traffic regime. Finally, extensive sim-
ulation results were provided to validate both the through-
put and heavy-traffic optimality of our proposed algorithm.
For future work, it would be interesting to jointly consider
power control and scheduling, scheduling and caching.
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