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Abstract—It is well-known that maximum weight scheduling,
with link weights which are either functions of queue lengths
or the ages of the Head-of-Line (HoL) packets in each queue,
maximizes the throughput region of wireless networks with
persistent flows. In particular, with only persistent flows, it does
not matter for throughput optimality whether one uses queue
lengths or HoL ages as weights. In this paper, we show the
following interesting result: when some flows in the network
are dynamic (i.e., they arrive and depart from the network and
are not persistent), then HoL-age-based scheduling algorithms
are throughput-optimal while it has previously been shown that
queue-length-based algorithms are not. This reveals that, age-
based algorithms are universal in the sense that their throughput
optimality does not depend on whether the arriving traffic is
persistent or not. We also present a distributed implementation of
the proposed age-based algorithm using CSMA techniques, where
each flow only knows its own age and carrier sensing information.
Finally, we support our analytical results through simulations.
The proof of throughput optimality may be interesting in its
own right: it uses a novel Lyapunov function which is the sum
of the ages of all the packets in the network.

I. INTRODUCTION

Maintaining efficient and high-quality communication in
wireless networks requires careful management of interference
among simultaneous transmissions. A central question in the
design of efficient interference management is to determine
when and which users are allowed to transmit – an operation
commonly referred to as scheduling. The seminal works of
Tassiulas and Ephremides (e.g., [22], [23], [21]) developed
a queue-length-based throughput-optimal strategy, which pri-
oritizes activation of users with the greatest backlog awaiting
service, also called Maximum Weight Scheduling (MWS). Here,
the throughput-optimal strategy means that it can achieve any
throughput subject to network stability that is achievable by
any other scheduling strategy. Subsequent works extended
throughput to other first-order metrics, such as fairness (e.g.,
[4], [13], [9], [20]), average energy consumption (e.g., [14],
[15], [3]), etc.

Although MWS algorithm exhibits excellent network per-
formance, it implicitly assumes that the system consists of
a fixed number of persistent flows that continuously inject
packets into the network and will never leave the network.
This assumption fails to hold in most real-world commu-
nication networks, where dynamic flows arrive, demand a

certain amount of service, and leave the network once the
requested service is complete. In such networks, the well-
known queue-length-based MWS algorithm fails to achieve
maximum throughput. In particular, in [24], the authors pre-
sented examples to show that the queue-length-based MWS
algorithm is not throughput-optimal in networks with flow-
level dynamics over time-varying channels. Subsequent works
(e.g., [11], [10], [18], [26]) have developed throughput-optimal
scheduling algorithms that do not require any prior knowledge
of channels and user demands.

In another interesting work [25], the authors showed that
the queue-length-based MWS algorithm also fails to provide
maximum throughput in spatial wireless networks, even in the
absence of time-varying channels, where only certain subsets
of the dynamic flows can be activated simultaneously subject
to the interference constraints. The intuition is as follows. If
a persistent flow does not receive service for a long time, its
backlog blows up, which in turn forces the MWS scheduler
to serve the flow. This characteristic guarantees the efficiency
of the MWS algorithm in the presence of persistent flows.
However, in the presence of dynamic flows, where the backlog
of a dynamic flow is fixed, the MWS algorithm tends to serve
flows with large backlogs and may not provide any service
for flows with small backlogs, which results in flows with
small backlogs staying in the network forever. Therefore, as
the flows with small backlogs continue to arrive, the number
of such flows could increase to infinity, leading to network
instability.

Even though the authors in [25] developed a region-based
version of MWS scheduling, the proposed algorithm requires
the careful identification of adequate regions, which not only
sacrifices throughput performance but also yields difficulty
for distributed implementation. In [2], the authors developed
a flow-aware CSMA algorithm for continuous-time systems,
where each dynamic flow attempts to access the wireless
channel after some random time and transmits a packet if
the channel is sensed idle. Surprisingly, this simple distributed
algorithm achieves the maximum throughput in the presence
of dynamic flows. However, it does not achieve the maximum
throughput in the presence of persistent flows. This deficiency
is pronounced, since it is difficult to differentiate between
dynamic and persistent flows in reality.



This motivates us to develop a universal scheduling algo-
rithm that is insensitive to the flow type. That is, we would
like to design a throughput-optimal scheduling algorithm in
wireless networks serving both persistent and dynamic flows.
We find that the flow-level-age, such as the age of dynamic
flows and the age of head-of-line files in the persistent flows,
is a natural and sufficient information which can be utilized for
this purpose. We develop a flow-level-age-based throughput-
optimal MWS algorithm, which prioritizes activation of dy-
namic/persistent flows with the largest age. Even though head-
of-line-age-based scheduling (e.g., [12], [1], [19], [5]) has been
shown to be throughput-optimal in the presence of persistent
flows, it is unclear how it can be generalized to the case with
both persistent and dynamic flows. By using a novel Lyapunov
function that measures the total waiting time of all files
present in the network, we show that age-based scheduling
is universal.

We make a remark on the terminology here. By a dynamic
flow, we refer to a single file which arrives, transfers its packets
and departs from the system. Such a file is associated with a
node in the network, and thus, when the file departs, the node
also departs, which makes the topology of the network itself
dynamic. On the other hand, a persistent flow is associated
with a fixed node in the network which never departs. Such
a flow generates files continuously, and each file consists of a
collection packets. Notice that, both in the case of persistent
and dynamic files, the HoL packet belongs to the HoL file (in
the case of dynamic flows, there is only one file at the node),
and hence, the age of the HoL packet is the same as the age
of the HoL file.

Noting the high-complexity and centralized operation of
our proposed algorithm, we also investigate the issue of
distributed design of our proposed scheduling algorithm. Re-
cently, distributed Carrier Sense Multiple Access (CSMA)-
based scheduling algorithms ([7], [16], [17], [6]) have attracted
extensive interest due to their throughput-optimal character-
istics in general networks with a fixed number of persistent
flows. All such CSMA scheduling algorithms use an appro-
priate queue-based weights as their CSMA parameters. In this
work, we show that CSMA algorithm that is based on age-
information achieves maximum throughput when persistent
and dynamic flows coexist. Our contributions in this work can
be summarized as follows:
• We develop a throughput-optimal age-based scheduling

algorithm that is robust to the presence of both persistent
and dynamic flows. To the best of our knowledge, this is the
first universal wireless scheduler that can optimally support
coexisting persistent and dynamic flows. To handle the unique
dynamics of flow-level-age, we propose a novel Lyapunov
function to show the throughput optimality, which may be
interesting in its own right.
• To address the complexity of the proposed algorithm, we

present a distributed CSMA implementation of our algorithm,
where each flow only needs to know its own age and carrier
sensing information.
• We support our analytical results with extensive simu-

lation results, which shows the robustness of the age-based
scheduling algorithms.

II. SYSTEM MODEL

A. Basic Setup

We consider a wireless network with a fixed number of
persistent flows coexisting with dynamic flows arriving in
a fixed area, where a persistent flow means that the flow
persistently injects files into the network and will never leave
the network. In contrast, a dynamic flow means that the flow
that will leave the network once it completes its transmission.
We assume that the system operates in slotted time. Since
a dynamic flow is associated with a node, the topology of
the network itself changes over time. Thus, it is difficult to
characterize the interference in such networks using maximum
independent sets, as is done traditionally. Instead, we partition
the area over which the network operates into K different
regions, such that at most one flow can be scheduled in each
region in each time slot and flows in different regions may
or may not be scheduled simultaneously depending on the
interference constraints. Note that this area partitioning is just
for the purpose of conveniently characterizing the interference
constraints, and our algorithms (in particular, our distributed
algorithm) do not rely on the details of this partition.

We call a set of regions that can provide service to their
flows simultaneously a feasible set of regions. Let Ω be
the collection of feasible sets of regions. For example, Fig.
1(a) shows a wireless network with five regions under the
one-hop interference model, where the neighboring regions
cannot provide service for flows at the same time. Thus, a
transmission in region 1 interferes with the transmission in
regions 2, 3, 4 but not with region 5. The maximal feasible
sets of regions in such a network are {3}, {1, 5}, {2, 4} and
{2, 5}. Also, Fig. 1 shows the two snapshots of the network,
where the network topology changes due to the arrival and
departure of the dynamic flows.

Let N (d)
i [t] be the set of dynamic flows in region i in time

slot t, and N (p)
i be the set of persistent flows in region i.

Note that the number of persistent flows |N (p)
i | is fixed in

each region, where |A| denotes the cardinality of set A. We
call a set of flows that can be scheduled simultaneously as a
feasible schedule and denote it as

S[t] , {Si,j [t], j ∈ N (d)
i [t] ∪N (p)

i , i = 1, 2, ...,K},

where Si,j [t] = 1 if the flow j in the region i is scheduled
in slot t and Si,j [t] = 0, otherwise. Let S[t] be the set of all
feasible schedules in slot t. With a little bit abuse of notation,
we also use Si[t] to denote whether the service is provided in
region i in time slot t.

We maintain a queue for each persistent flow. We use Q(p)
i,j [t]

to denote the queue-length of persistent flow j in region i

in time slot t. Let A(p)
i,j [t] be the number of files arriving

in queue j in region i in slot t that are independently and
identically distributed (i.i.d.) over time with mean λ

(p)
i,j > 0,

and A
(p)
i,j [t] ≤ Amax

i for some Amax
i < ∞, ∀i, t ≥ 0. We
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Fig. 1. Two snapshots of a wireless network with five regions: the network
topology changes due to the departure and arrival of dynamic flows.

use F (p)
i,j,l[t] to denote the number of packets constituting file l

arriving at queue j in region i in slot t that follows any random
distribution with mean η(p)

i,j > 0 and F (p)
i,j,l[t] < Fmax

i for some
Fmax
i <∞. LetM(p)

i,j [t] be the set of files of persistent flow j
in region i in time slot t. Files in each queue are served in First-
Come-First-Serve (FCFS) order, i.e., the Head-of-Line (HoL)
file in each queue is always served first. Let ρ(p)

i,j , λ
(p)
i,j η

(p)
i,j

be the traffic intensity of the persistent flow j in region i.
We assume that A

(d)
i [t], which denotes the number of

dynamic flows arriving in region i in slot t, are i.i.d. over
time with mean λ

(d)
i > 0, and A

(d)
i [t] ≤ Amax

i for some
Amax
i <∞, ∀i, t ≥ 0. We use F (d)

i,j [t] to denote the number of
packets of flow j arriving at region i that follows any random
distribution with mean η

(d)
i > 0, and F

(d)
i,j [t] < Fmax

i . Let
ρ

(d)
i , λ

(d)
i η

(d)
i be the traffic intensity of the dynamic flows

in region i.
We assume that newly arriving files cannot be scheduled

until the next time slot. For ease of exposition, we assume that
each flow transfers one packet in each time slot if scheduled.
Let ρi , ρ

(d)
i +

∑
j∈N (p) ρ

(p)
i be the traffic intensity in

region i. We use R
(d)
i,j [t] and R

(p)
i,j,l[t] to denote the number

of residual packets of dynamic flow j ∈ N (d)
i [t] and file l

in queue j ∈ N (p)
i in region i in slot t, respectively. Note

that the queue-length of queue j ∈ N (p)
i is just the total

number of residual packets of persistent flow j ∈ N (p)
i , i.e.,

Q
(p)
i,j [t] =

∑
l∈M(p)

i,j [t]
R

(p)
i,j,l[t]. The dynamic flows or files

of persistent flows leave the system once all their packets

have been served, i.e., their residual sizes reduce to 0. We
use T (d)

i,j [t] and T
(p)
i,j,l[t] to denote the “age” of dynamic flow

j ∈ N (d)[t] and file l in queue j ∈ N (p) in region i in slot
t, respectively, i.e., T (d)

i,j [t] and T
(p)
i,j,l[t] always increase by 1

if their corresponding flows and files do not leave the system,
and resets to 0 otherwise. More precisely, the evolution of
T

(d)
i,j [t] and T (p)

i,j,l[t] can be written as

T
(d)
i,j [t+ 1] =

(
T

(d)
i,j [t] + 1

)(
1− 1{R(d)

i,j [t+1]=0}

)
, (1)

T
(p)
i,j,l[t+ 1] =

(
T

(p)
i,j,l[t] + 1

)(
1− 1{R(p)

i,j,l[t+1]=0}

)
, (2)

where 1{B} is an indicator function of event B. Let T (p)
i,j [t] ,

max
l∈M(p)

i,j [t]
Ti,j,l[t] be the age of HoL file of queue j in

region i in time slot t.
In this paper, we consider the policies under which the

system evolves as a Markov Chain. We call the system stable if
the underlying Markov Chain is positive recurrent. We define
the capacity region Λ as the convex hull of the collection of
feasible sets of regions Ω, which gives the upper bound on the
achievable rates in packets per slot that can be supported by
the network under stability for the given interference model.
We say that a scheduler is throughput-optimal if it achieves the
network stability for any traffic intensity vector ρ , (ρi)

K
i=1

that lies strictly inside the capacity region Λ.

B. Deficiency of Traditional MWS under Dynamic Flows

The well-known queue-length-based Maximum Weight
Scheduling (MWS) algorithms ([22], [23]) have been shown
to achieve maximum throughput in the presence of a fixed
number of persistent flows that persistently inject packets into
the network. However, they fail to provide the maximum
throughput in wireless networks with dynamic flows. Next, we
first give the traditional queue-length-based MWS algorithm
for completeness.

Algorithm 1: (Residual-Flow-Size-Based MWS (RFS-MWS)
Algorithm): In each time slot t, select a feasible schedule
S(RFS)[t] ∈ S[t] that maximizes the aggregate residual size

K∑
i=1

 ∑
j∈N (d)

i [t]

R
(d)
i,j [t]Si,j [t] +

∑
j∈N (p)

i

Q
(p)
i,j [t]Si,j [t]

 .

To see the throughput inefficiency of the RFS-MWS Al-
gorithm, we consider a star topology with four regions in
the presence of only dynamic flows, where the first three
regions do not interfere with each other but with the fourth
region. The number of arriving dynamic flows in each region
i follows Bernoulli distribution with mean λi, ∀i = 1, 2, 3, 4.
Assume λ1 = λ2 = λ3 = λ. The size of arriving dynamic
flows is always 2 in the first three regions and 1 in the last
region. Hence, we have ρ1 = ρ2 = ρ3 = 2λ, and ρ4 = λ4,
where we recall that ρi denotes the traffic intensity in region
i, ∀i = 1, 2, 3, 4. It is easy to see that the achievable rate
region in the fourth region is {ρ4 > 0 : ρ4 < 1 − 2λ}. Yet,



under the RFS-MWS Algorithm, the dynamic flows in the
fourth region can never be scheduled if there is an arriving
dynamic flow in any of the first three regions, which implies
that the maximum supportable traffic intensity in the fourth
region should be bounded from above by (1 − λ)3, i.e.,
ρ4 < (1 − λ)3. Thus, if λ < 1 −

√
2/3 ≈ 0.1835, then,

(1−λ)3 < 1−2λ, which implies that the RFS-MWS Algorithm
fails to achieve maximum throughput. In [25], the authors
provide more examples illustrating the throughput deficiency
of the RFS-MWS Algorithms in the presence of dynamic
flows.

The deficiency of the RFS-MWS Algorithm is due to the
fact that it myopically selects a feasible schedule with the
maximal residual size of dynamic flows without the knowledge
of the aggregate flow size of dynamic flows in each region.
If we view each region as a single link, then, the wireless
network with dynamic flows can be seen as a classic wireless
network with a fixed number of links, where packets belonging
to various dynamic flows are continuously injected into their
associated link. Hence, it is easy to verify that the traditional
MWS strategy that schedules according to the aggregate flow
size at each link is throughput-optimal. However, the number
of dynamic flows in each region is hard to obtain in each time
slot in practice and thus an appropriate and easily measurable
metric approximately reflecting the aggregate flow size of
dynamic flows in each region is strongly desirable.

C. Deficiency of Flow-Aware CSMA under Persistent Flows

The flow-aware CSMA algorithm proposed in [2] can
achieve the maximum throughput in presence of only dynamic
flows in continuous time. The algorithm works as follows:

Algorithm 2 (Flow-Aware CSMA Algorithm): Each flow
independently generates an exponentially distributed random
variable with a constant rate and starts transmitting after this
random duration unless it senses another transmission before.
If the flow senses the transmission, it suspends its backoff
timer and resumes it after the completion of this transmission.
The transmission time of each link is exponentially distributed
with mean 1.

Under the flow-aware CSMA algorithm, each region vir-
tually generates an exponentially distributed random variable
with the rate proportional to the number of flows in that
region, which follows from the fact that the minimum of
two independent exponential random variables is exponentially
distributed with the rate that is the sum of rates of these two
random variables. Thus, the information about the aggregate
flow size is implicitly included in the algorithm resulting
in the optimal throughput. However, the flow-aware CSMA
algorithm is not throughput-optimal for wireless networks with
persistent flows (see [2]).

In practice, it is difficult to distinguish the persistent and dy-
namic flows. Therefore, it is necessary to design a distributed
and universal scheduling algorithm that is throughput-optimal
in the presence of both persistent and dynamic flows. Next,

we first develop a centralized scheduling algorithm for serving
both persistent and dynamic flows, which we later convert to
a distributed algorithm.

III. UNIVERSAL AGE-BASED SCHEDULING

In this section, we develop a universal scheduling algorithm
that is throughput-optimal for hybrid flows, where persistent
and dynamic flows coexist.

A. Algorithm Description

A good approximation of the aggregate flow size of dynamic
flows in each region is the maximum age of dynamic flows in
that region. Indeed, from the Law of Large Numbers [5], the
aggregate flow size of dynamic flows is proportional to the
maximum age of dynamic flows in each region. In addition,
the age of HoL files is a good metric to make transmission
decisions in the presence of only persistent flows, since the
HoL-age-based scheduling (e.g., [12], [1], [19], [5]) has been
shown to be throughput-optimal in such a scenario. Therefore,
it may be sufficient to utilize the age of dynamic flows and the
age of HoL files of persistent flows to schedule transmissions.

To facilitate the flexibility in the algorithm design, we define
a set of functions:
F , set of non-negative, non-decreasing, differentiable and
concave functions f(·) : R+ → R+ with f(0) = 0 and
limy→∞ f(y) =∞.

G , {f ∈ F : for a ≥ 1 there exists a number c(a) > 0

depending on a such that f(ax) ≤ c(a)f(x),∀x ≥ 1}.

The examples of functions that are in class G are f(x) = x,
f(x) =

√
x, f(x) = log(1 + x), f(x) = log log(x + e), and

f(x) = log(1 + x)/g(x), where g(x) is an arbitrary positive,
non-decreasing and differentiable function which makes f(x)
an non-decreasing concave function. Next, we propose the
following age-based algorithm.

Algorithm 3: (Age-Based MWS (A-MWS) Algorithm): In
each time slot t, select a feasible schedule S(A-MWS)[t] ∈ S[t]
that maximizes the aggregate age of all flows

K∑
i=1

 ∑
j∈N (d)

i [t]

f
(
T

(d)
i,j [t]

)
Si,j [t] +

∑
j∈N (p)

i

f
(
T

(p)
i,j [t]

)
Si,j [t]

 ,

where we recall that T (d)
i,j [t] is the age of dynamic flow j in

region i in time slot t and T
(p)
i,j [t] is the age of HoL file of

persistent flow j in region i in time slot t, and f ∈ G.

Under the A-MWS Algorithm, only the dynamic flow with
the maximum age or the persistent flow with the largest
HoL age can be scheduled in each region. Recall that the
HoL age of persistent flow is the maximum age of files in
its corresponding queue. To make the transmission decisions
under the A-MWS Algorithm, it is sufficient to know the age
of dynamic flows and the age of the HoL files of persistent
flows. Even though we can show the throughput-optimality



of the HoL-age-based scheduling (e.g., [12], [1], [19], [5])
in the presence of only persistent flows, it is unclear how
the proof can be extended to the case with hybrid flows.
Nevertheless, we establish the throughput-optimality of the A-
MWS Algorithm by choosing a novel Lyapunov function as
the total summation of the function of age of all remaining
packets. Unlike the traditional quadratic form counterpart, our
Lyapunov function is novel and is of independent interest.

Theorem 1: The A-MWS Algorithm with f ∈ G is
throughput-optimal, i.e., it stabilizes the system for any arrival
intensity vector ρ that is strictly within the capacity region Λ.

This result, whose proof is provided in Section III-B,
indicates that it is sufficient to guarantee the throughput-
optimality by scheduling transmissions only based on the age
of dynamic flows and the age of HoL files of persistent flows.
The scheduler need not know the type of flow. This advantage
is pronounced in practice, since it is difficult to distinguish the
persistent and dynamic flows.

B. Proof of Throughput-Optimality

The proof of Theorem 1 to-be-presented next is of indepen-
dent interest as it introduces a novel Lyapunov function that
can accommodate both persistent and dynamic flows. We start
by establishing the following simple inequality.

Lemma 1: For any f ∈ F , we have
M−1∑
m=1

f ′(m) ≤ f(M) + f ′(1), (3)

holding for any M ≥ 1.
Proof: By using the Fundamental Theorem of Calculus,

we have

f(M)− f(1) =

∫ M

1

f ′(τ)dτ

=

M−1∑
m=1

∫ m+1

m

f ′(τ)dτ

(a)

≥
M−1∑
m=1

∫ m+1

m

f ′(m+ 1)dτ

=

M−1∑
m=1

f ′(m+ 1)

=

M−1∑
m=1

f ′(m) + f ′(M)− f ′(1), (4)

where the step (a) follows from the fact that f ′(y) is non-
increasing for any y ≥ 0 due to the concavity of the function f .
Reorganizing the inequality (4) and using the fact that f(y) ≥
0 and f ′(y) ≥ 0 for any y ≥ 0, we have the desired result.

We are ready to prove Theorem 1. As the Lyapunov
function, we take the total age of all files of both persistent
and dynamic flows, which are currently in the system. Math-
ematically, we choose the Lyapunov function as V (R,T) ,

V1(R(d),T(d)) + V2(R(p),T(p)), where

V1(R(d),T(d)) ,
K∑
i=1

∑
j∈N (d)

i

R
(d)
i,j f

(
T

(d)
i,j

)
, (5)

V2(R(p),T(p)) ,
K∑
i=1

∑
j∈N (p)

i

∑
l∈M(p)

i,j

R
(p)
i,j,lf

(
T

(p)
i,j,l

)
, (6)

and R(d) =
(
R

(d)
i,j , j ∈ N

(d)
i , i = 1, 2, ...,K

)
,

R(p) =
(
R

(p)
i,j,l, l ∈M

(p)
i,j , j ∈ N

(p)
i , i = 1, 2, ...,K

)
,

T(d) =
(
T

(d)
i,j , j ∈ N

(d)
i , i = 1, 2, ...,K

)
,

T(p) =
(
T

(p)
i,j,l, l ∈M

(p)
i,j , j ∈ N

(p)
i , i = 1, 2, ...,K

)
,

R = (R(d),R(p)),T = (T(d),T(p)).

Next, we will consider the drift of V1(R(d),T(d)) and
V2(R(p),T(p)), respectively. We first focus on the drift
∆V1[t] , V1(R(d)[t + 1],T(d)[t + 1]) − V1(R(d)[t],T(d)[t]).
In each region i = 1, 2, ...,K, we have∑

j∈N (d)
i [t+1]

R
(d)
i,j [t+ 1]f

(
T

(d)
i,j [t+ 1]

)

=
∑

j∈N (d)
i [t]

R
(d)
i,j [t+ 1]f

(
T

(d)
i,j [t+ 1]

)
+ f(1)

A
(d)
i [t]∑
j=1

F
(d)
i,j [t],

(7)

where the last step follows from the fact that the newly arriving
dynamic flows are not served in the current slot. Next, we
focus on

∑
j∈N (d)

i [t]
R

(d)
i,j [t+1]f

(
T

(d)
i,j [t+ 1]

)
in equation (7).

∑
j∈N (d)

i [t]

R
(d)
i,j [t+ 1]f

(
T

(d)
i,j [t+ 1]

)
(a)
=

∑
j∈N (d)

i [t]

f
((
T

(d)
i,j [t] + 1

)(
1− 1{R(d)

i,j [t+1]=0}

))
R

(d)
i,j [t+ 1]

(b)
=

∑
j∈N (d)

i [t]

f
(
T

(d)
i,j [t] + 1

)
R

(d)
i,j [t+ 1]

(c)
=

∑
j∈N (d)

i [t]

(
f
(
T

(d)
i,j [t]

)
+ f ′ (xi,j)

)(
R

(d)
i,j [t]− S(A-MWS)

i,j [t]
)

(d)

≤
∑

j∈N (d)
i [t]

R
(d)
i,j [t]f

(
T

(d)
i,j [t]

)
−

∑
j∈N (d)

i [t]

f
(
T

(d)
i,j [t]

)
S

(A-MWS)
i,j [t]

+
∑

j∈N (d)
i [t]

R
(d)
i,j [t]f ′

(
T

(d)
i,j [t]

)
, (8)

where the step (a) uses the dynamics of T (d)
i,j [t], i.e., equation

(1); step (b) follows from the assumption that f(0) = 0;
step (c) uses the Mean Value Theorem for some xi,j between
T

(d)
i,j [t] and T (d)

i,j [t] + 1, and the fact that S(A-MWS)
i,j [t] ≤ 1 and



R
(d)
i,j [t] ≥ 1, for any j ∈ N (d)

i [t]; step (d) follows from the
fact that f ′(y) is non-decreasing and non-negative due to f(y)
being non-decreasing and concave for any y ≥ 0.

By combining the definition of ∆V1[t], (7) and (8), we have

E [∆V1[t]] ≤
K∑
i=1

E

 ∑
j∈N (d)

i [t]

R
(d)
i,j [t]f ′

(
T

(d)
i,j [t]

)
−

K∑
i=1

E

 ∑
j∈N (d)

i [t]

f
(
T

(d)
i,j [t]

)
S

(A-MWS)
i,j [t]

+ f(1)

K∑
i=1

ρ
(d)
i .

(9)

In order to provide an upper bound on the first term of
right-hand side of inequality (9), we consider its expectation
conditioned on T (d)

i,max[t] , max
j∈N (d)

i [t]
T

(d)
i,j [t], i.e.,

E

 ∑
j∈N (d)

i [t]

R
(d)
i,j [t]f ′

(
T

(d)
i,j [t]

)∣∣∣∣∣∣∣T (d)
i,max[t]


(a)

≤E

 t−1∑
τ=t−T (d)

i,max[t]+1

f ′(t− τ)

A
(d)
i [τ ]∑
j=1

F
(d)
i,j [τ ]

∣∣∣∣∣∣∣T (d)
i,max[t]


+Amax

i Fmax
i f ′(T

(d)
i,max[t])

(b)
=ρ

(d)
i

t−1∑
τ=t−T (d)

i,max[t]+1

f ′(t− τ) +Amax
i Fmax

i f ′(T
(d)
i,max[t])

≤ρ(d)
i

Ti,max[t]−1∑
m=1

f ′(m) +Amax
i Fmax

i f ′(1)

(c)

≤ρ(d)
i f(T

(d)
i,max[t]) + (ρ

(d)
i +Amax

i Fmax
i )f ′(1). (10)

where the step (a) follows from the fact that flows in time slot
t at most include all flows that came between τ = t−T (d)

i,max[t]
and t − 1, and the fact that the number of incoming packets
of each dynamic flow in each region i in each time slot is
not greater than Amax

i Fmax
i ; step (b) follows from the fact the

dynamic flows arriving between t−T (d)
i,max[t] + 1 and t− 1 do

not served under the A-MWS Algorithm, since the A-MWS
always serves the dynamic flows with the maximum age in
each region; step (c) uses Lemma 1.

By taking expectation of inequality (10) over T (d)
i,max[t] and

substituting it into (9), we have

E[∆V1[t]] ≤
K∑
i=1

ρ
(d)
i E

[
f(T

(d)
i,max[t])

]
+B1

−
K∑
i=1

E

 ∑
j∈N (d)

i [t]

f
(
T

(d)
i,j [t]

)
S

(A-MWS)
i,j [t]

 ,
(11)

where B1 , f(1)
∑K
i=1 ρ

(d)
i +f ′(1)

∑K
i=1(ρ

(d)
i +Amax

i Fmax
i ).

Similarly, we can show

E[∆V2[t]] ≤
K∑
i=1

∑
j∈N (p)

i

ρ
(p)
i,j E

[
f(T

(p)
i,j [t])

]
+B2

−
K∑
i=1

∑
j∈N (p)

i

E
[
f
(
T

(p)
i,j [t]

)
S

(A-MWS)
i,j [t]

]
, (12)

where ∆V2[t] , V2(R(p)[t + 1],T(p)[t + 1]) −
V2(R(p)[t],T(p)[t]), and B2 , f ′(1)

∑K
i=1

∑
j∈N (p)

i
(ρ

(p)
i,j +

Amax
i Fmax

i ) + f(1)
∑K
i=1

∑
j∈N (p)

i
ρ

(p)
i,j .

Thus, we have

E [∆V [t]] = E [V (R[t+ 1],T[t+ 1])− V (R[t],T[t])]

=E [∆V1[t]] + E [∆V2[t]]

(a)

≤
K∑
i=1

E

ρ(d)
i f(T

(d)
i,max[t]) +

∑
j∈N (p)

i

ρ
(p)
i,j f(T

(p)
i,j [t])

+B

−
K∑
i=1

E

 ∑
j∈N (d)

i [t]

f
(
T

(d)
i,j [t]

)
S

(A-MWS)
i,j [t]


−

K∑
i=1

∑
j∈N (p)

i

E
[
f
(
T

(p)
i,j [t]

)
S

(A-MWS)
i,j [t]

]
(b)

≤
K∑
i=1

ρiE [f(Tmax
i [t])]−

K∑
i=1

E
[
S

(A-MWS)
i [t]f(Tmax

i [t])
]

+B,

(13)

where the step (a) follows from inequalities (11) and (12)
and is true for B , B1 + B2; step (b) is true for Tmax

i [t] ,

max
{
T

(d)
i,max[t],max

j∈N (p)
i
f(T

(p)
i,j [t])

}
and follows from the

fact that the A-MWS Algorithm always selects a dynamic
flow with the maximum age or the persistent flow with the
maximum HoL age and the fact that at most one flow can be
scheduled in each region in each time slot.

For any traffic intensity vector ρ strictly within the capacity
region Λ (see [21]), there exists an ε > 0 such that

ρi ≤
∑
s∈Ω

α(s)si − ε, ∀i = 1, 2, ..,K, (14)

where s = (si)
K
i=1 and

∑
s∈Ω α(s) = 1.

By substituting (14) into (13), we have

E [∆V [t]] ≤− ε
K∑
i=1

E [f (Tmax
i [t])] +B

+

K∑
i=1

∑
s∈Ω

α(s)siE [f(Tmax
i [t])]

−
K∑
i=1

E
[
f (Tmax

i [t])S
(A-MWS)
i [t]

]
. (15)



Given T[t] = (T(d)[t],T(p)[t]), according to the A-MWS
Algorithm, we have

K∑
i=1

∑
s∈Ω

α(s)sif (Tmax
i [t])

=
∑
s∈Ω

α(s)

K∑
i=1

sif (Tmax
i [t])

≤
∑
s∈Ω

α(s)

K∑
i=1

f (Tmax
i [t])S

(A-MWS)
i [t]

=

K∑
i=1

f (Tmax
i [t])S

(A-MWS)
i [t], (16)

By substituting (16) into (15), we have

E [∆V [t]] ≤− ε
K∑
i=1

E [f (Tmax
i [t])] +B. (17)

By summing the above inequality over t = 0, 1, ...,M −1, we
have

lim sup
M→∞

1

M

M−1∑
t=0

K∑
i=1

E [f (Tmax
i [t])] ≤ B

ε
. (18)

Since the A-MWS Algorithm only severs the dynamic flows
with the oldest age and the dynamic flows in region i in time
t at most include the flows that arrived between t− T (d)

i,max[t]
and t− 1, we have

∑
j∈N (d)

i [t]

R
(d)
i,j [t] ≤

t−1∑
τ=t−T (d)

i,max[t]+1

A
(d)
i [t]∑
j=1

F
(d)
i,j [t] +Amax

i Fmax
i

≤Amax
i Fmax

i T
(d)
i,max[t], ∀i. (19)

Similarly, we have

Q
(p)
i,j [t] =

∑
l∈M(p)

i,j [t]

R
(p)
i,j,l[t] ≤ A

max
i Fmax

i T
(p)
i,j [t],∀j,∀i. (20)

By combining (19) and (20), we have

f

 ∑
j∈N (d)

i [t]

R
(d)
i,j [t], max

j∈N (p)
i

Q
(p)
i,j [t]


≤f (Amax

i Fmax
i Tmax

i [t])

(a)

≤Gif (Tmax
i [t])

(b)

≤ Gmaxf (Tmax
i [t]) , (21)

where the step (a) is true for some constant Gi > 0 depending
on Amax

i and Fmax
i , and follows from the property of the

function f ; step (b) is true for Gmax , maxi=1,2,...,K Gi. By
combining (21) and (18), we have

lim sup
M→∞

1

M

M−1∑
t=0

K∑
i=1

E

f
 ∑

j∈N (d)
i [t]

R
(d)
i,j [t], max

j∈N (p)
i

Q
(p)
i,j [t]




≤ BGmax

ε
, (22)

which implies stability-in-the-mean property and thus the
underlying Markov Chain is positive recurrent [8]. �

IV. DISTRIBUTED IMPLEMENTATION

The proposed A-MWS algorithm requires the maximum
weight schedule to be determined repeatedly as the the age of
dynamic flows and files of persistent flows change. This calls
for heavy computation and centralized operations, which is a
formidable task in practice. This motivates us, in this section,
to design a distributed version of the A-MWS algorithm based
on Glauber Dynamics, similar spirit to that in [16], [6].

Let Ci,j [t] be the set of flows that are conflict with the
(persistent or dynamic) flow j in region i in time slot t.
Also, let wi,j [t] be the weight of flow j in region i in
time slot t. wi,j [t] = f(T

(d)
i,j [t]) if the flow is dynamic, and

wi,j [t] = f(T
(p)
i,j [t]) otherwise, where f ∈ G. We divide each

time slot t into a control slot and a data slot.

Algorithm 4: (Distributed A-MWS Algorithm in time slot t):
• In the control slot, a decision schedule m[t] ∈ S[t] is

selected at random with positive probability α(m[t]). Then,
for all flows j in region i that are within m[t],

(i) If all flows k ∈ Ci,j [t] are not scheduled in time slot
t − 1, then Si,j [t] = 1 with probability exp(wi,j [t])

1+exp(wi,j [t]) ,
and Si,j [t] = 0 with probability 1

1+exp(wi,j [t]) . Otherwise,
Si,j [t] = 0.

(ii) Si′,j′ [t] = Si′,j′ [t− 1] for all j′ 6= j or i′ 6= i.

• In the data slot, use S[t] (defined in Section II-A) as the
transmission schedule.

In the control slot of each time slot, each flow sends an
INTENT message with a constant probability p (e.g., we set
p = 0.01 in the simulation). If flow j in region i does not
hear any INTENT messages from its conflicting links Ci,j [t],
it will be included in m[t], otherwise, it will not be included
in m[t]. Then, m[t] is a feasible schedule, since those flows
transmitting INTENT messages and do not hear any INTENT
messages constitute a feasible schedule.

Under our distributed algorithm, the dynamic flow with
the largest age will be served with highest probability while
newly arriving flows have a small probability of transmission,
especially for large values of the age of the oldest flow in
a region. Therefore, it is reasonable to make the time-scale
separation assumption, i.e., the underlying Glauber dynamics
Markov chain converges to the steady-state distribution at
a rate much faster than the rate at which the age of the
oldest file in a region changes. Under the time-scale separation
assumption, the stationary distribution of the distributed A-
MWS algorithm in time slot t is given by

πS[t] =
1

Z[t]
exp

 K∑
i=1

∑
j∈N (d)

i [t]∪N (p)
i

wi,j [t]Si,j [t]

 ,S ∈ S[t],

(23)



where Z[t] is the normalized constant such that∑
S∈S[t] πS[t] = 1. Then, it is easy to establish the

following throughput optimality of our distributed algorithm.
Theorem 2: The distributed A-MWS Algorithm with f ∈
G is throughput-optimal, i.e., it stabilizes the system for any
arrival intensity vector ρ that is strictly within the capacity
region Λ.

The proof is similar to that in [16] by first establishing the
following fact: given ε > 0 and ζ > 0, ∃W > 0 such that
if W ∗[t] > W , then the distributed A-MWS picks a schedule
S ∈ S[t] satisfying

Pr {WS[t] ≥ (1− ε)W ∗[t]} ≥ 1− ζ, (24)

where WS[t] ,
∑K
i=1

∑
j∈N (d)

i [t]∪N (p)
i
wi,j [t]Si,j and

W ∗[t] , maxS∈S[t]WS[t]. The rest of proof is similar to that
in Theorem 1, and thus is omitted here for brevity.

V. SIMULATION RESULTS

In this section, we perform numerical studies to validate the
throughput performance of the proposed A-MWS Algorithm
and its CSMA implementation. We consider an area (see Fig.
2) partitioned into four regions, where each region contains a
persistent flow and continuously arriving dynamic flows. Due
to the interference constraints, at most one flow in each region
can be active in each time slot. The maximal feasible sets of
regions are {1, 4} and {2, 3}. Therefore, the capacity region of
such a network is Λ = {ρ = (ρi)

4
i=1 : ρ1 + ρ2 < 1, ρ1 + ρ3 <

1, ρ4 + ρ2 < 1, ρ4 + ρ3 < 1}.

Region 1

Region 4

Region 2

Region 3

: Dynamic flow : Persistent flow

Fig. 2. Wireless network with four regions

We assume that the arrivals of both persistent and dy-
namic flows follow Bernoulli distribution. The arrival in-
tensity vectors of persistent and dynamic flows are ρ(p) =
[1/4, 1/12, 1/6, 1/2]×θ and ρ(d) = [1/2, 1/6, 1/12, 1/4]×θ,
respectively, where θ ∈ (0, 1) characterizes the traffic loaded
condition: the larger the θ, the more heavily loaded the system
is. In the simulations, we assume that the number of packets
of dynamic flows in each region follows the same distribution
of random variable X , where X equals to 2 and 8 with equal
probability. Also, the file size of persistent flows is always
equal to one packet.

A. Throughput Performance of the A-MWS Algorithm

In this subsection, we compare the throughput performance
between the A-MWS Algorithm and the RFS-MWS Algo-
rithm. Fig. 3 illustrates the average number of dynamic flows
and the average number of files of persistent flows under
different load factor θ. It can be observed that the A-MWS
Algorithm can stabilize the system for any load factor θ
between 0 and 1. In contrast, the average number of files at
persistent flows blow up under the queue-length-based RFS-
MWS Algorithm. This illustrates the robustness of age-based
scheduling to hybrid flows.
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Fig. 3. Comparison of queue-length-based and age-based algorithms

B. Throughput Performance of the Distributed Algorithm

In this subsection, we investigate the throughput perfor-
mance of the CSMA implementation of our proposed A-
MWS Algorithm using linear and logarithmic functions, and
compare them with the slightly modified flow-aware CSMA
algorithm, whose transmission time is always 1 rather than
exponentially distributed with mean 1 in continuous time.
From Fig. 4, we can observe that the average number of files
of persistent flows increases very fast under the distributed
A-MWS Algorithm with linear function and the flow-aware
CSMA Algorithm, while it grows much slowly under that with
logarithmic function. This indicates that we need to choose
a slowly increasing function as the weight function of the
CSMA algorithm such that the underlying inhomogeneous
Markov chain can converge to the steady-state distribution
(see [6]). Also, the flow-aware CSMA fails to provide the
maximum throughput in the presence of persistent flows. In
contrast, the distributed A-MWS Algorithm with logarithmic
function can keep the average number of files of both dynamic
and persistent flows low, though at a higher level than its
centralized counterpart, for any load factor within 0 and 1.

VI. CONCLUSIONS

In this paper, we considered the universal scheduling design
in wireless networks with both persistent and dynamic flows.
We developed an age-based scheduling algorithm that is
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Fig. 4. Throughput performance of the CSMA implementation

throughput-optimal in wireless networks with hybrid flows.
Then, we designed a distributed version of the proposed
algorithm by using CSMA techniques, where each flow only
knows its own age and carrier sensing information. Finally,
we validated our results through simulations.
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