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Optimal Distributed Scheduling under Time-varying

Conditions: A Fast-CSMA Algorithm with Applications

Bin Li and Atilla Eryilmaz

Abstract—Recently, low-complexity and distributed Carrier
Sense Multiple Access (CSMA)-based scheduling algorithms have
attracted extensive interest due to their throughput-optimal char-
acteristics in general network topologies. However, these algo-
rithms are not well-suited for time-varying environments (i.e.,
serving real-time traffic under time-varying channel conditions
in wireless networks) for two reasons: (1) the mixing time of
the underlying CSMA Markov Chain grows with the size of
the network, which, for large networks, generates unacceptable
delay for deadline-constrained traffic; (2) since the dynamic
CSMA parameters are influenced by the arrival and channel
state processes, the underlying CSMA Markov Chain may not
converge to a steady-state under strict deadline constraints and
fading channel conditions.

In this paper, we attack the problem of distributed scheduling
for time-varying environments. Specifically, we propose a Fast-
CSMA (FCSMA) policy in fully-connected topologies, which
converges much faster than the existing CSMA algorithms and
thus yields significant advantages for time-varying applications.
Then, we design optimal policies based on FCSMA techniques in
two challenging and important scenarios in wireless networks for
scheduling inelastic traffic with/without channel state information
(CSI) over wireless fading channels.

I. INTRODUCTION

Efficient utilization of network resources requires careful in-

terference management among simultaneous transmissions. Of

particular interest in the efficient scheduling are Queue-Length-

Based (QLB) schedulers (e.g., [2], [3], [4], [5], [6]) due to their

provably optimal performance guarantees. Randomization is

useful in allowing flexibilities in the design and implementation

of such schedulers (e.g., [7]). However, it causes inaccurate

operation and may be hurtful if it is not performed within limits

(see [8] for more details). One of the most robust randomized

schedulers is CSMA-based distributed scheduler (e.g., [9], [10],

[11], [12]), whose stationary distribution of the underlying

Markov chain has a product-form.

It is well-known that CSMA-based scheduler can maximize

long-term average throughput for general wireless topologies.

However, these results do not apply to time-varying envi-

ronments (i.e., scheduling deadline-constrained traffic over

wireless fading channels), since their throughput-optimality
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relies: (i) on the convergence time of the underlying Markov

Chain to its steady-state, which grows with the size of the

network; and (ii) on relatively stationary conditions in which

the CSMA parameters do not change significantly over time so

that the instantaneous service rate distribution can stay close

to the stationary distribution. Both of these conditions are

violated in time-varying environments. For example, packets

of deadline-constrained traffic are likely to be dropped before

the CSMA-based algorithm converges to its steady-state, and

the time-varying fading creates significant variations on the

CSMA parameters, in which case the instantaneous service rate

distribution cannot closely track the stationary distribution. To

the best of our knowledge, there does not exist a work that can

achieve provably good performance by using attractive CSMA

principles under time-varying conditions.

While achieving low delay via distributed scheduling in

general topologies is a difficult task (see [13]), in a related work

[14] that focuses on grid topologies, the authors have designed

an Unlocking CSMA (UCSMA) algorithm with both maximum

throughput and order optimal average delay performance, which

shows promise for low-delay distributed scheduling in special

topologies. However, UCSMA also does not directly apply

to deadline-constrained traffic since its measure of delay is

on average. Moveover, it is not clear how existing CSMA or

UCSMA will perform under fading channel conditions. Thus,

designing an optimal distributed scheduling algorithm in time-

varying environments remains an open question.

With this motivation, in this work, we address the problem of

distributed scheduling in fully connected networks (e.g., Cel-

lular network, Wi-Fi network) for time-varying environments.

We propose a Fast-CSMA (FCSMA) algorithm that, despite its

similarity of name, fundamentally differs from existing CSMA

policies in its design principle: rather than evolving over the

set of schedules to reach a favorable steady-state distribution,

the FCSMA policy aims to quickly reach one of a set of

favorable schedules and stick to it for a duration related to

time-varying scale of the application. While the performance

of the former strategy is tied to the mixing-time of a Markov

Chain, the performance of our strategy is tied to the hitting

time, and hence, yields significant advantage for time-varying

applications.

In this work, we apply FCSMA techniques in two main

scenarios: deadline-constrained scheduling with/without chan-

nel state information (CSI) over wireless fading channels. We

also consider the application of FCSMA techniques in non-

deadline-constrained scheduling over wireless fading channels

in our technical report [15]. The two scenarios we considered
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in this paper are most challenging and important application

in practice, since wireless networks are expected to serve real-

time traffic, such as video or voice applications, generated by a

large number of users over potentially fading channels. These

constraints and requirements, together with the limited shared

resources, generate a strong need for distributed algorithms that

can efficiently utilize the available resources while maintaining

high quality-of-service for the real-time applications. Yet, the

strict short-term deadline constraints and long-term throughput

requirements associated with most real-time applications com-

plicate the development of provably good distributed solutions.

All existing works in deadline-constrained scheduling (e.g.,

[16], [17], [18], [19]) assume centralized controllers, and hence

are not suitable for distributed operation. To the best of our

knowledge, this is the first work that proposes an optimal

and distributed algorithm under time-varying conditions caused

by channel fading or time-sensitive applications. Our main

contributions in this paper are:

• In Section II, we propose a FCSMA algorithm that aims

to quickly reach one of a set of favorable schedules.

• We design an optimal distributed policy based on FC-

SMA techniques in scheduling deadline-constrained traffic

with/without CSI over wireless fading channels in Section III

and Section IV, respectively.

II. THE PRINCIPLE OF FAST-CSMA DESIGN

We consider a fully-connected network topology where L

links contend for data transmission over a single channel. We

assume a time-slotted system, where all links start transmission

at the beginning of each time slot. Due to the interference

constraints, at most one link can transmit in each slot. We call

a schedule where at most one link is active in each slot as a

feasible schedule.

Randomized schedulers (e.g., [7], [9], [20], [21], [22] and

[23]) are widely studied due to their flexibilities in development

of low-complexity and distributed implementations. The most

promising and interesting randomized schedulers are distributed

CSMA-based algorithms. We give the definition of continuous-

time CSMA algorithm (see [9]) for completeness. In this paper,

we adopt the same assumptions as in [9] that the sensing is

instantaneous and the backoff time is continuous.

Definition 1 (CSMA Algorithm): Each link l independently

generates an exponentially distributed random variable with

rate Rl[t] and starts transmitting after this random duration

unless it senses another transmission before. If link l senses

the transmission, it suspends its backoff timer and resumes it

after the completion of this transmission. The transmission time

of each link is exponentially distributed with mean 1.

Figure 1a shows the state transition diagram of the underlying

Markov Chain for the CSMA Algorithm when there are 3
available links at time t, where each state stands for a feasible

schedule. It is easy to see that the stationary distribution of this

Markov Chain is

Pl =
Rl[t]

1 + Z[t]
, ∀l, (1)

( 1 , 0 , 0 )
( 0 , 0 , 1 )( 0 , 1 , 0 ) ( 0 , 0 , 0 ) R 1 [ t ]1R 2 [ t ] 11 R 3 [ t ]

(a)

( 1 , 0 , 0 )
( 0 , 0 , 1 )( 0 , 1 , 0 ) ( 0 , 0 , 0 )R 1 [ t ]R 2 [ t ] R 3 [ t ]1

1 1
(b)

Fig. 1: (a) Markov chain for a CSMA algorithm (b) Markov

chain for a FCSMA algorithm

where Z[t] =
∑L

l=1 Rl[t]. Since R[t] = (Rl[t])
L
l=1 is chosen

as a function of network state information (e.g., queue length,

channel state information, arrivals) in wireless networks, the

underlying Markov Chain for the CSMA Algorithm is inhomo-

geneous. Intuitively, the CSMA parameters R[t] should change

slowly such that the instantaneous service rate distribution

can stay close to the stationary distribution. Indeed, for the

application of scheduling over time-invariant channels (i.e., the

transmission rate of each link does not change over time), such

mapping has been observed to be optimal (e.g., [11] and [12])

if the CSMA parameter Rl[t] of each link l can take certain

functional forms (e.g., log log(·)) of its queue length at time

t. Note that the queue length will change slowly when it is

large enough. The purpose of choosing the slowly increasing

function is further to make the CSMA parameters as a function

of queue length do not change significantly over time.

However, for the application of scheduling over wireless fad-

ing channels, the CSMA parameters R[t] need to be chosen as a

function of channel sate information to yield good performance.

In such case, no matter what function we choose for the channel

state, R[t] will change significantly as the fading state fluctuates

and thus the instantaneous service distribution is not expected

to track the stationary distribution. More generally, extending

CSMA solutions to stochastic network dynamics or sophisti-

cated application requirements (e.g., serving traffic with strict

deadline constraints over wireless fading channels) is difficult

for two reasons: 1) the mixing time of the underlying CSMA

Markov chain grows with the size of the network, which,

for large networks, generates unacceptable delay for deadline-

constrained traffic; 2) since the dynamic CSMA parameters

R[t] are influenced by the arrival and channel state process,

the underlying CSMA Markov chain may not converge to its

steady-state under strict deadline constraints and wireless fading

channel conditions.

Thus, designing an optimal and distributed scheduling algo-

rithm for stochastic networks becomes quite challenging. In this

paper, we propose a Fast-CSMA strategy that provides provably

good performance under time varying conditions. Our approach

fundamentally differs from existing CSMA solutions in that our

FCSMA policy exploits the fast convergence characteristics of

”hitting times” instead of ”mixing times”.

Definition 2 (Fast-CSMA (FCSMA) Algorithm): At the be-

ginning of each time slot t, each link l independently generates

an exponentially distributed random variable with rate Rl[t],
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and starts transmitting after this random duration unless it

senses another transmission before. If all links have their

random duration greater than a slot, all links will keep silent

in the current slot; otherwise, the link that captures the channel

transmits its data1 until the end of the slot. The whole process

is repeated in the next time slot.

Remarks: (1) The operation of the FCSMA Algorithm resem-

bles that of the UCSMA Algorithm (see [14]). The difference

lies in that the UCSMA algorithm restarts the CSMA Algorithm

to achieve both maximum throughput and order optimal average

delay in grid network topologies over time-invariant channels

by carefully choosing the running period. However, it is unclear

whether the UCSMA algorithm can still work well in time-

varying applications.

(2) By choosing the running period for the FCSMA Algo-

rithm the same as the time scale of network dynamics (i.e., the

block length for block fading or maximum allowable deadline),

we can show in later sections that the FCSMA Algorithm

exhibits excellent performance in time-varying applications.

(3) In general multi-hop network topologies, the FCSMA

Algorithm can still converge very fast to one feasible schedule.

Yet, the probability of serving each schedule may not have a

product form and the performance of the FCSMA Algorithm

is unclear. We leave it for future investigation.

Figure 1b gives the state transition diagram of underlying

Markov Chain for the FCSMA Algorithm when there are 3
available links, where each state represents a feasible schedule.

The convergence time of the FCSMA Algorithm is tied to

the hitting time2, while the convergence time of the CSMA

Algorithm is dominated by the mixing time of Markov chain,

which generally is large. The hitting time of the FCSMA

Algorithm at slot t is exponentially distributed with mean
1

Z[t] , which is generally small in practice as we will see

in simulations. Due to its small hitting time, the FCSMA

Algorithm yields significant advantages over existing CSMA

policies evolving slowly to the steady-state and may work

well in more challenging environments, i.e., scheduling real-

time traffic over wireless fading channels. Because of the fast

convergence property of the FCSMA Algorithm, we introduce

the idealized FCSMA algorithm for easier theoretical analysis.

The simulation results in the later sections indicate that both

FCSMA and Idealized FCSMA Algorithm have the same

system performance.

Definition 3 (Idealized FCSMA Algorithm): Idealized

FCSMA Algorithm is the FCSMA Algorithm with zero hitting

time, which assumes that it can reach the favorable state

instantaneously.

For the Idealized FCSMA Algorithm, the probability of

1If there is no data awaiting in the link l, it transmits dummy data to occupy
the channel.

2The hitting time is an empty duration after which the Markov Chain stays
in a non-zero feasible schedule state (i.e., the channel is occupied by one of
users)

serving the link l in each slot t will be:

πl[t] =
Rl[t]

Z[t]
. (2)

Let Wl[t] = log(Rl[t]) and W ∗[t] = maxl Wl[t]. The following

lemma establishes the fact that the Idealized FCSMA Algorithm

picks a link with the weight close to the maximum weight

with high probability when the maximum weight W ∗[t] is large

enough at each slot t.

Lemma 1: Given ǫ > 0 and ζ > 0, ∃W ∈ (0,∞), such that

if W ∗[t] > W , then the Idealized FCSMA Algorithm picks a

link l satisfying

Pr{Wl[t] ≥ (1 − ǫ)W ∗[t]} ≥ 1 − ζ. (3)

The proof is similar to that in [10] and [8], and thus is omitted

here for brevity.

In the rest of paper, we mainly consider inelastic traffic.

The inelastic traffic means that each arrival has a maximum

delay requirement while the elastic traffic does not have such a

requirement. We apply the FCSMA technique in two challeng-

ing scenarios: scheduling inelastic traffic with/without Channel

State Information (CSI) over wireless fading channels. In our

technical report [15], we also consider scheduling elastic traffic

over wireless fading channels. In each application, we need

to carefully design the FCSMA parameters R[t] = (Rl[t])
L
l=1

at each slot t to yield optimal performance. To facilitate the

flexibility in the design and implementation of the FCSMA

algorithm, we define a set of functions (also see [8]):

F , set of non-negative, nondecreasing and differentiable

functions f(·) : R+ → R+ with lim
x→∞

f(x) = ∞.

B , {f ∈ F : lim
x→∞

f(x + a)

f(x)
= 1, for any a ∈ R}.

The examples of functions that are in class B are f(x) =
log x, f(x) = x or f(x) = e

√
x. Note that f(x) = ex does not

belong to class B.

Now, we are ready to develop optimal FCSMA algorithms

in two challenging applications: scheduling inelastic traffic

with/without CSI over wireless fading channels.

III. SCHEDULING INELASTIC TRAFFIC WITH CSI

A. Basic Setup

We assume that the wireless channel is independently block

fading at each link. We capture the channel fading over

link l via Cl[t], which measures the maximum amount of

service available in slot t, if scheduled. We assume that

C[t] = (Cl[t])
L
l=1 are independently distributed random vari-

ables over links and identically distributed over time with

Cl[t] ≤ Cmax, ∀l, t, for some Cmax < ∞. We use a binary vari-

able Sl[t] to denote whether the link l is served at slot t, where

Sl[t] = 1 if the link l can be served at slot t and Sl[t] = 0,

otherwise. Let S[t] = (Sl[t])
L
l=1 be a feasible schedule. We use

S to denote the collection of feasible schedules. Recall that at

most one link can be active in a feasible schedule, due to the

fully connected network topology we consider in this paper.
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We assume that all arrivals have the same delay bound of T

time slots, which means that if the data cannot be served during

T slots after it arrives, it will be dropped. For convenience, we

call a set of T consecutive time slots a frame. In the context

of fully-connected networks, we associate each real-time flow

with a link, and hence use these two terms interchangeably.

We assume that all data arrives at each link at the beginning

of each frame. Let Al[kT ] denote the amount of data arriving

at link l in frame k that are independently distributed over

links and identically distributed over time with mean λl, and

Al[kT ] ≤ Amax for some Amax < ∞. All the remaining data

is dropped at the end of a frame. Each link has a maximum

allowable drop rate ρlλl, where ρl ∈ (0, 1) is the maximum

fraction of data that can be dropped at link l. For example,

ρl = 0.1 means that at most 10% of data can be dropped at

link l on average.

Our goal is to find the schedule {S[t]}t≥1 under the schedul-

ing constraint that at most one link can be scheduled at each

time slot and dropping rate constraint that the average drop rate

of each link should not be greater than its maximum allowable

drop rate. To solve this optimal control problem, we use the

intelligent technique in [24] to introduce a virtual queue Xl[kT ]
for each link l to track the amount of dropped data in frame

k. Specifically, the amount of data arriving at virtual queue l

at the end of frame k is denoted as Dl[kT ], which is equal to

Al[kT ] − min







(k+1)T−1
∑

t=kT

Cl[t]Sl[t], Al[kT ]






. We use Il[kT ]

to denote the service for virtual queue l at the end of the frame

k with mean ρlλl, and Il[kT ] ≤ Imax for some Imax < ∞.

Further, we let Ul[kT ] denote the unused service for queue l

at the end of frame k, which is upper-bounded by Imax. Then,

the evolution of virtual queue l is described as follows:

Xl[(k + 1)T ] = Xl[kT ] + Dl[kT ]− Il[kT ] + Ul[kT ], ∀l. (4)

In this and next section, we consider two main scenarios:

known channel state and unknown channel state. For the known

channel state case, we assume that the channel state is constant

for the duration of a frame and each link knows CSI at the

beginning of each frame. For the unknown channel state case,

we allow that the channel state changes from time slot to time

slot and each link does not know CSI before each transmission,

but can determine how much data has been transmitted at each

slot after we get feedback from the receiver. These assumptions

are also adopted in [18].

We consider the class of stationary policies P that select

S[t] as a function of (X[kT ],A[kT ],C[kT ]) for the known

channel state scenario and a function of (X[kT ],A[kT ]) for

the unknown channel state scenario in frame k, which, then,

form a Markov Chain, where X[kT ] = (Xl[kT ])L
l=1 and

A[kT ] = (Al[kT ])L
l=1. If this Markov Chain is positive

recurrent, then the average drop rate will meet the required

dropping rate constraint automatically (see [25]). We define

the maximal satisfiable region as a maximum set of arrival

processes for which this Markov Chain is positive recurrent

under any policy. We call an algorithm optimal if it makes

Markov Chain positive recurrent for any arrival process within

the maximal satisfiable region.

B. FCSMA algorithm implementation

In this subsection, we first characterize the maximal satis-

fiable region and then propose an optimal FCSMA algorithm

with CSI for scheduling inelastic traffic over fading channels.

Consider the class P of stationary policies that

base their scheduling decision on the observed vector

(X[kT ],A[kT ],C[kT ]) in frame k. The next lemma

establishes a necessary condition for stabilizing the system.

Lemma 2: If there is a policy P0 ∈ P that can stabilize

the virtual queue X, then there exist non-negative numbers

α(a, c; s0, s1, ..., sT−1) such that
∑

s0,s1,...,sT−1∈S
α(a, c; s0, s1, ..., sT−1) = 1, ∀a, c, (5)

λl(1 − ρl) <
∑

a

PA(a)
∑

c

PC(c)
∑

s0,s1,...,sT−1∈S

α(a, c; s0, s1, ..., sT−1)min

{
T−1∑

i=0

cls
i
l, al

}

, ∀l, (6)

where s
i = (si

l)
L
l=1, PA(a) = P (A[t] = a) and PC(c) =

P (C[t] = c).

The proof is almost the same as in [26]. The main difference

lies in that our proof deals with the necessary condition for

stabilizing virtual queues instead of data queues as in [26]. We

omit it for conciseness. Note that the right hand side of the

inequality (6) is the average service provided for link l during

one frame; while λl(1 − ρl) is the average amount of data at

link l that needs to be served. Thus, to meet the maximum

allowable drop rate requirement, (6) should be satisfied. We

define the maximal satisfiable region Λ1(ρ,C) as follows:

Λ1(ρ,C) ,{A : ∃α(a, c; s0, s1, ..., sT−1) ≥ 0,

such that both (5) and (6) satisfy}.

We are now ready to develop an optimal centralized algo-

rithm with CSI for scheduling inelastic traffic over wireless

fading channels.

Centralized Algorithm with CSI:
In each frame k, given (X[kT ],A[kT ],C[kT ]), perform

{S∗[t]}
(k+1)T−1
t=kT ∈ argmax

{S[t]}
(k+1)T−1
t=kT

∑

l

f(Xl[kT ])

min






Cl[kT ]

(k+1)T−1
∑

t=kT

Sl[t], Al[kT ]






, (7)

where f ∈ F .

Remark: In [18], the authors proposed a centralized algorithm

with f(x) = x. Our proposed centralized algorithm is more
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general, which allows more flexibilities in distributed imple-

mentations.

Next, we establish the optimality of the centralized algorithm

with CSI under certain conditions for function f .

Theorem 1: If f ∈ B, the Centralized Algorithm with CSI

for scheduling inelastic traffic is optimal over wireless fading

channels, i.e., for any arrival process A ∈ Λ1(ρ,C), it makes

the underlying Markov Chain positive recurrent.

The proof is a generalization of that in [18] and is a special

case of that in Theorem 3, where we use FCSMA techniques

to mimic the Centralized Algorithm. Thus, we omit it for

brevity. Even though the above centralized algorithm is optimal,

it cannot directly be applied in practice due to the need of

centralized coordination. Next, we propose a greedy algorithm

that is well suited for distributed implementation. To that end,

we first give the key identity that facilitates the development of

greedy solutions.
Lemma 3: Let a ≥ 0 and c[t] ≥ 0, ∀t = 0, 1, ..., T − 1. If

s[t] ∈ {0, 1}, ∀t, then

min

{
T−1∑

t=0

c[t]s[t], a

}

=

T−1∑

t=0

min






c[t],



a −
t−1∑

j=0

c[j]s[j]





+




s[t], (8)

where (x)+ = max{x, 0}.

Proof: The proof directly follows by induction. Please see

our technical report [15] for details.
Based on Lemma 3, the objective function in (7) can be

rewritten as

∑

l

f(Xl [kT ])min







Cl[kT ]

(k+1)T−1
∑

t=kT

Sl[t], Al[kT ]







=

(k+1)T−1
∑

t=kT

∑

l

f(Xl [kT ])min







Cl [kT ],



Al[kT ] − Cl [kT ]

t−1
∑

j=kT

Sl[j]





+






Sl[t].

(9)

We can observe that the equation (9) decouples the scheduling

decisions over a frame and help develop the greedy solutions

that are easy to be implemented distributively.

Greedy Algorithm with CSI:
At each time slot t ∈ {kT, kT +1, ..., (k+1)T −1} in frame

k, select link lG[t] such that

l
G

[t] ∈ argmax
l

f(Xl [kT ])min







Cl [kT ],



Al[kT ] − Cl [kT ]

t−1
∑

j=kT

Sl[j]





+






, (10)

where f ∈ F .

Theorem 2: The Greedy Algorithm with CSI is an optimal

solution to the problem (7) and thus is optimal for scheduling

inelastic traffic over wireless fading channels if f ∈ B.

The proof is a special case of that in Theorem 5: the channel

state is constant over a frame in the proof for Theorem 2,

while the channel state changes from slot to slot in a frame

in that for Theorem 5, which makes it more challenging to

deal with. Next, we expand on the distributed implementation

of the greedy solution by using the FCSMA technique.

Idealized FCSMA Algorithm with CSI:
At each time slot t ∈ {kT, kT +1, ..., (k+1)T −1} in frame

k, choose the rates

Rl[t] = g(Xl[kT ])
min

{

Cl[kT ],
(

Al[kT ]−Cl[kT ]
∑t−1

j=kT
Sl[j]

)+
}

, ∀l, (11)

where g ∈ F .

Note that the Idealized FCSMA Algorithm with CSI does not

take the convergence time into consideration. For the FCSMA

Algorithm with CSI, the rates can be selected as

Rl[t] = g(Xl[kT ])min{Cl[kT ],Jl[t]},

for any link l and any t ∈ {kT, kT + 1, ..., (k + 1)T − 1},

where Jl[t] is the remaining data at link l at the beginning of

each time slot t. Next, we will show that the Idealized FCSMA

Algorithm yields the optimal performance. Simulation results

show that both FCSMA and Idealized FCSMA Algorithm have

the same performance.

Theorem 3: If f(x) = log g(x) ∈ B and g(0) ≥ 1, the

Idealized FCSMA Algorithm with CSI for scheduling inelastic

traffic is optimal over wireless fading channels, i.e., for any

arrival process A ∈ Λ1(ρ,C), it makes the underlying Markov

Chain positive recurrent.

Proof: The proof follows from the Lyapunov drift ar-

gument. However, it is quite challenging to argue that the

Idealized FCSMA Algorithm with CSI mimics the Central-

ized/Greedy Algorithm with CSI over a frame, which is an

obvious case when T = 1 (see [1]). By properly partitioning

the space of weights chosen by the Greedy Algorithm with CSI

within a frame, we tackle this difficulty and refer the reader to

see Appendix A for the details.

C. Simulation Results

In this subsection, we perform simulations to validate the

optimality of the proposed FCSMA policy with CSI for

scheduling inelastic traffic with deadline constraint of T slots

over wireless fading channels. In the simulation, there are

L = 10 links and each frame has T = 5 slots. All links

require the maximum fraction of dropped data to not exceed

ρ = 0.3. The amount of arrivals in each frame follows common

Bernoulli distribution that the amount of arrivals equal to T

with probability λ. All links suffer from the ON-OFF channel

fading independently with probability p = 0.8 that the channel

is available in each frame. The service for virtual queue also fol-

lows Bernoulli distribution that the maximum available service

equals to T with probability ρλ. Under this setup, we can use

the same technique in paper [3] to get the maximal satisfiable

region: Λ1(ρ,C) = {λ : L(1−ρ)λ < 1− (1−pλ)L}. Through

numerical calculations, we can get the maximal satisfiable

region: {λ : λ < 0.038}. In the simulations, we also compare

our proposed FCSMA policy with the QCSMA algorithm (see

[10]) with the log log function.

From Figure 2, we can observe that the FCSMA Algorithm

with both g(x) = ex and g(x) = x + 1 can achieve maximal

satisfiable region. Also, we see that the average virtual queue

length of the FCSMA Algorithm with exponential function is
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smaller than that with linear function. However, the meaning

of smaller virtual queue length is unclear in this setup. We will

explore it in our future research. In addition, we can observe

that the FCSMA Algorithm has almost the same performance as

that with the Idealized FCSMA Algorithm, which indicates that

the hitting time should be negligibly small. Furthermore, the

QCSMA algorithm with log log function cannot even support

the arrival rate of λ = 0.001 (i.e., its corresponding virtual

queues are unstable for the arrival rate of 0.001). The reason

for the poor performance of the QCSMA algorithm is that it

does not have enough time to converge to the steady state under

fast dynamics of the arrival and channel processes.
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Fig. 2: The performance of the FCSMA Algorithm with CSI

IV. SCHEDULING INELASTIC TRAFFIC WITHOUT CSI

In this section, we consider the inelastic traffic scheduling

without CSI over wireless fading channels. We assume that

each link knows how much data has been transmitted at the end

of each slot by using per-slot feedback information. The per-

slot feedback complicates the design of distributed scheduling

algorithm. But, we still can find a similar greedy solution as

in Section III and design its distributed algorithm by using

FCSMA techniques.

A. FCSMA algorithm implementation

Consider the class P of stationary policies that base their

scheduling decision on the observed vector (X[kT ],A[kT ])
in frame k. The next lemma establishes a condition that is

necessary for stabilizing the system.

Lemma 4: If there is a policy P0 ∈ P that can stabilize

the virtual queue X, then there exist non-negative numbers

α0(a; s0), α1(a, s0; s1), ..., αT−1(a, s0, ..., sT−2; sT−1), such

that
∑

s0∈S
α0(a; s0) = 1, ∀a, (12)

∑

si∈S
αi(a, s0, ..., si−1; si) = 1, ∀a, i = 1, 2, ..., T − 1, (13)

λl(1 − ρl) <
∑

a

PA(a)
∑

s0,s1,...,sT−1∈S

α0(a; s0)α1(a, s
0; s1)...

αT−1(a, s
0
, ..., s

T−2; sT−1)E

[

min

{
T−1∑

i=0

cls
i
l, al

}]

,∀l. (14)

The proof is almost the same as [26] and hence is omitted here.
We define maximal satisfiable region Λ2(ρ,C) as follows:

Λ2(ρ, C) , {A : ∃α0(a; s0), α1(a, s
0; s1), ...,

αT−1(a, s
0
, ..., s

T−2; sT−1) ≥ 0, such that both (12), (13), and (14) satisfy}.

Next, we develop an optimal centralized algorithm without

CSI for scheduling inelastic traffic over fading channels.

Centralized Algorithm without CSI:

In each frame k, given (X[kT ],A[kT ]), solve the following
optimization problem:

max
{S[t]}

(k+1)T−1
t=kT

E




∑

l

f(Xl[kT ]) min







(k+1)T−1
∑

t=kT

Cl[t]Sl[t], Al[kT ]









 ,

(15)

where f ∈ F , and the schedule at each slot is determined after

knowing how much data has been transmitted in the previous

slots in each frame.

Remark: In [18], the authors designed a centralized algorithm

with f(x) = x. Our proposed centralized algorithm generalizes

this to a large space of functions f , and allows for more

flexibilities in distributed implementations.

Next, we establish the optimality of the centralized algorithm

without CSI under certain conditions for function f .

Theorem 4: If f ∈ B, the Centralized Algorithm without

CSI for scheduling inelastic traffic is optimal over wireless

fading channels, i.e., for any arrival process A ∈ Λ2(ρ,C),
it makes the underlying Markov Chain positive recurrent.

The proof is a generalization of that in [18] and follows

the same argument as that in Theorem 3. Thus, we omit it

here for brevity. The centralized algorithm without CSI is

quite complicated, since it couples the scheduling decisions

in each frame. Under the per-slot feedback assumption, the

optimization problem (15) can be solved by using dynamic

programming. Based on Lemma 3, we have the following key

identity:

∑

l

f(Xl [kT ])min







(k+1)T−1
∑

t=kT

Cl [t]Sl[t], Al[kT ]







=

(k+1)T−1
∑

t=kT

∑

l

f(Xl [kT ])min







Cl [t],



Al[kT ] −

t−1
∑

j=kT

Cl [j]Sl[j]





+






Sl[t]. (16)

By using (16), we can get the following backward equation

(see [27]) for the optimization problem (15).

Backward Equation for (15):

At each slot t ∈ {kT, kT + 1, ..., (k + 1)T − 1} in frame k,

given (X[kT ],A[kT ]) and {(C[j],S[j])}t−1
j=kT , select link l∗[t]

such that
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l
∗[t] ∈ argmax

l

(

f(Xl[kT ])E



min






Cl[t],



Al[kT ] −
t−1∑

j=kT

Sl[j]Cl[j]





+









+ max
{S[r]}

(k+1)T−1
r=t+1

(k+1)T−1
∑

i=t+1

L∑

l′=1

f(Xl′ [kT ])

E



min






Cl′ [i],



Al′ [kT ] −
i−1∑

j=kT

Sl′ [j]Cl′ [j]





+








 Sl′ [i]

)

, (17)

where f ∈ F .

At first glance, the optimal solution to problem (17) at each

time slot depends on the future slots and thus is difficult to be

implemented distributively. However, it may still be possible

to decouple the scheduling decisions over a frame, since the

channel states are i.i.d. across over time slots. Next, we will

show that this is the case in our setup.

Greedy Algorithm without CSI:

At each time slot t ∈ {kT, kT + 1, ..., (k + 1)T − 1} in frame

k, given (X[kT ],A[kT ]) and {(C[j],S[j])}t−1
j=kT , select link

lG[t] such that

l
G

[t] ∈ arg max
l

f(Xl [kT ])E




min







Cl [t],



Al[kT ] −

t−1
∑

j=kT

Cl[j]Sl[j]





+









 , (18)

where f ∈ F .

Theorem 5: The Greedy Algorithm without CSI is optimal

for problem (17) and thus is optimal for scheduling inelastic

traffic over wireless fading channels if f ∈ B.

Proof: Without loss of generality, we consider the frame

k = 0. We will show that if lG[t] satisfies (18) at time

t ∈ {0, 1, ..., T − 1}, then lG[t] is an optimal solution to the

backward equation (17), that is,

f(X
lG[t]

[0])E




min







C
lG[t]

[t],



A
lG[t]

[0] −

t−1
∑

j=0

S
lG[t]

[j]C
lG[t]

[j]





+











+ max

{S[r]}
T−1
r=t+1

T−1
∑

i=t+1

∑

l

f(Xl [0])E




min







Cl [i],



Al[0] −

i−1
∑

j=0

Sl[j]Cl [j]





+









 Sl[i]

≥f(Xm [0])E




min







Cm[t],



Am[0] −

t−1
∑

j=0

Sm[j]Cm [j]





+











+ max

{S[r]}
T−1
r=t+1

T−1
∑

i=t+1

∑

l

f(Xl [0])E




min







Cl [i],



Al[0] −

i−1
∑

j=0

Sl[j]Cl [j]





+









 Sl[i],

(19)

holds for any m 6= lG[t]. Recall that at most one link

can be scheduled at each slot. For ease of exposition, let

d , (d[t], d[t+1], ..., d[T −1]) generically denote the sequence

of feasible links chosen from time slot t to the end of the frame

by any algorithm, where the element d[i] denotes the link that

is scheduled at slot i. Note that the elements in d can be any

possible links. The purpose of introducing d is to simplify the

expression of (19). Let D be the collection of the sequence of

selected links from time slot t to the end of the frame. Let Wd

for a given d ∈ D be defined as

Wd ,

T−1∑

i=t

f(Xd[i][0])E



min






Cd[i][i],



Ad[i][0] −
i−1∑

j=0

Sd[i][j]Cd[i][j]





+









=f(Xd[t][0])E



min






Cd[t][t],



Ad[t][0] −
t−1∑

j=0

Sd[t][j]Cd[t][j]





+










+

T−1∑

i=t+1

∑

l

f(Xl[0])E



min






Cl[i],



Al[0] −
i−1∑

j=0

Sl[j]Cl[j]





+








 Sl[i],

where Sd[i][i] = 1, and Sl[i] = 0, ∀l 6= d[i], for i = t, t +
1, ..., T − 1.

Let Fl = {d ∈ D : d[t] = l}. Then, (19) can be rewritten as

max
d∈F

lG[t]

Wd ≥ max
d∈Fm

Wd, ∀m 6= lG[t]. (20)

Given any m 6= lG[t], we have the following two cases:

(1) If d ∈ Fm includes the element lG[t], then a permutation

of d with the first element being lG[t] should be in FlG[t].

Since the channel states are i.i.d. over time slots, any

permutation of d does not change the value Wd and thus

Wd ≤ maxe∈F
lG[t]

We.

(2) If d ∈ Fm does not include the element lG[t], then it

is easy to see that Wd ≤ Wc, where c = (lG[t], d[t +
1], d[t+2], ..., d[T −1]). Since c ∈ FlG[t], we have Wd ≤
maxe∈F

lG[t]
We.

Thus, we have maxe∈F
lG[t]

We ≥ Wd, ∀d ∈ Fm, and hence

we have the desired result (20).

Next, we illustrate the distributed implementation of greedy

solutions by using FCSMA techniques.

Idealized FCSMA Algorithm without CSI:
At each time slot t ∈ {kT, kT +1, ..., (k+1)T −1} in frame

k, given (X[kT ],A[kT ]) and {(C[j],S[j])}t−1
j=kT , choose the

rates

Rl[t] = g(Xl[kT ])
E

[

min

{

Cl[t],
(

Al[kT ]−
∑ t−1

j=kT
Cl[j]Sl[j]

)+
}]

,∀l, (21)

where g ∈ F .

Note that the Idealized FCSMA Algorithm without CSI

does not consider the impact of the convergence time. For the

FCSMA Algorithm without CSI, the rates can be chosen as

Rl[t] = g(Xl[kT ])E[min{Cl[t],Jl[t]}], (22)

for any link l and any time t ∈ {kT, kT +1, ..., (k+1)T − 1},

where Jl[t] is the remaining data at link l at the beginning of

each time slot t. Next, we will show that the Idealized FCSMA

Algorithm yields the optimal performance. Simulation results

indicate that both FCSMA and Idealized FCSMA Algorithm

have the same performance.

Theorem 6: If f(x) = log g(x) ∈ B and g(0) ≥ 1,

the Idealized FCSMA Algorithm without CSI for scheduling

inelastic traffic is optimal over wireless fading channels, i.e.,

for any arrival process A ∈ Λ2(ρ,C), it makes the underlying

Markov Chain positive recurrent.
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The proof is similar to that in Theorem 3 which considers

the inelastic traffic with CSI over wireless fading channels. We

skip it for conciseness.

B. Simulation Results

In this subsection, we perform simulations to validate the

optimality of the proposed FCSMA policy without CSI for

scheduling inelastic traffic with deadline constraint T slots over

wireless fading channels. The simulation setup is the same as

that in Section III-C. The main difference is that the fading

channels change from slot to slot. The maximal satisfiable

region under this setup is Λ2(ρ,C) = {λ : L(1 − ρ)λ <

p
(
1 − (1 − λ)L

)
}. Through numerical calculations, we can get

the maximal satisfiable region: {λ : λ < 0.031}. As in Section

III-C, we also compare the Idealized FCSMA Algorithm with

the FCSMA Algorithm and the QCSMA algorithm with log log
function. From Figure 3, we can observe the same phenomenon

as in III-C.
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Fig. 3: The performance of the FCSMA Algorithm without CSI

V. PRACTICAL IMPLEMENTATION SUGGESTIONS

In the previous sections, we assume that the sensing is in-

stantaneous and the backoff time is continuous, which excludes

the possible collisions. These key assumptions are important

in allowing us to concentrate on the challenging distributed

scheduling problem in time-varying environments without con-

sidering the contention resolution procedure. Yet, in practice,

the sensing time is non-zero and the backoff time is typically

a multiple of mini-slots, where a mini-slot is equal to the time

required to detect the data transmission from another link (e.g.,

in IEEE 802.11b, a mini-slot should be at least 8µs). In such

cases, collisions happen, which reduces the system throughput.

In this section, we explicitly consider these practical chal-

lenges and propose an easily implementable and efficient al-

gorithm that is similar to the one in [9]. The basic idea is

to quantize the continuous rate Rl[t] into a set of discrete

values, where each discrete value is assigned to a different

contention window (CW) size. The smaller the quantized value

is, the larger the corresponding CW size is. Thus, this can

be easily mapped to the “service classes” in IEEE 802.11e.

The suggested rate quantization procedure is as follows: (i) if

Rl[t] ≥ Rmax, then let R′
l[t] = Rmax. This corresponds to

the first class; (ii) if 1
2i−1 Rmax ≤ Rl[t] < 1

2i−2 Rmax for some

i = 2, 3, ..., N , then let R′
l[t] = 1

2i−1 Rmax, where N is the

number of classes; (iii) if Rl[t] < Rmin , 1
2N−1 Rmax, then do

not start transmissions. Thus, the probability of links accessing

the channel in class i is roughly twice as large as that in class

i + 1, which implies that the CW size of class i + 1 should be

roughly twice that of class i.

Discrete-time version of the FCSMA Algorithm:

At the beginning of each slot t, each link l generates a uni-

formly distributed random variable rl over {0, 1, ..., CW[t]−1},

where CW[t] is chosen according to the quantized value of rate

Rl[t] as described above. Each link l keeps sensing the channel

for rl mini-slots. If the channel is busy in any one of the first

rl mini-slots, then link l suspends its transmission; otherwise,

link l starts its transmission3 from the rth
l mini-slot to the end

of this slot. If two or more links have the same backoff time,

then a collision happens in the current slot. The whole process

restarts in the next slot.

We assume that the coherence time for scheduling inelastic

traffic with and without CSI are 500ms and 100ms, respec-

tively. Since a mini-slot is typically 10µs, without loss of

generality, we assume that a time slot contains 10000 mini-slots

in both cases. The simulation setups for scheduling inelastic

traffic with and without CSI are the same as that in Section

III-C and Section IV-B, respectively. In the simulations, we

let Rmax = e5, N = 6, and CWi = 32 × 2i−1, i = 1, 2, ..., N ,

where CWi is the CW of class i. We also compare the discrete-

time version of the FCSMA Algorithm with IEEE 802.11

Distributed Coordination Function (DCF). In IEEE 802.11

DCF, the contention window (CW) size depends on whether

the transmission is successful or not, rather than the current

system state information. In particular, the CW for all links are

initialized to 32; if the transmission of link l is unsuccessful,

then its CW is doubled until it reaches to the maximum value

of 1024; otherwise, its CW drops to the initial value.
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Fig. 4: Performance comparison between FCSMA algorithm

and its discrete-time version

From Figure 4a and 4b, we can observe that the performance

of the discrete-time version of the FCSMA Algorithm remains

close to that of the FCSMA Algorithm, and continue to perform

much better than the QCSMA algorithm with log log function

3If the number of links is large, each link uses short packets, such as Request-
To-Send (RTS) and Clear-To-Send (CTS) in IEEE 802.11b, to contend for the
wireless channel, which will significantly reduce the cost of a collision.
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and IEEE 802.11 DCF in both scheduling inelastic traffic with

and without CSI. However, we note that if the coherent time is

comparable with the maximum CW size, then, the discrete-time

version of the FCSMA Algorithm can perform poorly, since a

non-negligible amount of resources is consumed by the backoff

process instead of the data transmission.

VI. CONCLUSIONS

In this paper, we first proposed a Fast-CSMA (FCSMA)

Algorithm that quickly reaches the favorable state in fully

connected network topologies. Due to the fast convergence

time, the FCSMA Algorithm exhibits significant advantages

over existing CSMA algorithms for time-varying applications,

which are important and popular in wireless networks. Then,

we apply the FCSMA Algorithm to design optimal policies

for scheduling inelastic traffic with/without CSI over wireless

fading channels. In the future, we will try to explore distributed

scheduling algorithms for time-varying environments in general

wireless network topologies.

APPENDIX A

PROOF FOR THEOREM 3

Consider the Lyapunov function V (X) ,
∑L

l=1 h(Xl),
where h′(x) = f(x). Then, by using a similar argument to

the proof of Lemma 1 in [28] (also see [29]), it is not hard to

show that if for any process A ∈ Λ1(ρ,C), there exists γ > 0
and H ≥ 0 such that

∆V (X) ,

L∑

l=1

E [f(Xl)(Dl[kT ]− Il[kT ])|X[kT ] = X]

≤− γ

L∑

l=1

f(Xl) + H. (23)

By the telescoping technique, we have

lim sup
K→∞

1

K

K∑

k=1

L∑

l=1

E[f(Xl[kT ])] ≤
H

γ
< ∞,

which implies the stability-in-the-mean and thus the Markov

Chain is positive recurrent [30]. Next, we will show inequality

(23) to complete the proof. By substituting the expression of

Dl[kT ] (see the discussion before (4)) into ∆V (X), we have

∆V (X) =
L∑

l=1

E [f(Xl)(Al[kT ] − Il[kT ])|X[kT ] = X]

︸ ︷︷ ︸

,∆V1(X)

− E





L∑

l=1

f(Xl) min







(k+1)T−1
∑

t=kT

Cl[kT ]SF
l [t], Al[kT ]







∣
∣
∣
∣
∣
∣

X[kT ]





︸ ︷︷ ︸

,∆V2(X)

,

where S
F [t] = (SF

l [t])L
l=1 denotes the schedule chosen by

FCSMA algorithm at time t. Let

Wl[t] = f(Xl[kT ]) min






Cl[kT ],



Al[kT ] − Cl[kT ]

t−1∑

j=kT

Sl[j]





+




,

for any t = kT, kT + 1, ..., (k + 1)T − 1, where S[j] =
(Sl[j])

L
l=1 is a feasible schedule at time slot j. Let WG[t] be

the weight of link picked by the Greedy Algorithm with CSI

at time slot t. Recall that WG[t] = maxl Wl[t]. Next, we will

derive an upper bound for ∆V1(X) by using Lemma 2 and

give a lower bound for ∆V2(X).

First, let’s focus on ∆V1. By Lemma 2, there exist non-

negative numbers α(a, c; s0, s1, ..., sT−1) satisfying (5) and for

a δ > 0 small enough, we have

λl(1 − ρl) ≤
∑

a

PA(a)
∑

c

PC(c)
∑

s0,s1,...,sT−1∈S

α(a, c; s0, s1, ..., sT−1)min







T−1∑

j=0

cls
j
l , al






− δ. (24)

By using (24), we have

∆V1 =
L∑

l=1

f(Xl)λl(1 − ρl)

≤
∑

a

PA(a)
∑

c

PC(c)
∑

s0,s1,...,sT−1∈S
α(a, c; s0, s1, ..., sT−1)

L∑

l=1

f(Xl)min







T−1∑

j=0

cls
j
l , al






− δ

L∑

l=1

f(Xl)

≤
∑

a

PA(a)
∑

c

PC(c)

(k+1)T−1
∑

t=kT

WG[t] − δ

L∑

l=1

f(Xl), (25)

where the last step follows from Theorem 2 that the Greedy

Algorithm with CSI maximizes

L∑

l=1

f(Xl)min







T−1∑

j=0

cls
j
l , al







for any feasible schedules s
0, s

1,...,sT−1, given virtual queue

lengths, channel state information and arrivals, and uses (5).

Thus, we have

∆V1 ≤E





(k+1)T−1
∑

t=kT

WG[t]

∣
∣
∣
∣
∣
∣

X[kT ] = X



− δ

L∑

l=1

f(Xl)

=E



E





(k+1)T−1
∑

t=kT

WG[t]

∣
∣
∣
∣
∣
∣

X[kT ],A[kT ],C[kT ]





∣
∣
∣
∣
∣
∣

X[kT ]





− δ

L∑

l=1

f(Xl). (26)

Note that WG[t] is non-increasing in t within each frame, since
the number of remaining packets cannot increase as t increases.
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Pick any W > 0 and let

F0 , {W G[kT ] ≤ W, W G[kT + 1] ≤ W, ...,W G[(k + 1)T − 1] ≤ W};

Fj , {W G[kT + j − 1] > W, W G[kT + j] ≤ W},∀j = 1, ..., T − 1;

FT , {W G[(k + 1)T − 1] > W},

where Fj corresponds to the event where the weight cho-

sen by Greedy Algorithm is greater than W in the first j
slots in frame k. Thus, (Fj)

T
j=0 forms a partition of a set

{WG[kT ], WG[kT +1], ..., WG[(k+1)T −1]}. Then, we have

E





(k+1)T−1
∑

t=kT

W
G[t]

∣
∣
∣
∣
∣
∣

X[kT ],A[kT ],C[kT ]





=E





T∑

j=0

(k+1)T−1
∑

t=kT

W
G[t]1Fj

∣
∣
∣
∣
∣
∣

X[kT ],A[kT ],C[kT ]





≤E

[
T∑

j=0

(
kT+j−1
∑

t=kT

W
G[t]1Fj + (T − j)W

)∣
∣
∣
∣
∣
X[kT ],A[kT ],C[kT ]

]

=E

[
T∑

j=1

kT+j−1
∑

t=kT

W
G[t]1Fj

∣
∣
∣
∣
∣
X[kT ],A[kT ], C[kT ]

]

+
T (T + 1)W

2
.

Thus, ∆V1 becomes

∆V1 ≤E





T∑

j=1

kT+j−1
∑

t=kT

WG[t]1Fj

∣
∣
∣
∣
∣
∣

X[kT ] = X



+
T (T + 1)W

2

− δ

L∑

l=1

f(Xl). (27)

Second, let’s consider ∆V2. Let

W F
l [t] = f(Xl[kT ])min






Cl[kT ],



Al[kT ] − Cl[kT ]

t−1∑

j=kT

SF
l [j]





+



.

Then, by using Lemma 3 and switching the summations over

l and t, we have

∆V2 = E





(k+1)T−1
∑

t=kT

L∑

l=1

WF
l [t]SF

l [t]

∣
∣
∣
∣
∣
∣

X[kT ] = X



 . (28)

Let ǫ > 0 and ζ > 0. For each event Fj , ∀j = 1, 2, ..., T ,

we have WG[kT ] > W, ..., WG[kT + j − 1] > W. By using

Lemma 1, we obtain that for any ζ′ > 0, choose W such that

Pr

{
L∑

l=1

WF
l [t]SF

l [t] ≥ (1 − ǫ)WG[t]

∣
∣
∣
∣
∣
Fj

}

≥ 1 − ζ′, (29)

holds for any t = kT, kT + 1, ..., kT + j − 1. Hence, we have

Pr







kT+j−1
∑

t=kT

L∑

l=1

W F
l [t]SF

l [t] ≥ (1 − ǫ)

kT+j−1
∑

t=kT

W G[t]

∣
∣
∣
∣
∣
∣

Fj







≥ Pr

{
L∑

l=1

W F
l [t]SF

l [t] ≥ (1 − ǫ)W G[t],∀t = kT, ..., kT + j − 1

∣
∣
∣
∣
∣
Fj

}

≥ 1 − jζ′ ≥ 1 − Tζ′, (30)

where we use the fact that given any two events E1 and E2
such that Pr{E1} ≥ 1 − ǫ1 and Pr{E2} ≥ 1 − ǫ2, we have

Pr{E1

⋂
E2} ≥ 1 − ǫ1 − ǫ2. By picking ζ′ small enough such

that 1 − Tζ′ ≥ 1 − ζ, we have

Pr

{
kT+j−1
∑

t=kT

L∑

l=1

W
F
l [t]SF

l [t] ≥ (1 − ǫ)

kT+j−1
∑

t=kT

W
G[t]

∣
∣
∣
∣
∣
Fj

}

≥ 1 − ζ,

for j = 1, ..., T, which implies that

E

[
kT+j−1
∑

t=kT

L∑

l=1

WF
l [t]SF

l [t]1Fj

∣
∣
∣
∣
∣
X[kT ] = X

]

= Pr{Fj}E

[
kT+j−1
∑

t=kT

L∑

l=1

WF
l [t]SF

l [t]

∣
∣
∣
∣
∣
X[kT ] = X,Fj

]

≥Pr{Fj}(1 − ǫ)(1 − ζ)E

[
kT+j−1
∑

t=kT

WG[t]

∣
∣
∣
∣
∣
X[kT ] = X,Fj

]

=(1 − ǫ)(1 − ζ)E

[
kT+j−1
∑

t=kT

WG[t]1Fj

∣
∣
∣
∣
∣
X[kT ] = X

]

, (31)

for j = 1, ..., T. Thus, we have

∆V2 = E





T∑

j=0

(k+1)T−1
∑

t=kT

L∑

l=1

WF
l [t]SF

l [t]1Fj

∣
∣
∣
∣
∣
∣

X[kT ] = X





≥ E





T∑

j=1

kT+j−1
∑

t=kT

L∑

l=1

WF
l [t]SF

l [t]1Fj

∣
∣
∣
∣
∣
∣

X[kT ] = X





≥ (1 − ǫ)(1 − ζ)E





T∑

j=1

kT+j−1
∑

t=kT

WG[t]1Fj

∣
∣
∣
∣
∣
∣

X[kT ]



 (32)

Thus, by using (27) and (32), ∆V becomes

∆V ≤(ǫ + ζ − ǫζ)E





T∑

j=1

kT+j−1
∑

t=kT

WG[t]1Fj

∣
∣
∣
∣
∣
∣

X[kT ]





− δ

L∑

l=1

f(Xl) +
T (T + 1)W

2
. (33)

Since

E





T∑

j=1

kT+j−1
∑

t=kT

WG[t]1Fj

∣
∣
∣
∣
∣
∣

X[kT ]





≤E





(k+1)T−1
∑

t=kT

WG[t]

∣
∣
∣
∣
∣
∣

X[kT ]



 ≤ AmaxT

L∑

l=1

f(Xl), (34)

we have

∆V ≤ (ǫ + ζ − ǫζ)AmaxT

L∑

l=1

f(Xl) − δ

L∑

l=1

f(Xl) +
T (T + 1)W

2

= − γ

L∑

l=1

f(Xl) + H, (35)

where H = T (T+1)W
2 and γ = δ − Amax(ǫ + ζ − ǫζ)T . We

can choose β, ǫ, ζ small enough such that γ > 0.
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