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Exploring the Throughput Boundaries of Randomized
Schedulers in Wireless Networks

Bin Li and Atilla Eryilmaz

Abstract—Randomization is a powerful and pervasive strategy
for developing efficient and practical transmission scheduling al-
gorithms in interference-limited wireless networks. Yet, despite the
presence of a variety of earlier works on the design and analysis
of particular randomized schedulers, there does not exist an
extensive study of the limitations of randomization on the efficient
scheduling in wireless networks. In this work, we aim to fill
this gap by proposing a common modeling framework and three
functional forms of randomized schedulers that utilize queue-
length information to probabilistically schedule non-conflicting
transmissions. This framework not only models many existing
schedulers operating under a time-scale separation assumption as
special cases, but it also contains a much wider class of potential
schedulers that have not been analyzed.

We identify some sufficient and some necessary conditions on
the network topology and on the functional forms used in the
randomization for throughput-optimality. Our analysis reveals an
exponential and a sub-exponential class of functions that exhibit
differences in the throughput-optimality. Also, we observe the
significance of the network’s scheduling diversity for throughput-
optimality as measured by the number of maximal schedules each
link belongs to. We further validate our theoretical results through
numerical studies.

Index Terms—Randomized scheduling, throughput-optimality,
stochastic control, distributed algorithm, network stability.

I. INTRODUCTION

One of the greatest challenges in the efficient communication
in wireless networks is the management of interference amongst
simultaneous transmissions. A commonly used model, which
we also employ in this paper, to capture such interference
effects is through the use of a conflict graph whereby trans-
missions that will collide with each other are indicated as
conflicting. These conflict graphs can represent a variety of
interference models of practical importance, including the pri-
mary interference model (e.g., [23], [9]), secondary interference
model (e.g., [2], [3]), or SINR threshold-based interference
model (e.g., [10]). Such conflict graphs can take on extremely
complex forms, especially with growing network sizes. Thus, a
fundamental question in the design of efficient wireless network
protocols is the decision of which subset of non-conflicting
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transmissions to activate, and when - an operation commonly
referred to as scheduling.

Of particular interest in the class of scheduling protocols
is the set of throughput-optimal scheduling strategies (e.g.,
[26], [18]) that achieves any throughput (subject to network
stability) that is achievable by any other scheduling strategy.
Thus, throughput-optimal schedulers are critical especially for
resource-limited wireless networks as they achieve the largest
possible throughput region that is supportable by the network.
The seminal works of Tassiulas and Ephremides [26], [27] and
many subsequent works (e.g., [4], [18], [24]; see [5] for an
overview) have established the throughput-optimality of a vari-
ety of Queue-Length-Based (QLB) Scheduling strategies, which
prioritize activation of links with the greatest backlog awaiting
service, also called Maximum Weight Scheduling (MWS).

These original throughput-optimal strategies require the max-
imum weight schedule to be determined repeatedly as the
queue-length levels change. This calls for computationally
heavy (even NP-hard in certain interference models) and
typically centralized operations, which is impractical. Such
restrictions have motivated new research efforts to develop
more practical throughput-optimal schedulers with reduced
complexity. One such thread led to the development of a class
of evolutionary randomized algorithms (also named pick and
compare algorithms) with throughput-optimality characteristics
(see [25], [3], [22]). Another thread led to the development
of distributed but suboptimal randomized/greedy strategies (see
[13], [8], [1]).

More recently, another exciting thread of results have
emerged that can guarantee throughput-optimality by cleverly
utilizing queue-length information in the context of carrier
sense multiple access (CSMA) (see [14], [7], [20], [19]). In
paper [7], the authors proposed an algorithm that adaptively
selects the CSMA parameters under a time-scale separation as-
sumption, i.e., the Markov Chain underlying the CSMA-based
algorithm converges to steady-state quickly compared with the
time-scale of updating parameters of the algorithm. In paper
[21], the authors showed the throughput-optimality of a CSMA-
based algorithm in which the link weights are chosen to be of
the form log log(q + e) (where q is the queue length) without
the time-scale separation assumption. Ghaderia and Srikant
[6] extended these results by showing that the throughput-
optimality of CSMA-based algorithm will be preserved even
if the link weights have the form log(q)/g(q), where g(q) can
be a function that increases to infinity arbitrarily slowly. Yet,
to the best of our knowledge, there does not exist a general
framework in which a variety of randomized schedulers can be
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studied in terms of their throughput-optimality characteristics.
Thus, in this work, we aim to fill this gap by developing a

common framework for the modeling and analysis of queue-
length-based randomized schedulers, and then by establish-
ing necessary and sufficient conditions on the throughput-
optimality of a large functional class of such schedulers under
the time-scale separation assumption. Our framework is built
upon the observation that a common characteristic to most
of the developed schedulers is their randomized selection of
transmission schedules from the set of all feasible schedules.
Specifically, given the existing queue-lengths of the links, each
scheduling strategy can be viewed as a particular probability
distribution over the set of feasible schedules. While the means
with which this random assignment may vary in its distributive-
ness or complexity, this perspective allows us to model a large
set of existing and an even wider set of potential randomized
schedulers within a common framework.

This work builds on this original point-of-view to explore
the boundaries of randomization in the throughput-optimal
operation of wireless networks. Such an investigation is crucial
in revealing the necessary and sufficient characteristics of
randomized schedulers and the network topologies in which
throughput-optimality can be achieved.

Next, we list our main contributions along with references
on where they appear in the text.
• In Section II, we highlight the pressing need for developing

new randomized schedulers, for example, for operation under
fading conditions and for serving delay-related application
requirements. We also note with a specific example that these
new schedulers may possess fundamentally different probabilis-
tic operation than existing distributed solutions with product
form mappings. This motivates us to study the performance
limitations of wide class of randomization strategies.
• In Section II, we introduce three functional forms of ran-

domized queue-length-based scheduling strategies that include
many existing strategies as special cases (see Definitions 3, 4
and 5). These strategies differ in the manner in which they
measure the weight of schedules, and hence are used to model
fundamentally different scheduling implementations.
• We categorize the set of all functions used by these strate-

gies into functions of exponential form and of sub-exponential
form (see Definition 6), collectively covering almost all func-
tions of interest. These two categories capture the steepness of
the functions used in the schedulers, and help reveal a critical
degree of steepness necessary for throughput-optimality in large
networks.
• Then, we find some sufficient (in Section IV) and some

necessary (in Section V) conditions on the topological char-
acteristics of the conflict graph for the throughput-optimality
of these schedulers as a function of the class of functions
used in their operation. Our results, graphically summarized in
Section III, reveal the significance of the network’s scheduling
diversity that is measured by the number of schedules each link
belongs to.

II. SYSTEM MODEL

A. Basic Definitions

We consider a fixed wireless network represented by a graph
G = (N ,L), where N is the set of nodes and L is the set
of undirected links. We assume a time-slotted system, where
all nodes transmit at the beginning of each time slot. Due to
the interference-limited nature of wireless transmissions, the
success or failure of a transmission over a link depends on
whether an interfering link is also active in the same slot. For
ease of exposition, we assume that a successful transmission
over any link in each slot transfers one packet.

We use conflict graphs to capture any such collision-based
interference in the wireless networks. In a conflict graph
CG = (L, E) of G under a given interference model, the set
of links L in G becomes the set of nodes, and E denotes the
set of edges that connects links that interfere with each other.
In each time slot, we can successfully transmit over nodes in
a subset of L that form an independent set (i.e., that are not
directly connected in CG). We call each such independent set
as a feasible schedule, and denote it as S = (Sl)l∈L, where
Sl = 1 if link l is active and Sl = 0 is link l is inactive in
the schedule. We also treat S as a set of active links and write
l ∈ S if Sl = 1. We use |S| to denote the cardinality of the set
S. We further call a feasible schedule as maximal if no more
nodes in CG can be added without violating the interference
constraint. As maximal schedules represent extreme points in
the space of feasible schedules, we collect them in the set S.
Then, we can define the capacity region Λ as the convex hull1

of S and L-dimensional all-zero vector, which will give the
upper bound on the achievable link rates in packets per slot
that can be supported by the network under stability for the
given interference model.

Given the topology and the interference model of a wireless
network, we define the scheduling diversity of link l ∈ L as the
number of different maximal schedules ml that link l belongs
to. Since each link l ∈ L belongs to at least one maximal
schedule, ml should be the integer greater than or equal to
1. For a network topology with a complete N -partite conflict
graph2, we have ml = 1,∀l ∈ L. As another example, a
single-hop wireless network where all links interfere with each
other, we have ml = 1 for all l. Less trivially, a 2 × 2 switch
has 2-partite conflict graph in which each maximal schedule
has only 2 links, and ml = 1 for each l. Roughly speaking,
the scheduling diversity increases as the network diameter3

increases. Such a behavior can be observed directly in a linear
network with L links under the primary interference model: for
L ≤ 3, ml = 1 for all l; for L ≥ 6, ml ≥ 2 for all l.

In its simplest form, a scheduler determines a maximal
feasible schedule S[t] ∈ S at each time slot t. This selection

1The convex hull of the set V is the minimal convex set containing set V.
2In a complete N -partite conflict graph, the nodes are partitioned into N

sets of nodes without a link between them such that every node in each set is
connected to all the nodes outside of that set.

3Network diameter is the maximum of the shortest hop-count between any
two nodes in the graph.
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may be influenced by the earlier experiences of each transmitter,
and may be performed through a variety of strategies. Here, we
are not interested in the means of selecting schedules, but in
the eventual selection modeled as a probabilistic function of the
queue-length state of the network. Before we define the class
of randomized schedulers we consider more explicitly, we need
to establish the traffic and the queueing models.

For simplicity, we assume a per-link traffic model4, where
Al[t] arrivals occur to link l in slot t that are independently
distributed over links and identically distributed over time with
mean λl, and Al[t] ≤ K for some K < ∞ 5. Accordingly, a
queue is maintained for each link l ∈ L with Ql[t] denoting its
queue length at the beginning of time slot t. Recall from above
that Sl[t] denotes the number of potential departures at time t.
Further, we let Ul[t] denote the unused service for the queue l
in slot t. If the queue l is empty and is scheduled, then Ul[t]
is equal to 1; otherwise, it is equal to 0. Then, the evolution of
the queue l is described as follows:

Ql[t + 1] = Ql[t] + Al[t]− Sl[t] + Ul[t], ∀l ∈ L. (1)

We define F := set of non-negative, nondecreasing and
differentiable functions f(·) : R+ → R+ with lim

x→∞
f(x) = ∞.

We say that the queue l is f -stable for a function f ∈ F if it
satisfies

lim sup
T→∞

1
T

T−1∑
t=0

E[f(Ql[t])] < ∞. (2)

We note that this is an extended form of the more traditional
strong stability condition (see [5]) that coincide when f(x) =
x. Moreover, it is easy to show that f -stability implies strong
stability when f is also a convex function. We say that the
network is f -stable if all its queues are f -stable. Accordingly,
we say that a scheduler is f -throughput-optimal if it achieves f -
stability of the network for any arrival rate vector λ = (λl)l∈L
that lies strictly inside the capacity region Λ. Again, in the
special case of f(x) = x, the notion of f -throughput-optimality
reduces to traditional throughput-optimality, and when f is
convex, f -throughput-optimality implies throughput-optimality.

B. Distributed Algorithms

The operation of many existing schedulers are governed by
probabilistic laws (e.g., [25], [13], [14], [7], [20], [3]). This is
not only because they model possible errors in the scheduling
process, but also because they allow significant flexibilities
in the development of low-complexity and distributed imple-
mentations. Of particular interest in this class of probabilistic
schedulers are distributed CSMA-based algorithms (e.g., [7],
[15], [19]). We give the definition of continuous time CSMA
algorithm for completeness.

4This assumption can be relaxed by utilizing backpressure type routing strat-
egy (see, for example, [26]), which is avoided for unnecessary complications.

5We note that the boundedness assumption on the arrival process simplifies
the technical arguments, but can be relaxed (see, for example, [4]) to the less
strict assumption of E[A2

l (t)] < ∞.

Definition 1 (CSMA Algorithm): Each link l independently
generates an exponentially distributed random variable with
rate f(Ql[t]) and starts transmitting after this random duration
unless it senses another transmission before. If link l senses the
transmission, it suspends its backoff timer and resumes it after
the completion of this transmission. The transmission time of
each link is exponential distributed with mean 1. ¦

A common characteristics of these CSMA-based schedulers
is the product form (see Definition 4) of the mapping of
the total queue-length levels to the probability of the as-
sociated schedule. Such a mapping has been observed to
closely approximate the operation of the throughput-optimal
centralized MWS [26], and hence also possesses throughput
optimality characteristics. However, these CSMA-based algo-
rithm cannot be directly extended to operate under stochastic
network dynamics or sophisticated application requirements. As
an important example, extending CSMA solutions to serving
traffic with strict deadline constraints under wireless fading
channels is difficult for two reasons: (1) the mixing time of
the underlying CSMA Markov Chain grows with the size of
the network, which, for large networks, generates unacceptable
delay for deadline-constrained traffic; (2) since the dynamic
CSMA parameters are influenced by the arrival and channel
state process, the underlying CSMA Markov Chain may not
converge to a steady-state under strict deadline constrains and
fading channel conditions.

Thus, designing an optimal distributed scheduling algorithm
in deadline-constrained scheduling over fading channels be-
comes very challenging. In a recent work [11], we have
found that, in some special network topologies, the following
Fast carrier sensing multiple access (FCSMA) algorithm can
guarantee optimal performance.

Definition 2 (FCSMA Algorithm): At the beginning of each
time slot t, each link l independently generates an expo-
nentially distributed random variable with rate f(Ql[t]), and
starts transmitting after this random duration unless it senses
another transmission before. The link that captures the channel
transmits its packets6 until the end of the slot and restarts in
the next time slot. ¦

We note that FCSMA differs from CSMA in that it restarts
every time slot, and hence increases the probability of meeting
deadline requirements. Further remarks on FCSMA are shown
as follows:

Remarks: (1) Consider a complete N -partite conflict graph,
where each link only belongs to one schedule. If all queue
lengths are large enough, then the idle duration in each slot
will quickly vanish, and FCSMA algorithm reaches one of the
maximal schedule and stick to it for one time slot. Thus, the
FCSMA algorithm serving a schedule S with probability

PS =
∑

i∈S f(Qi)∑
{S′:S′∈S}

∑
j∈S′ f(Qj)

(3)

6If there are no packets awaiting in the link l, it transmits a dummy packet
to occupy the channel.



4

is f -throughput-optimal, which is proven in Section IV. An
interesting observation is that this scheduler does not approx-
imate the MWS operation when queue-lengths are large, as
CSMA does. For example, consider a 2 × 2 switch topology,
where there are only two maximal schedules S1 including
two active links l1 and l2 and S2 including two active links
l3 and l4. Suppose all queue lengths are large enough and
Ql1 + Ql2 = 0.5(Ql3 + Ql4), then the MWS chooses the
schedule S2 and CSMA algorithm selects the schedule S2 with
probability very close to 1. However, FCSMA policy chooses
the schedule S2 with probability close to 2/3. This indicates
the importance of understanding schedulers with fundamentally
different behavior than MWS.

(2) In a fully connected network topology, due to its fast ab-
sorption time and quick adaptation to arrival and channel state
processes, FCSMA policy yields significant advantages over
traditional CSMA policies that evolves slowly to their steady-
state, especially in scheduling deadline constrained traffic over
wireless fading channels. We refer the interested reader to [11]
for more detailed investigation of FCSMA operation.

It is also worth noting that for a given stationary distribution,
it is possible to construct a Markov Chain that converges to it
by Metropolis algorithm [16] or Glauber dynamics (e.g., [21],
[6]). Yet, in this paper, we do not focus on the design of specific
scheduling algorithms that can converge to the stationary distri-
bution. Instead, we are interested in the throughput-optimality
characteristics of a wide class of probabilistic mapping from
the queue length space to the feasible schedules.

In the following, we consider three classes of randomized
schedulers which not only model many existing probabilistic
schedulers as special cases but also contain a much wider
classes of potential schedulers that have not been analyzed.

C. Randomized Schedulers

In this subsection, we identify three classes of randomized
schedulers that differ in the operation of the functional forms
used in them.

Definition 3 (RSOF Scheduler): For a given f ∈ F and
queue-length vector Q at the beginning of a slot, the Ratio-of-
Sum-of-Functions (RSOF) Scheduler picks a schedule S ∈ S
in that slot such that

PS(Q) :=
∑

i∈S f(Qi)∑
{S′:S′∈S}

∑
j∈S′ f(Qj)

, for all S ∈ S. (4)

Definition 4 (RMOF Scheduler): For a given f ∈ F and
queue-length vector Q at the beginning of a slot, the Ratio-of-
Multiplication-of-Functions (RMOF) Scheduler picks a sched-
ule S ∈ S in that slot such that

υS(Q) :=
∏

i∈S f(Qi)∑
{S′:S′∈S}

∏
j∈S′ f(Qj)

, for all S ∈ S. (5)

Definition 5 (RFOS Scheduler): For a given f ∈ F and
queue-length vector Q at the beginning of a slot, the Ratio-of-
Function-of-Sums (RFOS) Scheduler picks a schedule S ∈ S

in that slot such that

πS(Q) :=
f(

∑
i∈S Qi)∑

{S′:S′∈S} f(
∑

j∈S′ Qj)
, for all S ∈ S. (6)

Note that all the RSOF, RMOF and RFOS Schedulers are
more likely to pick a schedule with the larger queue length, but
with different distributions based on their form and the form of
f ∈ F . In particular, the steepness of the function f determines
the weight given to the heavily loaded link in both RSOF
and RMOF Schedulers and the heavily loaded schedule in the
RFOS Scheduler. Also, note that the schedulers coincide in
single-hop network topologies because each maximal schedule
only includes one link in such networks, and for the following
choices of f : when f(x) = x, the RSOF and RFOS Schedulers
coincide; when f(x) = ex, the RMOF and RFOS Schedulers
coincide. These three classes cover a wide variety of schedulers
including many of existing throughput-optimal schedulers. For
example, when f(x) = ex, the RMOS and RFOS Schedulers
correspond to the throughput-optimal CSMA policy operating
under time-scale separation assumption that attracted a lot of
attention lately (see [7], [20], [19]); in a complete N -partite
conflict graph, the RSOF Scheduler corresponds to the FCSMA
policy when all the queue lengths are large enough. Yet, they
also contain a much wider set of schedulers, one for each f .

The aim of this work is to identify the limitations of random-
ization for a wide class of randomized dynamic schedulers that
utilize functions of queue-lengths to schedule transmissions.
Even though randomization has significant advantage in low-
complexity or distributed implementation, it causes inaccu-
rate operation and may be hurtful if not performed within
limitations. In this work, we find that the performance of
the randomized schedulers may especially be sensitive to the
topology of the conflict graph and the functional form used
in the weighting. To see this, consider one maximal schedule
S1 including three active links l1, l2 and l3 in a 3 × 3 switch
topology. We assume that arrivals only happen to those 3 links
at rates λl1 , λl2 and λl3 with the constraints that λli ∈ [0, 1)
for all i = 1, 2, 3, which clearly can be supported by a simple
policy that always serves the schedule S1. Thus, by setting λli

arbitrarily close to one for each i, this simple policy can achieve
a sum rate of

∑3
i=1 λli < 3. However, for a RFOS Scheduler

with f(x) = x, we can easily calculate that
∑3

i=1 θli = 2,
where θli (i = 1, 2, 3) is the probability of serving link li.
Thus, the RFOS Scheduler with f(x) = x cannot achieve full
capacity region in a 3× 3 switch.

Yet, in the same set up, if we use f(x) = ex instead of
f(x) = x in the RFOS Scheduler, the mapping has the same
probabilistic form as the CSMA policy, and thus would be
throughput-optimal. This shows the significant impact of the
functional form on the throughput performance of randomized
schedulers. In addition, the RFOS Scheduler with f(x) = x is
shown to be f -throughput-optimal in a 2×2 switch (see Figure
3), which indicates that the network topology may also affect
the throughput performance of randomized schedulers.
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Fig. 1: The relationship between classes A, B and C.

Next, we identify the three classes of functions with varying
forms that turn out to be crucial to our investigation.

Definition 6: We consider the following subsets of F :

(a) A := {f ∈ F : ∀ε > 0, lim
x→∞

f(x)
f((1 + ε)x)

= 0}.

(b) B := {f ∈ F : lim
x→∞

f(x + a)
f(x)

= 1, for any a ∈ R}.

(c) C := {f ∈ B: there exist K1 and K2 satisfying 0 < K1 ≤
K2 < ∞ such that K1(f(x1) + f(x2)) ≤ f(x1 + x2) ≤
K2(f(x1) + f(x2)), for all x1, x2 ≥ 0}.

We call A as the class of exponential functions and C
as the class of sub-exponential functions. The key examples
of functions with sets A,B, C and their interrelationship are
extensively studied in Appendix A.

Figure 1 concisely demonstrates the most critical facts:
that A and C are non-overlapping classes; while B has an
intersection with A. Furthermore, the example functions are
provided with a variety of forms that justify the names assigned
to A and C : A contains rapidly increasing functions generally
with exponential forms; while C contains sub-exponentially
increasing polynomial and logarithmic functional forms. In the
study of necessary and sufficient conditions for throughput-
optimality, we shall find that most of the results depend on
which of these three functional classes the functions belong to.

III. OVERVIEW OF MAIN RESULTS

In this section, we present our main findings and resulting
insights on the throughput-optimality of the RSOF, RMOF and
RFOS Schedulers (see Definitions 3, 4 and 5) with different
functional forms under different network topologies. These re-
sults are rigorously proven in Sections IV and V. To facilitate an
accessible figurative presentation, in the horizontal dimension,
we conceptually order the functions in F in increasing level of
steepness starting from f(x) = (log(x + 1))α and f(x) = xα

for any α > 0 that belong to C, followed by f(x) = 1
xβ exα

for any 0 < α < 1 and any β ≥ 0 that belongs to B⋂A,
and finishing with f(x) = 1

xβ exα

for any α ≥ 1 and any
β ≥ 0 that belongs to A. In the vertical dimension, we
use the scheduling diversity (ml)l∈L introduced in Section II
to distinguish different topological and interference scenarios.

Recall that since ml denotes the number of different maximal
schedules that link l belongs to, it may be viewed as a rough
measure of the network diameter. Then, the main results for
the RSOF and RFOS Schedulers are presented in Figures 2
and 3, respectively. In these figures, we also include several
conjectures that are validated through simulations in Section VI.
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Fig. 2: The throughput performance of the RSOF Scheduler.

ml=1,

l

ml 2,

l

ml

network 

with high 

scheduling

diversity

network

with low 

scheduling

diversity

conjecture:

f-throughput-optimal

class of sub-exponential 

functions C

Throughput-optimal

exp(x )/x             exp(x )/x

(0< <1, 0)    ( 1, 0)

class of exponential 

functions A

unknown

non-throughput-optimal

f

u
n
k
n
o
w

n

f-throughput-optimal

(single-hop network)

(log(x+1)) x x    x

( >0)     (0< <1)   ( >1)

Fig. 3: The throughput performance of the RFOS Scheduler.

From Figure 2, we see that the RSOF Scheduler with the
function f ∈ B is f -throughput-optimal when ml = 1,∀l ∈ L.
Also, the RSOF Scheduler with the function f ∈ A \ B
is throughput-optimal in single-hop network topologies since
the RSOF and RFOS Schedulers have the same probability
distribution over schedules in such networks and the RFOS
Scheduler with the function f ∈ A is throughput-optimal (see
Figure 3). However, if minl∈Lml ≥ 2, the RSOF Scheduler
with any function f ∈ F cannot be throughput-optimal. Thus,
roughly speaking, the RSOF Scheduler is non-throughput-
optimal for the network with high scheduling diversity, while
the RSOF Scheduler with the function f ∈ B is f -throughput-
optimal for low scheduling diversity. We note that although
the throughput performance of the RSOF Scheduler with some
exponential functions f ∈ A \ B (i.e. f(x) = 1

xβ exα

, α ≥ 1
and β ≥ 0) is not yet explored in general topologies with
ml = 1,∀l ∈ L, we conjecture that it is f -throughput-optimal
in this region, since the RSOF Scheduler with such functions
reacts much more quickly to the queue length difference
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between schedules than that with sub-exponential functions,
especially under asymmetric arrival patterns. We validate this
conjecture through simulations in Section VI. Overall, the
RSOF Scheduler is more sensitive to the network topology than
the functional form used in it.

The horizontal unknown region corresponds to network
topologies where some links have scheduling diversity 1 and
other links have scheduling diversity at least 2. The vertical
unknown region corresponds to randomized schedulers with
functions that are not in the functional classes A, B and C. In
Figure 3, we observe that the RFOS Scheduler with the function
f ∈ A is throughput-optimal under any network topology. Also,
the RFOS Scheduler with the function f ∈ C is f -throughput-
optimal in single-hop network topologies, which follows from
the fact that the RFOS and RSOF Schedulers have the same
probability probabilistic forms in such networks, the result that
the RSOF Scheduler with the function f ∈ B is f -throughput-
optimal (see Figure 2) and the fact that C ⊆ B. Also, when
the function f is linear, the RFOS Scheduler has the same
probability form with the RSOF Scheduler and thus is f -
throughput-optimal when ml = 1,∀l ∈ L. However, the RFOS
Scheduler with the function f ∈ C is not throughput-optimal
when minl∈Lml ≥ 2. Roughly speaking, the network with
higher scheduling diversity requires much steeper functions
(e.g., exponential functions) for the throughput-optimality of
the RFOS Scheduler. While the throughput performance of the
RFOS Scheduler with the function f ∈ C \ {linear functions}
for general network topologies with ml = 1,∀l ∈ L is part of
our ongoing work, we conjecture that it is f -throughput-optimal
in those topologies since both RFOS and RSOF Schedulers
with sub-exponential functions have almost the same reaction
speed to the queue length difference between schedules. We
also validate this conjecture via simulations in Section VI.
Overall, the RFOS Scheduler is more sensitive to the functional
form used in it than the network topology.

The RMOF Scheduler with the function f satisfying log f ∈
B and f(0) ≥ 1 is (log f )-throughput-optimal under any net-
work topology. This result together with the RFOS Scheduler
with the function f ∈ A extends the throughput-optimality of
CSMA schedulers (e.g. [7], [19]) to a wider class of functional
forms. While this result proves a weaker form of throughput-
optimality than f -throughput-optimality for the RMOF Sched-
uler, we note that the RMOF Scheduler generally outperforms
the RFOS and RSOF Schedulers in numerical investigations.
Hence, we leave it to future research to strengthen this result.

Collectively these results not only highlight the strengths
and weaknesses of the three functional randomized schedulers,
they also reveal the interrelation between the steepness of the
functions and the scheduling diversity of the underlying wire-
less networks. This extensive understanding of the limitations
of randomization may motivate the network designers to use
or avoid certain types of probabilistic scheduling strategies
depending on the topological characteristics of the network.

IV. SUFFICIENT CONDITIONS

In this section, we study the sufficient conditions on the
network’s topological characteristics and the functions used in
the RSOF, RMOF and RFOS Schedulers to achieve throughput-
optimality.

A. f -Throughput-Optimality of the RSOF Scheduler

We study the throughput performance of the RSOF Scheduler
for a network topology with ml = 1,∀l ∈ L. In such a network,
each link belongs to only one maximal schedule.

Lemma 1: If
∑N

i=1 λi < 1, λi > 0, and ai ≥ 0, for i =
1, ..., N , then there exists a δ > 0 such that

N∑

i=1

a2
i

λi
≥ (

N∑

i=1

ai)2(1 + δ). (7)

Proof: See Appendix B for the proof.
Theorem 1: In a network topology with the scheduling di-

versity of each link equal to 1, i.e., ml = 1,∀l ∈ L, the RSOF
Scheduler with the function f ∈ B is f -throughput-optimal.

Proof: We assume that there are only N available maximal
schedules. Let Si (i = 1, ..., N ) denote the ith maximal
schedule. In each maximal schedule Si, there are |Si| active
links. We use (Si

l , l = 1, ..., |Si|) to denote the sequence
of active links in the maximal schedule Si. Note that we
use i to index maximal schedule and l to index link. Since
the schedule diversity of each link is equal to 1, each link
belongs to only one maximal schedule. Thus, we can denote the
queues, arrivals, and scheduling statistics in terms of maximal
schedules for easier exposition. To that end, we let Qi

l , λi
l and

P i
l (i = 1, ..., N, l = 1, ..., |Si|) denote the queue-length of

link l ∈ Si, the average arrival rate for the link l ∈ Si and the
probability of serving the link l ∈ Si, respectively. In addition,
Ai

l[t], Si
l [t] and U i

l [t] denote the number of arrivals to link
l ∈ Si at time slot t, the number of potential departures of link
l ∈ Si in slot t and the unused service for link l ∈ Si at time
slot t, respectively. Recall that each link can only belong to
one maximal schedule and note that links in different maximal
schedules cannot be active at the same time. Thus, the capacity
region for such network is

CN := {λ :
N∑

i=1

λi
li < 1,∀li = 1, ..., |Si|}. (8)

Under the above notation, the RSOF Scheduler becomes :

PSi =
∑|Si|

l=1 f(Qi
l)∑N

k=1

∑|Sk|
l=1 f(Qk

l )
, i = 1, ..., N. (9)

Note that P i
l = PSi , for l = 1, ..., |Si|. If λi

l = 0 for some i
and l, then no arrivals occur in the link l ∈ Si. Thus, we don’t
need to consider such links. In the rest of proof, we assume
λi

l > 0 (i = 1, ..., N , l = 1, ..., |Si|). Consider the Lyapunov
function V (Q) :=

∑N
i=1

∑|Si|
l=1

h(Qi
l)

λi
l

, where h′(x) = f(x). By
using Lemma 1, it is shown in the Appendix C that there exist
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positive constants γ and G such that

∆V : = E [V (Q[t + 1])− V (Q[t])|Q[t] = Q]

≤ −γ
N∑

i=1

|Si|∑

l=1

f(Qi
l) + G. (10)

By using the Theorem 4.1 in [17], inequality (10) implies the
desired result.

B. Throughput-Optimality of RMOF and RFOS Schedulers

In this subsection, we investigate the sufficient condition for
the throughput-optimality of RMOF and RFOS Schedulers.

Theorem 2: (i) The RMOF Scheduler with the function
f ∈ F satisfying log f ∈ B and f(0) ≥ 1 is (log f )-throughput-
optimal under any network topology;
(ii) The RFOS Scheduler with the function f ∈ A is
throughput-optimal under any network topology.

Proof: To prove this, we use a similar approach as in
[19] that uses the following result from [4]: for a scheduling
algorithm, given any 0 ≤ ε, δ < 1, there exists an M > 0
for which the scheduling algorithm satisfies the following
condition: in any time slot t, with probability greater than 1−δ,
the scheduling algorithm chooses a schedule x[t] ∈ S that
satisfies:

∑
l∈x[t] w(Ql[t]) ≥ (1− ε)maxx∈S

∑
l∈x[t] w(Ql[t]),

whenever ‖ Q[t] ‖> M , where Q[t] := (Ql[t])l∈L, and w ∈ B.
Then the scheduling algorithm is w-throughput-optimal.
(i) Given any ε1 and δ1 such that 0 ≤ ε1, δ1 < 1. Let

X1 := {x ∈ S :
∑

l∈x

log f(Ql[t]) < (1− ε1)W ∗
1 [t]}, (11)

where W ∗
1 [t] := maxx∈S

∑
l∈x log f(Ql[t]). Then, we have

υ(X1) =
∑

x∈X1

υx =
∑

x∈X1

∏
l∈x f(Ql[t])∑

x′∈S
∏

l∈x′ f(Ql[t])

=

∑
x∈X1

exp
[∑

l∈x log f(Ql[t])
]

∑
x∈S exp

[∑
l∈x log f(Ql[t])

]

<
|X1| exp [(1− ε1)W ∗

1 [t]]∑
x∈S exp

[∑
l∈x log f(Ql[t])

] .

Since
∑

x∈S exp
[∑

l∈x log f(Ql[t])
] ≥ exp(W ∗

1 [t]), then we
get

υ(X1) <
|X1| exp [(1− ε1)W ∗

1 [t]]
exp(W ∗

1 [t])
=

|X1|
exp(ε1W ∗

1 [t])
. (12)

If some queue lengths increase to infinity, then W ∗
1 [t] → ∞

and thus we have υ(X1) → 0. Hence, there exists a M1 > 0
such that ‖ Q[t] ‖> M1 and the RMOF Scheduler with the
function f ∈ F satisfying log f ∈ B and f(0) ≥ 1 picks the
schedule S[t] ∈ S \ X1 with probability 1 − δ1 and thus is
log f -throughput-optimal under any topology.
(ii) Given any ε2 and δ2 such that 0 ≤ ε2, δ2 < 1. Let W ∗

2 [t] :=
maxx∈S

∑
l∈x Ql[t], and X2 := {x ∈ S :

∑
l∈x Ql[t] < (1 −

ε2)W ∗
2 [t]}. Then, by using the same technique as in (i), we

can prove that the RFOS Scheduler with f ∈ A is throughput-
optimal under any topology.

V. NECESSARY CONDITIONS

So far, we have shown that the RSOF Scheduler with
the function f ∈ B is f -throughput-optimal in the network
topology with ml = 1,∀l ∈ L and the RFOS Scheduler with the
function f ∈ A is throughput-optimal under arbitrary network
topologies. However, the next result establishes that in network
topologies where each link belongs to two or more schedules
(i.e. when minl∈Lml ≥ 2), the RSOF Scheduler with any
function f ∈ F and RFOS Scheduler with the function f ∈ C
cannot be throughput-optimal.

Theorem 3: If the network is such that minl∈Lml ≥ 2, then
(i) RSOF Scheduler is not throughput-optimal for any f ∈ F ;
(ii) RFOS Scheduler is not throughput-optimal for any f ∈ C.

Proof: We prove these claims constructively by consider-
ing an arrival process that is inside the capacity region, but is
not supportable by the randomized schedulers for the given
functional forms. To that end, let us consider any maximal
schedule S0 ∈ S and index its links as {1, 2, ..., n} for
convenience. We assume that arrivals only happen to those n
links at rates λ1, · · · , λn with the constraint that λl ∈ [0, 1)
for all l = 1, · · · , n, which is clearly supportable by a simple
scheduling policy that always serves the schedule S0. Thus,
setting λl arbitrarily close to one for each l, this simple policy
can achieve a sum rate of

∑n
l=1 λl < n.

We define M = {S ∈ S : S
⋂

S0 6= ∅}, K = S \ M,
H = M\ {S0} and T = S \ {S0}. In the rest of the proof,
we use AB to denote the intersection of A and B.

Given this construction, we next prove the following state-
ments for the RSOF and RFOS Schedulers respectively:
(1) If

∑n
l=1 λl > n− 1

2 , the RSOF Scheduler with any function
f ∈ F is unstable.
(2) If

∑n
l=1 λl > n − K′

1
2K′

2
, where K ′

1 and K ′
2 are positive

constants described in Appendix A, the RFOS Scheduler with
the associated function f ∈ C is unstable.

Since the aforementioned simple scheduler can stabilize the
sum rate

∑n
l=1 λl < n, the RSOF Scheduler with any function

f ∈ F and RFOS Scheduler with the associated function f ∈ C
are not throughput-optimal. We next prove these claims that
complete the proof of Theorem 3.
(1) Under the above model, the RSOF Scheduler becomes

PS =

∑
l∈SS0

f(Ql) + |S \ S0|f(0)∑
S′:S′∈S(

∑
l∈S′S0

f(Ql) + |S′ \ S0|f(0))
.

Let Pl denote the probability that link l ∈ S0 is served, then
n∑

l=1

Pl =
n∑

l=1

∑

S∈M:l∈SS0

PS

=

=:L1︷ ︸︸ ︷
n∑

l=1

∑

S∈M:l∈SS0

(
∑

i∈SS0

f(Qi) + |S \ S0|f(0))

∑

S:S∈S

∑

l∈SS0

f(Ql) +
∑

S:S∈S
|S \ S0|f(0)

︸ ︷︷ ︸
=:L2

.
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Since
∑

S:S∈S
∑

l∈SS0
f(Ql) =

∑n
l=1 f(Ql)

∑
S∈M:l∈SS0

1,∑n
l=1

∑
S∈M:l∈SS0

|S\S0|f(0) =
∑

S:S∈S |SS0||S\S0|f(0),
and

n∑

l=1

∑

S∈M:l∈SS0

∑

i∈SS0

f(Qi) =
∑

S:S∈M

∑

l∈SS0

∑

i∈SS0

f(Qi)

=
∑

S:S∈M
|SS0|

∑

i∈SS0

f(Qi) =
n∑

l=1

f(Ql)
∑

S∈M:l∈SS0

|SS0|,

we can extend L1 and L2 as follows:

L1 =

n∑

l=1

f(Ql)
∑

S∈M:l∈SS0

|SS0|+
∑

S:S∈S
|SS0||S \ S0|f(0)

=

n∑

l=1

f(Ql)(n +
∑

H∈H:l∈HS0

|HS0|) +
∑

T:T∈T
|TS0||T \ S0|f(0),

and

L2 =
n∑

l=1

f(Ql)
∑

S∈M:l∈SS0

1 +
∑

S:S∈S
|S \ S0|f(0)

=
n∑

l=1

f(Ql)(1 +
∑

H∈H:l∈HS0

1) +
∑

T:T∈T
|T \ S0|f(0).

Thus, we have
n∑

l=1

Pl =
L1

L2
= n− Z1

Z2
, (13)

where Z1 =
∑n

l=1 f(Ql)
∑

H∈H:l∈HS0
(n − |HS0|) +∑

T:T∈T (n− |TS0|)|T \S0|f(0), and Z2 =
∑n

l=1 f(Ql)(1+∑
H∈H:l∈HS0

1) +
∑

T:T∈T |T \ S0|f(0). Note that |HS0| ≤
n − 1, for ∀H ∈ H, and |TS0| ≤ n − 1, for ∀T ∈ T .
Now, since ml =

∑
S∈S:l∈S 1 ≥ 2,∀l ∈ S0, we have∑

H∈H:l∈HS0
1 ≥ 1,∀l ∈ S0. Then, we get

Z1

Z2
≥

∑n
l=1 f(Ql)

∑
H∈H:l∈HS0

1 +
∑

T:T∈T |T \ S0|f(0)
2

∑n
l=1 f(Ql)

∑
H∈H:l∈HS0

1 + 2
∑

T:T∈T |T \ S0|f(0)

=
1
2
.

Thus, we have
∑n

l=1 Pl ≤ n− 1
2 . Hence, for topologies where

minl∈Lml ≥ 2, if
∑n

l=1 λl > n − 1
2 , in which case the

total arrival rate is greater than the total service rate, then, the
RSOF Scheduler is unstable by following the Theorem 2.8 and
Theorem 2.5 in [17].

(2) With the same model, the RFOS Scheduler becomes

πS =
f(

∑
l∈SS0

Ql)∑
S′:S′∈M f(

∑
l∈S′S0

Ql) +
∑

S′′:S′′∈K f(0)
. (14)

Then,
n∑

l=1

Pl =
n∑

l=1

∑

S∈M:l∈SS0

πs

=

∑n
l=1

∑
S∈M:l∈SS0

f(
∑

i∈SS0
Qi)∑

S:S∈M f(
∑

l∈SS0
Ql) +

∑
S:S∈K f(0)

.

Since
n∑

l=1

∑

S∈M:l∈SS0

f(
∑

i∈SS0

Qi) =
∑

S:S∈M
|SS0|f(

∑

i∈SS0

Qi),

we have
n∑

l=1

Pl =

∑
S:S∈M |SS0|f(

∑
l∈SS0

Ql)∑
S:S∈M f(

∑
l∈SS0

Ql) +
∑

S:S∈K f(0)

=
nf(

∑n
l=1 Ql) +

∑
H:H∈H |HS0|f(

∑
l∈HS0

Ql)
f(

∑n
l=1 Ql) +

∑
H:H∈H f(

∑
l∈HS0

Ql) +
∑

S:S∈K f(0)

=n−
∑

H:H∈H(n− |HS0|)f(
∑

l∈HS0
Ql) + n

∑
S:S∈K f(0)

f(
∑n

l=1 Ql) +
∑

H:H∈H f(
∑

l∈HS0
Ql) +

∑
S:S∈K f(0)

.

The fact that f ∈ C implies that there exist K ′
1 and K ′

2
satisfying 0 < K ′

1 ≤ K ′
2 < ∞ such that K ′

1

∑m
i=1 f(Qi) ≤

f(
∑m

i=1 Qi) ≤ K ′
2

∑m
i=1 f(Qi), for ∀m = 1, ..., n, where

Qi ≥ 0, i = 1, ..., m, which follows from induction. Then,
we have

n∑

l=1

Pl

≤n− K′
1

K′
2
·

∑
H:H∈H(n− |HS0|)

∑
l∈HS0

f(Ql) + n
∑

S:S∈K f(0)
∑n

l=1 f(Ql) +
∑

H:H∈H
∑

l∈HS0
f(Ql) +

∑
S:S∈K f(0)

=n− K′
1

K′
2
·

∑n
l=1 f(Ql)

∑
H∈H:l∈HS0

(n− |HS0|) + n
∑

S:S∈K f(0)
∑n

l=1 f(Ql) +
∑n

l=1 f(Ql)
∑

H∈H:l∈HS0
1 +

∑
S:S∈K f(0)

.

Note that |HS0| ≤ n − 1, for ∀H ∈ H, and that ml =∑
S∈S:l∈S 1 ≥ 2,∀l ∈ S0, implies that

∑
H∈H:l∈HS0

1 ≥
1,∀l ∈ S0. Then, we get

n∑

l=1

Pl ≤ n− K′
1

K′
2

·
∑n

l=1 f(Ql)
∑

H∈H:l∈HS0
1 +

∑
S:S∈K f(0)

2
∑n

l=1 f(Ql)
∑

H∈H:l∈HS0
1 + 2

∑
S:S∈K f(0)

≤ n− K′
1

2K′
2

. (15)

Thus, by following the same argument as in the proof
for statement (1), we know that when minl∈Lml ≥ 2 and∑n

l=1 λl > n− K′
1

2K′
2

, the RFOS Scheduler is unstable.

VI. SIMULATION RESULTS

In this section, we first perform numerical studies to vali-
date the throughput performance of the proposed randomized
schedulers with different functions in 2 × 2 and 3 × 3 switch
topologies. Then, we evaluate the impact of functional forms
on the delay performance of proposed randomized schedulers
in 2× 2 switch topologies.

A. Throughput Performance

In a 2 × 2 switch, the scheduling diversity of each link
is 1 and thus all proposed randomized schedulers are proven
to be throughput-optimal. In a 3 × 3 switch, the scheduling
diversity of each link is 2, for which the RFOS Scheduler
needs to carefully choose the functional form to preserve the
throughput optimality while the RSOF Scheduler is not f -
throughput-optimal with any function f ∈ F

In a 2 × 2 switch, we consider arrival rate vector λ = ρH,
where H = [Hij ] is a doubly-stochastic matrix with Hij
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Fig. 5: Delay performance comparison of the randomized schedulers with different functional forms

denoting the fraction of the total rate from input port i that
is destined to output port j. Then, ρ ∈ (0, 1) represents the
average arrival intensity, where the larger the ρ, the more
heavily loaded the switch is. We present two cases: symmetric
arrival process (H1 = [0.5 0.5; 0.5 0.5]) and asymmetric arrival
process (H2 = [0.1 0.9; 0.9 0.1]) under high arrival intensity
ρ = 0.99.

From Figures 4(a) and 4(b), we can observe that all ran-
domized schedulers can stabilize the system under symmetric
and asymmetric arrival traffics. So, there is a wide class of
choices under which the randomized scheduling can guarantee
the throughput performance in the 2×2 switch. In addition, we
can see that the RSOF Scheduler with the exponential function
and the RFOS Scheduler with the square function are also stable
in both symmetric and asymmetric arrival processes, which
support our conjecture in Section III that the RSOF Scheduler
with the function f ∈ A and the RFOS Scheduler with the
function f ∈ B are f -throughput optimal in network topologies
with ml = 1,∀l ∈ L.

In a 3 × 3 switch, we consider arrival rate vector λ =
[0.95 0 0; 0 0.95 0; 0 0 0.95], where the RSOF Scheduler
with any function f ∈ F and the RFOS Scheduler with any
function f ∈ C cannot stabilize. The evolution of average
queue length per link over time for different schedulers with
different functions are shown in figures 4(c). From Figure 4(c),
we can observe that the average queue lengths of the RSOF
Schedulers with linear function, square function and even
exponential function increase very fast, which validates our
theoretical result that the RSOF Scheduler with any function
f ∈ F cannot be throughput-optimal in network topologies
with minl∈Lml ≥ 2. In addition, we can see that the average
queue lengths of the RFOS Schedulers with linear function
and square function grow quickly while the RFOS Scheduler
with exponential function always keeps low queue length level,
which demonstrates that the steepness of functional form needs
to be high enough for the RFOS Scheduler to keep throughput
optimality in general network topologies. Even though our
result indicates that the RMOF Scheduler with any function
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f satisfying log f ∈ B and f(0) ≥ 1 is (log f )-throughput-
optimal in general network topologies, we can see that the
RMOF Scheduler is still stable even with linear function. This
validates that our conjecture that the RMOF Scheduler with
any function f ∈ F can be f -throughput-optimal in general
network topologies.

B. Delay Performance

In this subsection, we perform numerical studies to evaluate
the delay performance of proposed randomized schedulers with
different functions in a 2× 2 switch topology.

From Figure 5(a), we can observe that, under symmetric
arrival traffic, the delay performance is highly insensitive to
the choice of the randomization and the functional form being
used in it especially under high arrival load. So, there is a wide
class of choices under which the randomized scheduling can
yield good delay performance. On the other hand, Figure 5(b)
demonstrates that, under asymmetric arrival traffic, the RMOF
Scheduler is more robust to the choice of functions used in
it than both the RSOF and RFOS Schedulers. In particular, it
appears that the steepness of f needs to be high enough for each
randomization to yield good delay performance. Generally, the
RMOF Scheduler outperforms the other two randomized sched-
ulers especially under asymmetric arrival traffic. In all cases,
the RSOF and RFOS Schedulers have similar performance and
MWS has the best delay performance.

While these numerical studies indicate a number of interest-
ing facts on the mean delay performance of randomized sched-
ulers, we leave a more careful delay performance comparison
to future research. There is clearly a need for a deeper investi-
gation of delay performance of throughput-optimal schedulers.
This work forms the foundation to investigate these higher-
order performance metrics in our future research.

VII. CONCLUSIONS

We explored the limitations of randomization in the
throughput-optimal scheduler design in a generic framework
under the time-scale separation assumption. We identified three
important functional forms of queue-length-based schedulers
that covers a vast number of dynamic schedulers of interest.
These forms differ fundamentally in whether they work with
the queue-length of individual links or whole schedules.

For all of these functional forms, we established some suffi-
cient and some necessary conditions on the network topology
and the functional forms for their throughput-optimality. We
also provided numerical results to validate our theoretical
results and conjectures, which will be further studied in our
future work.

APPENDIX A
PROPERTIES OF FUNCTIONAL CLASSES

The following remarks explore more properties of classes A,
B and C.

(1) In B, if limx→∞
f(x+a)

f(x) exists for any a ∈ R, then this

limit should be equal to 1. Indeed, let limx→∞
f(x+a)

f(x) = b

for any a ∈ R, where b > 0. Then b = limx→∞
f(x+2)

f(x) =

limx→∞
f(x+2)
f(x+1) · f(x+1)

f(x) = b2. Thus, b = 1.

(2) If the definition of C is not constrained by the set B, then
C is not necessarily a subset of B. In fact, we can construct a
function f ∈ C for which limx→∞

f(x+a)
f(x) does not exist and

hence f 6∈ B.

(3) In C, if f ∈ F , then the lower bound of f(x1 +x2) always
exists. Also if there exists w > 0 such that f(2x) ≤ wf(x) for
any x ≥ 0, then the upper bound of f(x1 + x2) always exists.
Indeed, since f(·) is nondecreasing, f(x1 + x2) ≥ f(xi), for
i = 1 or 2. Hence f(x1 + x2) ≥ 1

2 (f(x1) + f(x2)). Thus, let
K1 = 1

2 , then we always have K1(f(x1)+f(x2)) ≤ f(x1+x2).
On the other hand, f(x1 + x2) ≤ max{f(2x1), f(2x2)} ≤
f(2x1) + f(2x2) ≤ w(f(x1) + f(x2)). Thus, let K2 = w, we
have f(x1 + x2) ≤ K2(f(x1) + f(x2)).

(4) If f ∈ C, then given n ∈ N, there exist K ′
1 and K ′

2

satisfying 0 < K ′
1 ≤ K ′

2 < ∞ such that K ′
1

∑m
i=1 f(xi) ≤

f(
∑m

i=1 xi) ≤ K ′
2

∑m
i=1 f(xi), for m = 1, ..., n, where

xi ≥ 0, i = 1, ..., m. This directly follows from the induction.

(5) A⋂ C = ∅. Indeed, if f ∈ A, then limx→∞
f(2x)
f(x) = ∞.

Thus, for any c > 0, ∃M > 0 such that f(2x) > cf(x) for any
x > M . Hence, f 6∈ C. On the other hand, if f ∈ C, then ∃d > 0
such that f(2x) ≤ df(x). Hence, lim supx→∞

f(2x)
f(x) ≤ d and

thus f 6∈ A.

APPENDIX B
PROOF FOR LEMMA 1

Proof: If n = 1, because λ1 ∈ (0, 1), by assumption, there
exists a 0 < δ1 < 1

λ1
− 1, such that a2

1
λ1
≥ a2

1(1 + δ1).

Assume that n = k, it is true. That is, if
∑k

i=1 λi < 1 and
λi > 0 (i = 1, ..., k), then there exists a δk = δ(λ1, ..., λk) > 0
such that

1
λ1

a2
1 + ... +

1
λk

a2
k ≥ (a1 + ... + ak)2(1 + δk). (16)

Then for n = k + 1 and λ1 + ... + λk + λk+1 < 1, we have

1
λ1

a2
1 + ... +

1
λk

a2
k +

1
λk+1

a2
k+1

=
1
λ1

a2
1 + ... +

1
λk−1

a2
k−1

+
1

λk + λk+1
(
λk + λk+1

λk
a2

k +
λk + λk+1

λk+1
a2

k+1)

≥
[
a1 + ... + ak−1 +

√
λk + λk+1

λk
a2

k +
λk + λk+1

λk+1
a2

k+1

]2

· (1 + δk+1) (by assumption). (17)
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Since
λk + λk+1

λk
a2

k +
λk + λk+1

λk+1
a2

k+1 − (ak + ak+1)2

=
λk+1

λk
a2

k +
λk

λk+1
a2

k+1 − 2akak+1

≥2

√
λk+1

λk
a2

k ·
λk

λk+1
a2

k+1 − 2akak+1 = 0, (18)

hence√
λk + λk+1

λk
a2

k +
λk + λk+1

λk+1
a2

k+1 ≥ (ak + ak+1). (19)

Thus, equation (17) becomes
k+1∑

i=1

1
λi

a2
i ≥ (

k+1∑

i=1

ai)2(1 + δk+1).

APPENDIX C
PROOF OF INEQUALITY (10)

∆V : = E [V (Q[t + 1])− V (Q[t])|Q[t] = Q]

=
N∑

i=1

|Si|∑

l=1

E
[

1
λi

l

(h(Qi
l[t + 1])− h(Qi

l[t]))|Q[t] = Q
]

.

By the mean-value theorem, we have h(Qi
l[t+1])−h(Qi

l[t]) =
f(Ri

l [t])(Q
i
l[t + 1] − Qi

l[t]) = f(Ri
l [t])(A

i
l[t] − Si

l [t] + U i
l [t]),

where Ri
l [t] lies between Qi

l[t] and Qi
l[t + 1]. Hence, we get

∆V =
N∑

i=1

|Si|∑

l=1

E
[

1
λi

l

f(Ri
l [t])(A

l
l[t]− Si

l [t] + U i
l [t])|Q[t] = Q

]

=
N∑

i=1

|Si|∑

l=1

E
[

1
λi

l

f(Ri
l [t])U

i
l [t]|Q[t] = Q

]

︸ ︷︷ ︸
=:∆V1

+

N∑

i=1

|Si|∑

l=1

E
[

1
λi

l

f(Ri
l [t])(A

i
l[t]− Si

l [t])|Q[t] = Q
]

︸ ︷︷ ︸
=:∆V2

.

For ∆V1, if Qi
l[t] = Qi

l > 0, then U i
l [t] = 0. If Qi

l[t] = Qi
l = 0,

then U i
l [t] may be equal to 1. But in this case, Qi

l[t + 1] ≤ K
(since Ai

l[t] ≤ K). Hence, f(Ri
l [t]) ≤ f(K) < ∞. Thus,

∆V1 =
N∑

i=1

|Si|∑

l=1

E
[

1
λi

l

f(Ri
l [t])U

i
l [t]|Q[t] = Q

]
1{Qi

l=0}

≤
N∑

i=1

|Si|∑

l=1

1
λi

l

f(K) ≤ D
N∑

i=1

|Si|∑

l=1

f(K), (20)

where D := 1
min{λi

l}
< ∞ and 1{·} is the indicator function.

Next, let’s focus on ∆V2. We know that f(Ri
l [t]) = f(Qi

l[t]+
ai

l) (|ai
l| ≤ K). According to the definition of function f ∈ B,

given ε > 0, there exists M > 0, such that for any Qi
l[t] =

Qi
l > M , we have

∣∣∣ f(Ri
l [t])

f(Qi
l)
− 1

∣∣∣ < ε, that is, (1 − ε)f(Qi
l) <

f(Ri
l [t]) < (1 + ε)f(Qi

l). Thus, we have

f(Ri
l [t])(A

i
l[t]− Si

l [t])

=f(Ri
l [t])

[
(Ai

l[t]− Si
l [t])+ − (Ai

l[t]− Si
l [t])−

]

≤(1 + ε)f(Qi
l)(A

i
l[t]− Si

l [t])+ − (1− ε)f(Qi
l)(A

i
l[t]− Si

l [t])−
=f(Qi

l)(A
i
l[t]− Si

l [t]) + εf(Qi
l)

∣∣Ai
l[t]− Si

l [t]
∣∣

≤f(Qi
l)(A

i
l[t]− Si

l [t]) + Kεf(Qi
l), (21)

where (x)+ = max{x, 0}, (x)− = −min{x, 0}, and |Ai
l[t] −

Si
l [t]| ≤ |Ai

l[t]| ≤ K. Thus, we divide ∆V2 into two parts:

∆V2 =

N∑
i=1

|Si|∑

l=1

E
[

1

λi
l

f(Ri
l [t])(A

i
l[t]− Si

l [t])|Q[t] = Q

]
1{Qi

l
>M}

︸ ︷︷ ︸
=:∆V3

+

N∑
i=1

|Si|∑

l=1

E
[

1

λi
l

f(Ri
l [t])(A

i
l[t]− Si

l [t])|Q[t] = Q

]
1{Qi

l
≤M}

︸ ︷︷ ︸
=:∆V4

.

For ∆V3, by using (21), we have

∆V3 ≤
N∑

i=1

|Si|∑

l=1

1
λi

l

f(Qi
l)(λ

i
l − P i

l )1{Qi
l>M}

+ DKε
N∑

i=1

|Si|∑

l=1

f(Qi
l)1{Qi

l>M}, (22)

where P i
l = E

[
Si

l [t]|Q[t] = Q
]

=
∑|Si|

l=1 f(Qi
l)∑N

k=1
∑|Sk|

l=1 f(Qk
l )

. Next,

let’s consider the term
∑N

i=1

∑|Si|
l=1

1
λi

l

f(Qi
l)(λ

i
l − P i

l ), which
can be expressed as:

N∑

i=1

|Si|∑

l=1

1
λi

l

f(Qi
l)(λ

i
l − P i

l )

=
N∑

i=1

|Si|∑

l=1

f(Qi
l)−

N∑

i=1

|Si|∑

l=1

f(Qi
l)

λi
l

∑|Si|
l=1 f(Qi

l)∑N
k=1

∑|Sk|
l=1 f(Qk

l )

=
(
∑N

i=1

∑|Si|
l=1 f(Qi

l))
2 −∑N

i=1(
∑|Si|

l=1
f(Qi

l)

λi
l

)(
∑|Si|

l=1 f(Qi
l))

∑N
i=1

∑|Si|
l=1 f(Qi

l)
.

Since

N∑

i=1

(
|Si|∑

l=1

f(Qi
l)

λi
l

)(
|Si|∑

l=1

f(Qi
l)) ≥

N∑

i=1

1
λi

(
|Si|∑

l=1

f(Qi
l))

2,

where λi = max{l=1,...,|Si|} λi
l , and by Lemma 1, there exists

a δ > 0 such that

N∑

i=1

1
λi

(
|Si|∑

l=1

f(Qi
l))

2 ≥ (
N∑

i=1

|Si|∑

l=1

f(Qi
l))

2(1 + δ), (23)
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we have

N∑

i=1

(
|Si|∑

l=1

f(Qi
l)

λi
l

)(
|Si|∑

l=1

f(Qi
l)) ≥ (

N∑

i=1

|Si|∑

l=1

f(Qi
l))

2(1 + δ).

Thus, we get

N∑

i=1

|Si|∑

l=1

1
λi

l

f(Qi
l)(λ

i
l − P i

l ) ≤ −δ
N∑

i=1

|Si|∑

l=1

f(Qi
l). (24)

Hence, we have

N∑

i=1

|Si|∑

l=1

1
λi

l

f(Qi
l)(λ

i
l − P i

l )1{Qi
l>M}

≤− δ

N∑

i=1

|Si|∑

l=1

f(Qi
l)1{Qi

l>M} − δ
N∑

i=1

|Si|∑

l=1

f(Qi
l)1{Qi

l≤M}

−
N∑

i=1

|Si|∑

l=1

1
λl

f(Qi
l)(λ

i
l − P i

l )1{Qi
l≤M}

≤− δ
N∑

i=1

|Si|∑

l=1

f(Qi
l)1{Qi

l>M} +
N∑

i=1

|Si|∑

l=1

1
λi

l

f(Qi
l)P

i
l 1{Qi

l≤M}

≤− δ
N∑

i=1

|Si|∑

l=1

f(Qi
l)1{Qi

l>M} + D
N∑

i=1

|Si|∑

l=1

f(M). (25)

Thus, we can choose ε small enough such that γ = δ−DKε >
0, and thus we have

∆V3 ≤ −γ
N∑

i=1

|Si|∑

l=1

f(Qi
l)1{Qi

l>M} + D
N∑

i=1

|Si|∑

l=1

f(M)

≤ −γ
N∑

i=1

|Si|∑

l=1

f(Qi
l) + (D + γ)

N∑

i=1

|Si|∑

l=1

f(M)

For ∆V4, we have

∆V4 ≤
N∑

i=1

|Si|∑

l=1

E
[

1
λi

l

f(Ri
l [t])|Ai

l[t]− Si
l [t]||Q[t] = Q

]
1{Qi

l≤M}

≤
N∑

i=1

|Si|∑

l=1

1
λi

l

Kf(M + K) ≤ DK
N∑

i=1

|Si|∑

l=1

f(M + K).

Thus, we get

∆V ≤ −γ
N∑

i=1

|Si|∑

l=1

f(Qi
l) + G, (26)

where G := D
∑N

i=1

∑|Si|
l=1 f(K) + DK

∑N
i=1

∑|Si|
l=1 f(M +

K) + (D + γ)
∑N

i=1

∑|Si|
l=1 f(M) < ∞.
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