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Abstract—Multi-user panoramic video streaming demands
4 ∼ 6× bandwidth of a regular video with the same resolution,
which poses a significant challenge on the wireless scheduling
design to achieve desired performance. On the other hand, recent
studies reveal that one can effectively predict the user’s Field-of-
View (FoV) and thus simply deliver the corresponding portion
instead of the entire scenes. Motivated by this important fact, we
aim to employ autoregressive process for motion prediction and
analytically characterize the user’s successful viewing probability
as a function of the delivered portion. Then, we consider the
problem of wireless scheduling design with the goal of maximizing
application-level throughput (i.e., average rate for successfully
viewing the desired content) and service regularity performance
(i.e., how often each user gets successful views) subject to
the minimum required service rate and wireless interference
constraints. As such, we incorporate users’ successful viewing
probabilities into our scheduling design and develop a scheduling
algorithm that not only asymptotically achieves the optimal
application-level throughput but also provides service regularity
guarantees. Finally, we perform simulations to demonstrate the
efficiency of our proposed algorithm using a real dataset of users’
head motion.

I. INTRODUCTION

The fast growth of wireless Head-Mounted Displays
(HMDs) (such as Oculus Go and Google Daydream) spurs
the multi-user panoramic video streaming application that
can provide an immersive experience for a group of users,
which is quite attractive in education, virtual museum tour-
ing, entertainment, just to name a few. In order to provide
the best immersive experience, it requires providing high
throughput (i.e., the average rate of successful views) and
seamless experience (i.e., regular service) to each user. This
is extremely challenging since each panoramic video delivery
typically consumes 4 ∼ 6× bandwidth of a regular video
with the same resolution (e.g., [1], [2]). This, together with
the wireless interference, poses a significant challenge on
the scheduling design that determines which and when users
should be allowed to transmit for the multi-user panoramic
video streaming application.

Fortunately, each user may only need to see as low as
20% of 360° scenes without affecting her/his visual percep-
tion, depending on her/his perspective. Imagine that a child
is watching a panoramic roller coaster video, likely, he/she
expects to see scenes in front of himself/herself only. Thus,
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if one can accurately predict a user’s immediate motion, it
suffices to deliver just about 20% of panoramic images, which
dramatically reduces the consumption of precious wireless
bandwidth. As such, it is important to actively exploit each
user’s motion prediction and incorporate it into the design of
wireless scheduling algorithms.

Recent work (e.g., [1]–[3]) has developed efficient mo-
tion prediction algorithms and incorporated them into the
panoramic video delivery in single-user or multicast wireless
systems. However, these results are not directly applicable to
the setting of multi-user panoramic video streaming in the
presence of wireless interference, due to which only a subset
of users can be scheduled to transmit at each time. While some
more recent work (e.g., [4], [5]) leveraged motion prediction
in the multi-user scheduling design, they provided neither
performance guarantee nor regular services, where the service
regularity metric is extremely important for panoramic video
streaming.

As such, in this paper, we use the autoregressive process
to predict each user’s motion and analytically characterize the
successful viewing probability as the function of the delivered
portion surrounding the predicted viewport of the user. We are
interested in whether each user can view his/her desired con-
tent instead of receiving as high as possible raw service rates.
To differentiate it from the traditional concept of network-level
throughput, we call it application-level throughput, which mea-
sures the average number of times a user successfully views
his/her desired content. Indeed, in our context, getting high
network-level throughput is not equivalent to the application-
level throughput, as the user would not watch the content
outside of the FoV even if it is delivered. For example, under
the autoregressive process motion prediction model, delivering
a half-sphere scene is sufficient to guarantee that the user
successfully views the desired content and thus has the same
application-level throughput as that of delivering the whole
panoramic scene, but its network-level throughput is just half
of that of delivering the whole panoramic scene.

In this paper, we are interested in maximizing application-
level throughput (i.e., rate of average successful views) while
meeting the minimum network-level throughput requirement
as well as providing regular service guarantees for each user. In
order to maximize application-level throughput, we formulate
a stochastic network optimization problem that includes the
successful viewing probability in the objective function, which



is non-convex. To address the service regularity performance,
we introduce Time-Since-Last-Service (TSLS) counter (see
[6]) for each user to keep track of the elapsed time since the
last time the user received the service. We nicely incorporate
it into our scheduling design by using the stochastic network
optimization framework (see [7] for an overview) while using
a non-standard Lyapunov function. The main contributions of
this paper are listed as follows:
• We analytically characterize the successful viewing prob-

ability as the function of the delivered portion of the
panoramic scenes under the autoregressive process mo-
tion prediction model.

• We propose a concept of application-level throughput and
formulate the multi-user scheduling for panoramic video
streaming as a stochastic network optimization problem,
where the objective is to maximize the application-level
throughput subject to the minimum required network-
level throughput and wireless interference constraints.

• We develop a motion prediction based scheduling algo-
rithm that explicitly incorporates the motion prediction
into the scheduling decision, and show that not only does
it asymptotically optimize the application-level through-
put, but it also provides regular service guarantees.

• We use the real dataset of users’ head movement (see [1])
and evaluate the efficiency of our proposed algorithm via
simulations.

The remainder of this paper is organized as follows: Section
II reviews related work. Section III introduces system model
and problem formulation. Section IV provides a motivating
example and illustrates the impact of the scheduling design on
both application-level throughput and service regularity per-
formance. Section V introduces our motion prediction based
scheduling algorithm and studies its performance. Section VI
presents simulation results using the real dataset of users’ head
movement, and Section VII concludes this paper.

II. RELATED WORK

In this section, we overview two main areas that are closely
related to our work: panoramic video streaming and wireless
scheduling design.

(a) Panoramic video streaming: Panoramic video stream-
ing consumes a much larger bandwidth than the traditional
video counterpart with the same resolution, which prohibits
it from wide adoption especially via wireless. One major
approach is to explore each user’s motion prediction and
incorporate it into the wireless transmission algorithm design.
This lies in the fact that a user can only see as low as 20%
of the 360° scenes and it is sufficient to deliver such a portion
only if a user’s motion can be accurately predicted. However,
it cannot be avoided to introduce prediction error and thus
it usually delivers a larger portion of the panoramic scenes
to overcome the prediction error. Recent work (e.g., [1]–[3],
[8]) has explored this idea and successfully incorporated it
into the algorithm design. Another interesting line of research
formulated the problem of adaptive rate selection in the
panoramic video streaming as a Markov Decision Process with

the goal of optimizing Quality of Experience (QoE) (e.g., [9]–
[11]). Then, they used the reinforcement learning approach
to effectively implement the adaptive rate selection algorithm
and obtained the desired performance. However, all these
works focused on a single-user case and neither provided any
performance guarantees nor considered the case with multiple
users, where the efficient scheduling design is required to
manage the wireless interference. While some recent work
(e.g., [4], [5]) explored the adaptive rate selection in the
presence of multiple users, they did not analytically guarantee
the system performance. Moreover, they mainly focused on
the throughput or delay performance and did not provide any
regular service performance guarantee, which is extremely
important for panoramic video streaming.

(b) Wireless Scheduling Design: The design of wireless
scheduling is to determine which and when users are allowed
to transmit in the presence of wireless interference, which has
been a central topic in wireless networks. The most related
group of work to our setting concerns the efficient wireless
scheduling design with various quality-of-service (QoS) re-
quirements, such as throughput, delay, and service regularity.
For example, some works focused on the wireless scheduling
design with throughput performance guarantee for real-time
traffic (e.g. [12]–[16]). Some other works focused on reducing
the delay performance (e.g., [17]–[19]) and providing service
regularity guarantees (e.g., [6]). However, all these scheduling
designs aimed to optimize the network-level performance
instead of application-level performance, which is crucial for
panoramic video streaming. Moreover, these works did not
explore any learning component, which is necessary for each
user’s motion prediction to enable multi-user panoramic video
streaming.

III. SYSTEM MODEL

We consider a system with N users, each of which down-
loads its panoramic video from a wireless access point (AP).
We assume that each panoramic video consists of a series of
chunks, where each chunk contains a series of 360° scenes
with the same duration. We note that each user can only
see a portion (around 20% − 25%) of a chunk, known as
Field of View (FoV), and thus it is sufficient to deliver such
a portion of the chunk if the head motion prediction is 100%
accurate. However, it is unavoidable to incur prediction errors
and thus we should always deliver a portion larger than the
FoV to tolerate an imperfect motion prediction. To facilitate
our mathematical modeling and algorithm developments, we
unify the units for video chuck size and wireless transmission
rate and assume that the system operates in a time-slotted
manner. Let Sn[t] be the allocated transmission rate for user
n in time slot t, where Sn[t] ∈ R , {0, R1, R2, . . . , RM},
where 0 < R1 < R2 · · · < RM , 1 and R1 corresponds to
the rate to deliver the FoV of a video chunk and RM is the
rate to deliver a whole chunk. This is motivated by the fact
that each chunk is partitioned into a finite number of tiles with
the same duration and only a subset of tiles can be selected
for transmission (e.g., [2], [20]). In each time slot, we will
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choose a set of tiles around the center of the predicted FoV
based on the allocated transmission rate.

Due to the wireless interference constraints, only a subset
of users can be scheduled to download their corresponding
panoramic videos simultaneously in each time slot. Hence, in
each time slot t, the AP needs to determine a set of users
that it wants to deliver and their corresponding transmission
rates Sn[t],∀n = 1, 2, . . . , N . We call S[t] , (Sn[t])Nn=1 the
feasible rate vector, which depends on the specific wireless
interference constraints. We consider the case with block
channel fading, where there are a finite number of global
channel states and the global channel state is independently
and identically distributed (i.i.d.) over time. Let C be the set
of global channel states and C[t] ∈ C denotes the global
channel state in time slot t. Let φc , Pr{C[t] = c} denote
the probability that the channel state is c in time slot t. We
use S(c) to denote the set of all feasible rate vectors when the
channel state is c.

Let In(Sn[t]) = 1 denote that user n successfully views its
desired content, i.e., the delivered content completely covers
the FoV in time slot t when the transmitted rate is Sn[t] and
In(Sn[t]) = 0 otherwise. We use δn(Sn[t]) , Pr{In(Sn[t]) =
1} to denote the successful viewing probability for user n in
time slot t given its transmission rate Sn[t]. It is easy to see that
δn(Sn[t]) is a non-decreasing function with respect to Sn[t].
This is because a larger transmission rate Sn[t] corresponds to
delivering a larger portion of the video chunk that is around
the center of the predicted FoV and thus can overcome a
larger prediction error, which in turn yields a higher successful
viewing probability.

Fig. 1: Rotation coordinates.

In order to calculate the successful viewing probability
for each user, we introduce 3-D rotation angles to capture
a user’s head motion. As shown in Fig. 1, a user could
rotate his/her head in three axes: pitch, yaw, and roll. Let
Xn[t], Yn[t] and Zn[t] be the rotating angles of the center of
user n’s FoV in pitch, yaw, and roll directions in time slot
t, respectively. Since users rarely rotate head along the roll
axis while watching panoramic videos, we focus on pitch and
yaw axes as in [2], i.e., (Xn[t], Yn[t]),∀n, t ≥ 0. Since the
correlation between Xn[t] and Yn[t] is much smaller than
their individual autocorrelations (see [1]), we predict them

separately based on the Autoregressive Process (AR) model
(see [21]). While there are many machine learning-based
prediction algorithms explored in existing works (e.g., [1]),
we adopt the AR model here since it makes online real-time
predictions and can quickly adapt to changing panoramic video
contents and wireless environment.

We assume that the prediction errors of both pitch and
yaw angles of user n follow normal distribution with standard
deviation σXn and σYn , respectively. This is motivated by the
fact that under the AR model, the distribution of the prediction
error converges to the normal distribution as the number of
data samples goes to infinity (see [22, Theorem 8.2.1]). In
Appendix A, we show that the successful viewing probability
of user n can be expressed as follows:

δn(Sn[t]) = erf2
(
γn(Sn[t])√

2

)
, (1)

where erf(x) , 2√
π

∫ x
0
e−y

2

dy is the error function and
γn(Sn[t]) is the number of standard deviations of the predic-
tion error, when rate Sn[t] is used. Here, γn(Sn[t]) follows
from the basic geometry calculations and is available in
Appendix A. Fig. 2 shows the successful viewing probability
with respect to the allocated transmission rate, where we use
the data traces of four different users watching the same
panoramic video (see [1]) and obtain their standard deviations
of prediction errors of both pitch and yaw angles under
the AR model. We can observe from Fig. 2 that a larger
standard deviation of the angle prediction error requires a
larger allocated transmission rate to keep the same successful
viewing probability.

Fig. 2: Successful viewing probability.

In this paper, we would like to develop a scheduling algo-
rithm to optimize both application-level throughput (defined
as average total successful viewing probability) and service
regularity (defined as the variance of the time between two
consecutive successful views for each user) performance.
This is motivated by the fact that each user would like to
regularly and frequently view the desired panoramic scenes.
In particular, our first goal is to maximize the application-level
throughput subject to the constraint that the average allocated
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transmission rate should not be less than some minimum rate
as well as wireless interference constraints, i.e.,

max
(Sn[t])Nn=1

lim
L→∞

1

L

L−1∑
t=0

N∑
n=1

wnE [δn(Sn[t])] (2)

s.t. (Sn[t])Nn=1 ∈ S(C[t]),∀t ≥ 0, (3)

lim
L→∞

1

L

L−1∑
t=0

E[Sn[t]] ≥ rn,∀n, (4)

where the objective function is the weighted sum of the
application-level throughput, wn > 0 is the weight of user n,
and rn > 0 is the minimum required allocated transmission
rate for user n on average. Different from the traditional
network optimization problem, we are interested in the average
successful viewing probability or application-level throughput
in each time slot instead of the average throughput. Even with
the same average allocated transmission rate, the application-
level throughput performance is different as shown in our
motivating example in the next section.

To capture the service regularity performance, we introduce
gn[m] to denote the time duration between the (m+ 1)th and
mth successful views of the user n. Noting the non-Markovian
property of gn[m], similar to [6], we introduce a Time-Since-
Last-Service (TSLS) counter Tn[t] for each user n, which
increases by one if user n does not see the desired content
and reset to 0 otherwise. In particular, the evolution of Tn [t]
can be precisely described as follows:

Tn [t+ 1] ,

{
0, if In(Sn[t]) = 1;

Tn [t] + 1, otherwise.
(5)

It has been shown in [6] that minimizing the normalized
variance of gn[m] is equivalent to minimizing the expected
Tn[t]. As such, our second goal is to keep the following
quantity as small as possible:

lim
L→∞

1

L

L−1∑
t=0

E [Tn[t]] .

Next, we will first study a motivating example to illustrate
the possibility of improving both application-level throughput
and service regularity performance simultaneously by carefully
designing a scheduling algorithm, and then accomplish our
dual objective by developing a parameterized wireless schedul-
ing algorithm.

IV. A MOTIVATING EXAMPLE

In this section, we provide an example to illustrate the
impact of the scheduling design on both application-level
throughput and service regularity performance in multi-user
panoramic video streaming. We consider N = 4 users, where
the total service rates of all users are at most one in each time
slot. Since Round-Robin is known to provide good service
regularity performance, we consider two different Round-
Robin (RR) scheduling algorithms: (i) RR I that provides each
user with the rate of one in turn; (ii) RR II that serves the
first two users with the rate of 0.5 in even time slots and the

other two users in odd time slots. Table I-(a) provides the
allocated service rate for each user under these two different
versions of the Round-Robin algorithm. Here, we assume that
δn(0.5) = δn(1) = 1, ∀n, which is true for data traces in [1]
under the AR prediction model.

user

Sn[t] time
0 1 2 3 . . .

User 1 1, 0.5 0, 0 0, 0.5 0, 0 . . .
User 2 0, 0.5 1, 0 0, 0.5 0, 0 . . .
User 3 0, 0 0, 0.5 1, 0 0, 0.5 . . .
User 4 0, 0 0, 0.5 0, 0 1, 0.5 . . .

(a) Service rate of each user in each time slot.

user

δn(Sn[t]) time
0 1 2 3 . . .

User 1 1, 1 0, 0 0, 1 0, 0 . . .
User 2 0, 1 1, 0 0, 1 0, 0 . . .
User 3 0, 0 0, 1 1, 0 0, 1 . . .
User 4 0, 0 0, 1 0, 0 1, 1 . . .

(b) Application-level throughput of each user in each time slot.

TABLE I: Service rate and application-level throughput under
two different versions of RR algorithms: the results under RR
I and RR II are colored by blue and red, respectively.

While these two Round-Robin algorithms yield the
same average service rate of 0.25 for each user, i.e.,
limL→∞

1
L

∑L−1
t=0 Sn[t] = 0.25, ∀n = 1, 2, 3, 4, they result

in different application-level throughput and service regularity
performance. Indeed, Sn[t] = 0.5 is large enough to tolerate
prediction error and thus yields the successful delivery of
desired content for user n in time slot t, which can be
demonstrated in our simulations using the collected users’
head motion data (cf. Fig. 2). As such, for each user n,
both Sn[t] = 0.5 and Sn[t] = 1 can result in a successful
delivery. Table I-(b) shows the successful delivery of each user
in each time slot. Hence, the application-level throughput is 1
and 2 under the first and second version of the Round-Robin
algorithm, respectively.

Fig. 3 shows the evolution of the TSLS counter of the first
user under both versions of the Round-Robin algorithm. We
can easily compute that the average TSLS for each user is
1.5 and 0.5 under the first and second versions of the Round-
Robin algorithm, respectively. To summarize, we can see that
the application-level throughput and average TSLS under the
second version of the Round-Robin algorithm are twice and
three times better than that under its first version.

The above example demonstrates the significant impact of
the scheduling design on both application-level throughput and
service regularity performance. In cases where the allocated
transmission rate can be scheduled from a large discrete space,
more complex scheduling decisions should be explored. In the
next section, we will develop an efficient scheduling algorithm
that yields both good application-level throughput and service
regularity performance.
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Fig. 3: Example of TSLS dynamics of user 1

V. ALGORITHM DESIGN AND ANALYSIS

In this section, we will develop a scheduling algorithm and
show that it achieves asymptotically-optimal application-level
throughput and provides service regularity guarantees.

We use the stochastic network optimization framework (e.g.,
[7]) to introduce a virtual queue for each user that measures
the degree of violation of the average service rate constraint.
Specifically, we use Qn[t] to denote the virtual queue length
for user n in time slot t. The amount of traffic entering the
virtual queue n in time slot t is rn, while the amount of service
for virtual queue n in time slot t is Sn[t]. Then, the evolution
of the virtual queue n can be described as follows:

Qn [t+ 1] , (Qn [t] + rn − Sn[t])
+
,∀n, ∀t, (6)

where (x)+ = max{x, 0}. We say that virtual queue n is mean
rate stable (see [7]) if limt→∞

E[Qn[t]]
t = 0. If the virtual

queue n is mean rate stable, then the average service rate
of user n is at least rn (see [7, Theorem 2.5]). The following
algorithm is derived by minimizing the difference between the
drift of the Lyapunov function

V [t] =
1

2

N∑
n=1

Q2
n[t] + η

N∑
n=1

Tn[t]

and the application-level throughput K
∑N
n=1 wnE[δn(Sn[t])]

in time slot t, where η and K are controlled positive real
numbers, i.e.,

V [t+ 1]− V [t]−K
N∑
n=1

wnE[δn(Sn[t])].

Different from selecting a quadratic Lyapunov function in

the classical stochastic network optimization framework, we
choose the sum of quadratic virtual queue function and the
linear TSLS function as our Lyapunov function. This is
because we aim to keep both virtual queue lengths and TSLS
counters as small as possible, yielding the mean rate stability
and desired service regularity performance. Our scheduling
algorithm is described as follows:

Algorithm 1 Motion Prediction based Scheduling (MPS)
In each time slot t, given channel state C[t] = c.
AR-based Motion Prediction: Each user n predicts its pitch
and yaw angles X̂n[t] and Ŷn[t] based on the previous W
slots’ pitch samples (Xn[t − 1], Xn[t − 2], · · · , Xn[t −W ])
and yaw samples (Yn[t− 1], Yn[t− 2], · · · , Yn[t−W ]) using
the AR model, i.e.,

X̂n[t] = −
W∑
k=1

an[k]Xn[t− k]

and Ŷn[t] = −
W∑
k=1

bn[k]Yn[t− k],

where an[1], an[2], · · · , an[W ] and bn[1], bn[2], · · · , bn[W ]
are the prediction coefficients that are estimated by using the
standard Yule-Walker equation (see [21]).
Wireless Scheduling:select the schedule S∗[t] satisfying

S∗[t] ∈ arg max
S∈S(c)

N∑
n=1

(Sn[t]Qn[t] + (ηTn[t] +Kwn)δn(Sn[t])),

where η and K are some positive numbers, and δn(Sn[t])
is calculated based on the sample variances (σ̂Xn [t])2 and
(σ̂Yn [t])2 of prediction errors of pitch and yaw angles.

Our algorithm has two major components: i) AR-based
motion prediction, and ii) wireless scheduling. In each time
slot t, we use the AR model for the pitch and yaw angle
prediction and updates the prediction coefficients based on
the Yule-Walker equation (see [21]). Besides, we obtain the
sample variance of prediction errors of pitch and yaw angles
until time t, and then use it to calculate the successful viewing
probability, which is critical for the wireless scheduling design.
We incorporate the instantaneous application-level throughput,
TSLS counter, and virtual queues into the scheduling design
with the algorithmic parameters η and K balancing their
weights. When the virtual queue length of a user is large,
it means that the user has not received a sufficient amount of
service rates, which enforces it to be scheduled. Similarly, if a
user has not been served for a long time, the TSLS counter will
linearly increase and thus the user will get a high priority to get
served. Also, the user with a larger weight on the application-
level throughput should always have a high priority to be
scheduled to achieve a large weighted sum of application-level
throughput.

Moreover, when η = 0, our algorithm coincides with
the traditional “drift-plus-penalty” method for classical utility
maximization problems (e.g., [23]). The larger the value of
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η, the more emphasis on the TSLS counter and thus keeps
services more regular. When K = 0, the goal is to keep service
as regular as possible while meeting the minimum rate re-
quirement and the resulting algorithm is similar to the Regular
Service Guarantee Algorithm in [6]. The larger the value of K,
the larger the weight put on the instantaneous throughput and
thus leads to the larger application-level throughput. However,
similar to the well-known MaxWeight scheduling algorithms
(e.g., [24]), our proposed MPS algorithm also has a high
computational complexity (which could be exponential) in
general.

Next, we show that our proposed MPS Algorithm asymptot-
ically optimizes the application-level throughput and provides
service regularity guarantees while meeting the minimum
service rate requirement.

Theorem 1. Under the MPS Algorithm, all virtual queues are
mean rate stable, which implies that the average service rate
of each user is at least rn. In addition, the weighted sum of
mean TSLS counters and application-level throughput can be
respectively bounded from above as follows:

lim
L→∞

1

L

L−1∑
t=0

N∑
n=1

U∗n · E[Tn[t]] ≤ B(η) +KNwmax

η

and lim
L→∞

1

L

L−1∑
t=0

N∑
n=1

E[wnδn(Sn[t])] ≥ U∗ − B(η)

K

where B(η) ,
∑N
n=1(r2n + R2

M )/2 + ηN , U∗n is the suc-
cessful viewing probability of user n when optimal weighted
sum of application-level throughput is achieved (i.e., U∗ ,∑N
n=1 wnU

∗
n is the optimal value of the optimization problem

(2)-(4)).

Proof. Select the Lyapunov function

V [t] =
1

2

N∑
n=1

Q2
n[t] + η

N∑
n=1

Tn[t].

and consider its conditional Lyapunov drift given the current
system state H[t] , (Qn[t], Tn[t])Nn=1.

∆V [t] , E [V [t+ 1]− V [t]|H[t]]

=E

[
1

2

N∑
n=1

(Q2
n[t+ 1]−Q2

n[t])

+ η

N∑
n=1

(Tn[t+ 1]− Tn[t])
∣∣H[t]

]
(a)

≤ 1

2

N∑
n=1

E
[
(Qn[t] + rn − S∗n[t])2 −Q2

n[t]
∣∣H[t]

]
+ η

N∑
n=1

E [(Tn [t] + 1)(1− In(S∗n[t]))− Tn[t]|H[t]]

(b)

≤
N∑
n=1

E [Qn[t](rn − S∗n[t])− ηTn[t]In(S∗n[t])|H[t]] +B(η),

where step (a) follows from the dynamics of Qn[t] (cf. (6))
and Tn[t+ 1] (cf. (5)); (b) is true for

B(η) ,
N∑
n=1

(r2n +R2
M )/2 + ηN.

By subtracting K
∑N
n=1 wnE[δn(S∗n[t])|H[t]] on both sides

of the above Lyapunov drift ∆V [t], we have

∆V [t]−K
N∑
n=1

wnE[δn(S∗n[t])|H[t]]

≤
N∑
n=1

Qn[t]rn −
N∑
n=1

Qn[t]E [S∗n[t]|H[t]] +B(η)

−
N∑
n=1

(ηTn[t] +Kwn)E[δn(S∗n[t])|H[t]]

≤
N∑
n=1

Qn[t]rn −
N∑
n=1

Qn[t]E
[
Ŝn[t]

∣∣∣H[t]
]

+B(η)

−
N∑
n=1

(ηTn[t] +Kwn)E[δn(Ŝn[t])|H[t]], (7)

where the last step follows from the definition of our proposed
MPS Algorithm.

We note that there exists a randomized stationary schedule
(Ŝn[t])Nn=1 such that

E[Ŝn[t]] ≥ rn,∀n, t, (8)

U∗n = E[δn(Ŝn[t])] (9)

U∗ =

N∑
n=1

wnU
∗
n, (10)

where U∗ is the optimal value of the optimization problem (2)-
(4). Indeed, let p(c)n,m , Pr{Ŝn[t] = Rm} be the probability
of user n selecting rate Rm when the global channel state is
in c. Then our optimization problem (2)-(4) can be written as
follows:

max
∑
c∈C

φc

N∑
n=1

wn

M∑
m=1

p(c)n,mδn(Rm)

s.t.
∑
c∈C

φc

M∑
m=1

p(c)n,mRm ≥ rn,∀n,

(

M∑
m=1

p(c)n,mRm)Nn=1 ∈ CH(S(c)),

where we recall that CH(A) is the convex hull of the set A.
This is a standard convex optimization problem and thus has
an optimal solution.

By using the property of the stationary randomized schedule
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Ŝ[t] (cf. (8)-(10)), inequality (7) becomes

∆V [t]−K
N∑
n=1

wnE[δn(S∗n[t])|H[t]]

≤B(η)−
N∑
n=1

(ηTn[t] +Kwn)U∗n

≤− η
N∑
n=1

U∗nTn[t] +B(η)−KU∗.

Taking the expectation on both sides, we have

E[V [t]]− E[V [t]]−K
N∑
n=1

wnE[δn(S∗n[t])]

≤B(η)− η
N∑
n=1

U∗nE[Tn[t]]−KU∗, (11)

holding for all t ≥ 0.

By summing both sides of (11) over t ∈ {0, 1, · · · , L− 1}
and dividing by L, we have

1

L
(E[V (L)]− E[V (0)])−K 1

L

L−1∑
t=0

N∑
n=1

wnE[δn(S∗n[t])]

≤B(η)− η 1

L

L−1∑
t=0

N∑
n=1

U∗nE[Tn[t]]−KU∗. (12)

Hence, we have

η
1

L

L−1∑
t=0

N∑
n=1

U∗nE[Tn[t]]

≤B(η) +K
1

L

L−1∑
t=0

N∑
n=1

E[wnδn(S∗n[t])] +
1

L
E[V (0)].

By taking the limit as L→∞, we have

lim
L→∞

1

L

L−1∑
t=0

N∑
n=1

U∗nE[Tn[t]] ≤ B(η) +KNwmax

η
.

In addition, from (12) we have

K
1

L

L−1∑
t=0

N∑
n=1

E[wnδn(Sn[t])] ≥ KU∗ −B(η)− 1

L
E[V (0)].

By taking the limit as L→∞, we have

lim
L→∞

1

L

L−1∑
t=0

N∑
n=1

wnE[δn(S∗n[t])] ≥ U∗ − B(η)

K
.

Finally, we will show that all virtual queues are mean rate
stable. From (12), we have

E [V [L]]− E [V [0]] ≤ L(B(η) +KNwmax),∀t ≥ 0.

Using the fact that V [L] ≥
∑N
n=1Q

2
n[L]/2 yields

1

2

N∑
n=1

E
[
Q2
n[L]

]
≤ L(B(η) +KNwmax) + E [V [0]] .

Therefore, for each n ∈ {1, . . . , N}, we have

E
[
Q2
n[L]

]
≤ 2 (L(B(η) +KNwmax) + E [V [0]])

However, because the variance of |Qn[L]| cannot be negative,
we have E

[
Q2
n[L]

]
≥ (E [Qn[L]])

2. Thus, we have

E [Qn[L]] ≤
√

2 (L(B(η) +KNwmax) + E [V [0]])

By dividing by L and taking a limit as L→∞, we have

lim
L→∞

E [Qn[L]]

L
≤ 0

Since Qn[L] ≥ 0, we have limL→∞E [Qn[L]] /L = 0, which
implies that virtual queue n is mean rate stable.

The above theorem reveals the tradeoff between the
weighted sum of application-level throughput and service
regularity performance. Indeed, as the parameter K increases,
the application-level throughput improves, while the upper
bound on the weighted sum of mean TSLS counters increases
(i.e., the service regularity performance deteriorates). Besides,
when η increases, the service regularity performance improves
but is at the cost of reduced application-level throughput.

VI. SIMULATIONS

In this section, we perform simulations to evaluate the
efficiency of our proposed MPS algorithm. We consider N = 8
users. Each user experiences i.i.d. ON-OFF channel fading
over time with probability pn that its channel is ON in each
time slot. We assume that at most two users can be scheduled
in each time slot and the total rate of all scheduled users is
no more than 1. Each user n has a minimum required service
rate rn and weight wn on the application-level throughput.
The allocated transmission rate can be selected from the
set R = {0, 0.3, 0.4, 0.5, 0.7, 1}. The detailed simulation
parameters are available in TABLE II. In addition, we use
synthetic head motion data generated from the dataset in [1]
for each user.

user 1 user 2 user 3 user 4
Required rate rn 0.1 0.08 0.11 0.05

Weight wn 0.2 0.1 1.0 0.8
Fading prob. pn 0.8 0.9 0.7 0.9

user 5 user 6 user 7 user 8
Required rate rn 0.18 0.06 0.16 0.05

Weight wn 0.9 1.2 0.3 0.2
Fading prob. pn 0.8 0.9 0.7 0.8

TABLE II: Simulation setup.

Fig. 4a shows the average allocated rates of four different
users with respect to parameter K when η = 1. We can
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(a) Average rate for each user: η = 1 (b) Average TSLS (c) Application-level throughput

Fig. 4: Performance of the MPS algorithm.

observe from Fig. 4a that our proposed MPS algorithm guar-
antees the minimum service rate required by each user. Fig.
4b and Fig. 4c show an impact of the parameter K on the
performance of our proposed MPS algorithm. We can observe
from Fig. 4b and Fig. 4c that for each fixed value of η, as
the parameter K increases, both mean TSLS and application-
level throughput increases. The reason is that the larger the K,
the more emphasis on the application-level throughput and the
lower priority on the TSLS, resulting in the application-level
throughput improvement and service regularity deterioration.
This also matches our derived bounds in Theorem 1 that the
upper bound on the average TSLS linearly increases with
the parameter K and the lower bound on the application-
level throughput also increases as K increases. Besides, as
η becomes larger, both mean TSLS and application-level
throughput become smaller. The reason lies in the fact that
a large η gives a high priority on the TSLS counter and
enforces to provide more regular service, but it is at the cost of
reducing the application-level throughput. This again matches
our derived bounds in Theorem 1 that both the upper bound on
the average TSLS and the lower bound on the application-level
throughput decrease as the parameter η increases.

VII. CONCLUSION

In this work, we studied the problem of wireless scheduling
design for multi-user panoramic video streaming to optimize
application-level throughput and service regularity perfor-
mance. We used the autoregressive process to predict the
user’s motion and analytically characterized the successful
viewing probability as the function of the delivered portion.
We used the Time-Since-Last-Service counter to account for
the service regularity performance and developed a motion
prediction based scheduling algorithm by integrating it into
the stochastic network optimization framework. We proved
that our proposed algorithm can provide desired application-
level throughput and service regularity guarantees. Finally, we
demonstrated the efficiency of our proposed algorithm through
simulations with real datasets.

APPENDIX A
SUCCESSFUL VIEWING PROBABILITY

In this section, we will characterize the successful viewing
probability δn(Sn[t];σXn , σ

Y
n ) by assuming that the prediction

errors of the pitch and yaw angles follow Gaussian distri-
bution with zero mean and standard deviation σXn and σYn ,
respectively. To that end, we first need to know whether the
nth user’s motion prediction is successful, i.e., the delivered
portion completely covers the actual FoV.

As shown in Fig. 5, assume that a user is at the center
denoted by the point O and the predicted center of the FoV is
O′. The delivered content could be seen as a spherical crown
centered by O′ in different sizes. Notice that �ABCD in
Fig. 6 lies on the cross section of the sphere whose radius is
O′F such that θ0/2 coincides with the beam angle ∠FOO′ of
the spherical crown whose size is equal to the FoV as shown
in Fig. 5a and Fig. 5b. Recall that α0 and β0 are horizontal
and vertical angles corresponding to the pitch and yaw axis,
respectively. Then, by simple geometry calculation, we obtain
the beam angle θ0 as follows:

θ0 = diag(α0, β0),

where diag(·) refers to the diagonal angle, which is defined
as:

diag(α, β) , 2 arccos

 1√
1 + tan2(α2 ) + tan2(β2 )

 , (13)

where α ≤ π and β ≤ π. Indeed, considering the right
triangles 4OO′Q and 4OO′R in Fig. 6, we have

O′Q = OO′ tan(α0/2), O′R = OO′ tan(β0/2). (14)

In the right triangle 4AQO′, we have AO′ =√
AQ2 +O′Q2. Assume the radius of the sphere is 1,

i.e., AO = 1. We have AO′2 +OO′2 = AO2 = 1. Combining
the above equations, we have

OO′ =
1√

1 + tan2(α0/2) + tan2(β0/2)
.

This, together with the fact that cos(θ0/2) = OO′, implies
(13).
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(a) θ0 + 2θE ≤ π. (b) θ0 + 2θE ≥ π.

Fig. 5: The delivered content.

Fig. 6: FoV and various angles.

Since α0 and β0 are only determined by the model of the
HMD, θ0 is a constant. Let θE be the transmission margin
∠FOE outside the predicted FoV, i.e., the extra portion
delivered to overcome the prediction error. Apparently, θE
can be determined by the allocated transmission rate Sn[t]
as follows:

θ0 + 2θE = 2 arccos(1− 2Sn[t]). (15)

Indeed, the height h of a spherical crown is proportional to
its surface area, while the surface area ratio is equal to the
allocated rate Sn[t]. Thus, h/2R = Sn[t]/1. Recall that the
radius of the sphere is assumed to 1, i.e., R = 1. Then we have
h = 2Sn[t]. In Fig. 5a, h = R−OP , in Fig. 5b, h = R+OP .
Yet in both cases, h = R − cos (θE + θ0/2). This, together
with R = 1 and h = 2Sn[t], implies (15).

In this work, we use the autoregressive process to predict
the user’s orientation in pitch and yaw axes. Let γ be the
number of standard deviations. Let αn(γ) , α0 + 2γσXn and
βn(γ) , β0 + 2γσYn be the vertical angle (e.g., ∠KOL in
Fig. 6) and horizontal angle (e.g., ∠MON in Fig. 6) of the
delivered portion, respectively. Let Ang(γ) be the diagonal
angle of the delivered portion and can be calculated depending
on the values of αn(γ) and βn(γ).

• If both αn and βn are smaller than π, as shown in Fig.

5a, we have

Ang(γ) = diag(αn(γ), βn(γ)).

• If one of αn(γ) and βn(γ) is smaller than π, then in
order to guarantee the continuity of Ang(γ), we define
Ang(γ) = π.

• If both αn(γ) and βn(γ) are greater than π, as shown in
Fig. 5b, we have

Ang(γ) = 2π − diag
(
2π − αn(γ), 2π − βn(γ)

)
.

Note that Ang(γ) is equal to θ0+2θE and thus given Sn[t],
γ(Sn[t]) can be calculated as follows.

Ang(γ(Sn[t])) = 2 arccos(1− 2Sn[t]). (16)

Let X̂n[t] and Ŷn[t] are the predicted angles in the pitch
and yaw axis, respectively, under the Autoregressive Process.
Hence, given Sn[t], there is a successful view only when both
events AX , {X̂n[t] − γ(Sn[t])σXn < Xn[t] < X̂n[t] +
γ(Sn[t])σXn } and AY , {Ŷn[t] − γ(Sn[t])σYn < Yn[t] <
Ŷn[t] + γ(Sn[t])σYn } happen and thus the successful viewing
probability δn(Sn[t]) can be calculated as follows:

δn(Sn[t]) = Pr{AX ∩ AY }
= Pr{AX}Pr{AY }

=erf2
(
γn(Sn[t])√

2

)
.
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