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ABSTRACT
We consider the design of throughput-optimal scheduling
policies in multi-hop wireless networks that also possess good
mean delay performance and provide regular service for all
links – critical metrics for real-time applications. To that
end, we study a parametric class of maximum-weight type
scheduling policies with parameter α ≥ 0, called Regular
Service Guarantee (RSG) Algorithm, where each link weight
consists of its own queue-length and a counter that tracks
the time since the last service. This policy has been shown
to be throughput-optimal and to provide more regular ser-
vice as the parameter α increases, however at the cost of
increasing mean delay.

This motivates us to investigate whether satisfactory ser-
vice regularity and low mean-delay can be simultaneously
achieved by the RSG Algorithm by carefully selecting its pa-
rameter α. To that end, we perform a novel Lyapunov-drift
based analysis of the steady-state behavior of the stochas-
tic network. Our analysis reveals that the RSG Algorithm
can minimize the total mean queue-length to establish mean
delay optimality under heavily-loaded conditions as long as
α scales no faster than the order of 1

5√ε , where ε measures

the closeness of the network load to the boundary of the
capacity region. To the best of our knowledge, this is the
first work that provides regular service to all links while also
achieving heavy-traffic optimality in mean queue-lengths.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Miscella-
neous

General Terms
Performance

Keywords
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1. INTRODUCTION
Real-time applications, such as voice over IP or live multi-

media streaming, are becoming increasingly popular as smart
phones proliferate in wireless networks. To support real-time
applications, network algorithm design should not only ef-
ficiently manage the interference among simultaneous trans-
missions, but also meet the requirements of Quality-of-Service
(QoS) including delay, packet delivery ratio, and jitter. Such
QoS requirements, in turn, depend on the higher-order statis-
tics of the arrival and service process, which poses significant
challenges for effective network algorithm design. For exam-
ple, the well-known Maximum Weight Scheduling (MWS)
Algorithm (e.g., [12], [11]) that prioritizes service of links
with the largest backlog levels achieves maximum through-
put, but does not provide any guarantees on the regularity
of service that most real-time applications demand.

In recent years, there has been an increasing understand-
ing on the algorithm design that target various aspects of
QoS, especially packet delivery ratio requirement (e.g., [5],
[6], [7]). However, there has been considerably less progress
associated with the regularity of service, which is clearly
important for real-time applications with stringent jitter re-
quirements. Our work is motivated by the recent advances
made in [8] that provides a promising approach for manag-
ing this critical QoS metric. In particular, [8] provides a
throughput-optimal algorithm that is parametrized with a
design variable α ≥ 0, which improves service regularity as
α increases (see Section 3 for more details). Yet, increasing
α also has an averse effect on the mean delay performance,
which is also vital for most applications.

With this motivation, this paper focuses on the trade-
off between the service regularity and the mean delay per-
formance that this class of policies achieves. In particular,
we are interested in identifying the range of values for α in
which the mean delay performance guarantees can be pro-
vided, while the regularity characteristics are preserved. To
that end, we build on the recently developed approach of us-
ing Lyapunov drifts for the steady-state analysis of queueing
networks [2]. The main result emanating from this analysis
is the scaling law of α as the system gets more and more
heavily loaded so that the algorithm is mean delay optimal
among all feasible scheduling policies, and provides the best
service regularity among this class of policies. Specifically,
we show that the heavy-traffic optimality is preserved as long

as α scales1 as O
(

1
5√ε

)
, where ε is the heavy-traffic param-

1We say an = O(bn) if there exists a c > 0 such that |an| ≤
c|bn| for two real-valued sequences {an} and {bn}.



eter characterizing the closeness of the arrival rate vector to
the boundary of the capacity region.

Our analysis relates to the vast literature on heavy-traffic
analysis of queueing networks (for example, [13], [3], [1], [14],
[10], [9]), and in particular extends the Lyapunov drift-based
approach in [2]. A critical step in most of these results is
to establish a state-space collapse along a single dimension,
and thus relate the multi-dimensional system operation to a
resource-pooled single dimensional system. Our construction
also follows such line of argument in broad strokes. How-
ever, the new dynamics of the considered class of algorithms
require new Lyapunov functions and techniques in establish-
ing their heavy-traffic optimality.

Note on Notation: We use bold and script font of a vari-
able to denote a vector and a set. Also, let |A| to denote
the cardinality of the set A. We use Int(A) to denote the
set of interior points of the set A. We use 〈x,y〉,x ·y to de-
note the inner product and component-wise product of the
vector x and y, respectively. We use x2 and

√
x to denote

the component-wise square and square root of the vector x,
respectively. We also use �,�,≺,� to denote component-
wise comparison of two vectors, respectively. Let ‖x‖1 and
‖x‖ denote the l1 and l2 norm of the vector x, respectively.

2. SYSTEM MODEL
We consider a wireless network represented by a graph
G = (N ,L), where N is the set of nodes and L is the set of
links. A node represents a wireless transmitter or receiver,
while a link represents a pair of transmitter and receiver
that are within the transmission range of each other. We use
L , |L| for convenience. We consider the link-based conflict
model, where links conflicting with each other cannot be
active at the same time. We call a set of links that can be
active simultaneously as a feasible schedule and denote it as
S[t] = (Sl[t])l∈L, where Sl[t] = 1 if the link l is scheduled in
time slot t and Sl[t] = 0, otherwise.

We capture the channel fading over link l in time slot
t via a non-negative-integer-valued random variable Cl[t],
with Cl[t] ≤ Cmax, ∀l, t, for some Cmax < ∞, which mea-
sures the maximum amount of service available in slot t, if
scheduled. We use J to denote the set of global channel
states (with finite cardinality). Let J [t] ∈ J denote the
global state of the channel states of all links in time slot
t. We assume that {J [t] ∈ J }t≥0 is an independently and
identically distributed (i.i.d.) sequence of random variables

with ψj , Pr{J [t] = j}. Let Sj denote the set of feasible
schedules when the channel is in state j ∈ J . Then, the
capacity region is defined as

R ,
∑
j∈J

ψj · CH{Sj}, (1)

where CH{A} denotes the convex hull of the set A.
We assume a per-link traffic model2, where Al[t] denotes

the number of packets arriving at link l in slot t that are
independently distributed over links and i.i.d. over time
with finite mean λl, and Al[t] ≤ Amax, ∀l, t, for some Amax <
∞. Accordingly, a queue is maintained for each link l with
Ql[t] denoting its queue length at the beginning of time slot
t. Let Ul[t] = max{0, Cl[t]Sl[t]−Ql[t]−Al[t]} be the unused

2We note that our algorithm can be extended to serve multi-
hop traffic, but the notion of service regularity is clearer in
the per-link context.

service for queue l in slot t. Then, the evolution of queue l
is described as follows:

Ql[t+ 1] = Ql[t] +Al[t]− Cl[t]Sl[t] + Ul[t], ∀l. (2)

We say that the queue l is strongly stable if it satisfies

lim sup
T→∞

1

T

T∑
t=1

E[Ql[t]] <∞.

We call an algorithm throughput-optimal if it makes all queues
strongly stable for any arrival rate vector λ = (λl)l that lies
strictly within the capacity region.

Our goal is to design a throughput-optimal scheduling al-
gorithm that also possesses the following desirable proper-
ties for satisfying the QoS requirements: (i) provides regular
services in the sense that the second-moment of the inter-
service times of the links is small; and (ii) achieves low mean
delay in the sense that the total mean queue-lengths is small,
especially in the regime where the system is heavily-loaded
– when delay effects are most pronounced.

Next, we provide a regular service scheduler that pos-
sesses throughput-optimality and regular service guarantees,
and then investigate its mean-delay performance under the
heavy-traffic regime.

3. REGULAR SERVICE SCHEDULER
One of our goals is to provide regular services for each link,

which is related to the second moment of the inter-service
times. To characterize the inter-service time, we introduce
a counter Tl for each link l, namely Time-Since-Last-Service
(TSLS), to keep track of the time since link l was last served.
In particular, each Tl increases by 1 in each time slot when
link l has zero transmission rate, either because it is not
scheduled, or because its channel is unavailable, i.e., Cl[t] =
0, and drops to 0, otherwise. More precisely, the evolution
of Tl is described as follows:

Tl[t+ 1] =

{
0 if Sl[t]Cl[t] > 0;
Tl[t] + 1 if Sl[t]Cl[t] = 0.

(3)

Thus, the TSLS records the link “age” since the last time
it received service, and is closely related to the inter-service
time. Indeed, the authors in [8] showed that the normalized
second moment of the inter-service times of each link is pro-
portional to the mean value of its TSLS for any stabilizing
policy. Thus, the TSLS has a direct impact on service reg-
ularity: the smaller the mean TSLS value, the more regular
the service.

This connection motivates the following maximum-weight
type algorithm that uses a combination of queue-lengths and
TSLS values as its weights, extending the algorithm in [8]
to multi-hop fading networks:

Regular Service Guarantee (RSG) Algorithm:
In each time slot t, select the schedule as

S∗[t] ∈ arg max
S∈S

L∑
l=1

(Ql[t] + αTl[t])Cl[t]Sl, (4)

where α > 0 is a design parameter.

Note that the RSG Algorithm coincides with the MWS
Algorithm when α = 0. Yet, the true significance of the
RSG algorithm is observed for large α, since as α increases,



the RSG Algorithm prioritizes the schedule with the larger
TSLS, hence providing more regular services for each link.
We can show that the RSG Algorithm in the multi-hop setup
not only achieves throughput optimality but also provides
regular service guarantees, which extends the results in [8].

Yet, large values of α may also deteriorate the mean delay
performance. We demonstrate this tradeoff in a single-hop
non-fading network with 4 links, where the number of pack-
ets arriving at each link follows a Bernoulli distribution with
the arrival rate of 0.225. Figure 1 shows the mean delay and
service regularity performance of the RSG Algorithm with
varying α.
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Figure 1: Performance of the RSG Algorithm

Figure 1 reveals that the improved regularity of the RSG
Algorithm with increasing α comes at the cost of larger mean
delays. We can show that the mean of the total TSLS value
is minimized as α goes to ∞ (see [8]). On the other hand,
it is known (e.g. [10, 2]) that the mean queue-lengths are
minimized under heavily-loaded conditions (cf. Section 4 for
more detail) when α = 0. In view of the tradeoff observed
in the above figure, our objective is to understand whether
both the regularity and the mean-delay optimality charac-
teristics of the RSG Algorithm can be preserved, especially
under heavily-loaded conditions, by carefully selecting α.

In the next section, we answer this question in the affir-
mative by explicitly characterizing how α should scale with
respect to the traffic load in order to achieve the heavy-traffic
optimality while also preserving the regularity performance
of the RSG Algorithm.

4. HEAVY-TRAFFIC OPTIMALITY RESULT
In this section, we present our main result for the RSG

Algorithm in terms of its mean delay optimality under the
heavy-traffic limit, where the arrival rate vector approaches
the boundary of the capacity region.

We first note that the capacity region R is a polyhedron
due to the discreteness and finiteness of the service rate
choices, and thus has a finite number of faces. We con-
sider the exogenous arrival vector process {A(ε)[t]}t≥0 with

mean vector λ(ε) ∈ Int(R), where ε measures the Euclidean

distance of λ(ε) to the boundary of R (see Figure 2).
In heavy-traffic analysis, we study the system performance

as ε decreases to zero, i.e., as the arrival rate vector ap-
proaches λ(0) belonging to the relative interior of a face,
referred to as the dominant hyperplane H(c). We denote
H(c) , {r ∈ RL : 〈r, c〉 = b}, where b ∈ R, and c ∈ RL is

the normal vector of the hyperplane H(c) satisfying ‖c‖ = 1
and c � 0.

We are interested in understanding the steady-state queue-
length values with vanishing ε. To that end, we first provide

c

r1

r2

( )ε

( )0

Line of attraction

( )c
H

Figure 2: Geometric structure of capacity region

a generic lower bound for all feasible schedulers by construct-
ing a hypothetical single-server queue with the arrival pro-
cess 〈c,A(ε)[t]〉, and the i.i.d service process β[t] with the
probability distribution

Pr {β[t] = bj} = ψj , for each j ∈ J , (5)

where bj , maxs∈S(j)〈c, s〉 is the maximum c-weighted ser-
vice rate achievable in channel state j ∈ J . By the con-
struction of capacity region R, we have E[β[t]] = b. Also,
it is easy to show that the constructed single-server queue-
length {Φ[t]}t≥0 is stochastically smaller than the queue-

length process {〈c,Q(ε)[t]〉}t≥0 under any feasible schedul-
ing policy. Hence, by using Lemma 4 in [2], we have the
following lower bound on the expected limiting queue-length
vector under any feasible scheduling policy.

Proposition 1. Let Q
(ε)

be a random vector with the
same distribution as the steady-state distribution of the queue
length processes under any feasible scheduling policy. Con-
sider the heavy-traffic limit ε ↓ 0, suppose that the variance

vector
(
σ(ε)

)2
of the arrival process {A(ε)[t]}t≥0 converges

to a constant vector σ2. Then,

lim
ε↓0

εE
[
〈c,Q(ε)〉

]
≥ ζ

2
, (6)

where ζ , 〈c2,σ2〉+ Var(β).

This fundamental lower bound of all feasible scheduling
policies motivates the following definition of heavy-traffic op-
timality of a scheduler.

Definition 1. (Heavy-Traffic Optimality) A scheduler is
called heavy-traffic optimal, if its limiting queue length vector

Q
(ε)

satisfies

lim
ε↓0

εE
[
〈c,Q(ε)〉

]
≤ ζ

2
, (7)

where ζ is defined in Proposition 1.

It is well-known that the MWS Algorithm, which corre-
sponds to the RSG Algorithm with α = 0, is heavy-traffic
optimal (e.g., [10, 2]). This is shown by first establishing
a state-space collapse, i.e., the deviations of queue lengths
from the direction c are bounded, independent of heavy-
traffic parameter ε. Since the lower bound of mean queue
length is of order of 1

ε
, the deviations from the direction

c are negligible compared to the large queue length for a



sufficiently small ε, and thus the queue lengths concentrate
along the normal vector c. Because of this, we also call the
normal vector c the line of attraction.

However, as discussed in Section 3, we are interested in
large values of α to provide satisfactory service regularity.
Yet, it is unknown whether the RSG Algorithm can remain
heavy-traffic optimal when α is non-zero, since larger values
of α leads to higher mean queue-lengths (cf. Figure 1). Also,
the state-space collapse result is not applicable since the
deviations from the line of attraction depend on α. This
raises the question of how α(ε) should scale with ε in order to
achieve heavy-traffic optimality while allowing α(ε) to take
large values (providing more regular services). We answer
this interesting and challenging question by providing the
following main result, proved in Section 6.

Proposition 2. Let Q
(ε)

be a random vector with the
same distribution as the steady-state distribution of the queue
length processes under the RSG Algorithm. Consider the
heavy-traffic limit ε ↓ 0, suppose that the variance vector(
σ(ε)

)2
of the arrival process {A(ε)[t]}t≥0 converges to a

constant vector σ2. Suppose the channel fading satisfies the
mild assumption3 Pr{Cl[t] = 0} > 0, for all l ∈ L. Then,

εE
[
〈c,Q(ε)〉

]
≤ ζ(ε)

2
+B

(ε)
, (8)

where ζ(ε) , 〈c2,
(
σ(ε)

)2
〉+ Var(β) + ε2 and B

(ε)
is defined

in (22).

Further, if α(ε) = O( 1
5√ε ), then limε↓0B

(ε)
= 0 and thus

the RSG Algorithm is heavy-traffic optimal.

This result is interesting in that it provides an explicit
scaling regime in which the design parameter α(ε) can be
increased to utilize the service regulating nature of the RSG
Algorithm without sacrificing the heavy-traffic optimality.
Intuitively, if α(ε) scales slowly as ε vanishes, each link
weight is dominated by its own queue length in the heavy-
traffic regime and thus the heavy-traffic optimality may be
maintained; otherwise, the heavy-traffic optimality result
may not hold, as will be demonstrated in the next section.

5. SIMULATION RESULTS
In this section, we provide simulation results to compare

the mean delay and service regularity performance of the
RSG Algorithm with the MWS Algorithm. In the simu-
lation, we consider a single-hop non-fading network with
4 links. Its capacity region is R = {λ = (λl)

4
l=1 � 0 :∑4

l=1 λl < 1}. We use arrival process where the number
of arrivals in each slot follows a Bernoulli distribution. We
consider the symmetric case λ(ε) = (1 − ε

2
) ×

[
1
4
, 1
4
, 1
4
, 1
4

]
,

and the asymmetric case λ(ε) = [ 1
2
, 1
4
, 1
8
, 1
16

] + (1 − ε
32

) ×[
1
64
, 1
64
, 1
64
, 1
64

]
.

From Figure 3a and 4a, we can observe that the RSG
Algorithm with both α = 1 and α = 1

5√ε , and the MWS

Algorithm converge to the theoretical lower bound and thus
is heavy-traffic optimal, which confirms our theoretical re-
sults. Yet, the RSG Algorithm with α = 1

ε
has large mean

3We note that our result holds in single-hop network topolo-
gies without this assumption, and its extension to more gen-
eral settings is part of our future work.
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Figure 3: Symmetric arrivals in a single-hop network
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Figure 4: Asymmetric arrivals in a single-hop network

queue length, which does not match with the theoretical
lower bound and thus is not heavy-traffic optimal. Hence,
α should scale as slowly as O( 1

5√ε ) to preserve heavy-traffic

optimality.
From Figure 3b and 4b, we can see that the RSG Algo-

rithm with even α = 1 significantly outperforms the MWS
Algorithm in terms of service regularity. More remarkably,
the RSG Algorithm with α = 1

5√ε can achieve the lower

bound (see [8]) achieved by the round robin policy under
symmetric arrivals.

6. DETAILED HEAVY-TRAFFIC ANALYSIS
In this section, we prove Proposition 2 by using the analyt-

ical approach in [2], which includes two parts: (i) showing
state-space collapse; (ii) using the state-space collapse re-
sult to obtain an upper bound on the mean queue lengths.
Yet, it is worth noting that the strong coupling between
queue length processes and TSLS counters in the RSG Al-
gorithm poses significant challenges in heavy-traffic analy-
sis. In particular, it requires new Lyapunov functions and a
novel technique to establish heavy-traffic optimality of the
RSG Algorithm.

6.1 State-Space Collapse
We have mentioned in Section 3 that the RSG Algorithm

is throughput-optimal, i.e., it stabilizes all queues for any
arrival rate vector that are strictly within the capacity re-
gion. Let {Q(ε)}t≥0 and {T(ε)}t≥0 be queue-length pro-
cesses and TSLS counters under the RSG Algorithm, re-

spectively. Also, we use Q
(ε)

and T
(ε)

to denote their limit-
ing queue-length random vector and limiting TSLS random
vector, respectively. Then, by the continuous mapping the-



orem, we have

Q
(ε)

‖ ⇒ Q
(ε)

‖ , Q
(ε)
⊥ ⇒ Q

(ε)

⊥ ; (9)

T
(ε)

‖ ⇒ T
(ε)

‖ , T
(ε)
⊥ ⇒ T

(ε)
⊥ , (10)

where⇒ denotes convergence in distribution, and we define
the projection and the perpendicular vector of any given L-
dimensional vector I with respect to the normal vector c
as:

I‖ , 〈c, I〉c, I⊥ , I− I‖.

Next, we will show that under the RSG Algorithm, the

second moment of ‖Q(ε)

⊥ ‖ is bounded, dependent on α(ε),

while the second moment of ‖T(ε)‖ is bounded by some con-
stant independent of ε.

Proposition 3. If Pr{Cl[t] = 0} > 0,∀l ∈ L, then, un-
der RSG Algorithm, there exists a constant NT,2, indepen-
dent of ε, such that

E[‖Q(ε)

⊥ ‖
2] = O

(
(α(ε))4 (logα(ε))2

)
, (11)

E[‖T(ε)‖2] ≤ NT,2. (12)

We prove Proposition 3 by first studying the drift of the
Lyapunov function

V⊥(Q(ε),T(ε)) , ‖(Q(ε)
⊥ ,
√

2α(ε)CmaxT(ε))‖,

and show that when V⊥(Q(ε),T(ε)) is sufficiently large, it
has a strictly negative drift independent of ε, which is char-
acterized in the following key lemma.

Lemma 1. Under the RSG Algorithm, there exist posi-
tive constants d and ς, independent of ε, such that whenever
V⊥(Q(ε)[t],T(ε)[t]) > d, we have

E[∆V⊥(Q(ε)[t],T(ε)[t])|Q(ε)[t],T (ε)[t]] < −ς, (13)

where ∆V⊥(Q(ε)[t],T(ε)[t]) , V⊥(Q(ε)[t + 1],T(ε)[t + 1]) −
V⊥(Q(ε)[t],T(ε)[t]).

The proof of Lemma 1 is available in Appendix A.
Note that the TSLS counters have bounded increment but

unbounded decrement, since they can at almost increase by
1 and drop to 0 once their corresponding links are scheduled.
Due to this characteristic of TLSL, the absolute value of the
drift ∆V⊥(Q(ε),T(ε)) has neither an upper bound nor an

exponential tail given the current system state (Q(ε),T(ε)).
Thus, we cannot directly apply Theorem 2.3 in [4], which re-
quires either boundedness or the exponential tail of the Lya-
punov drift to establish the existence of the second moment
of the stochastic process. Indeed, for a Markov Chain with a
strictly negative drift of Lyapunov function, if its Lyapunov
drift has bounded increment but unbounded decrement, its
second moment may not exist.
Counterexample: Consider a Markov Chain {X[t]}t≥0

with the following transition probability:

Pj,j+1 =


1 if j = 0;
1
2

if j = 1;
j−1
j+1

if j ≥ 2.
Pj,0 =

{
1
2

if j = 1;
2
j+1

if j ≥ 1.

The state transition diagram of Markov Chain {X[t]}t≥0

is shown in Figure 5. Consider a linear Lyapunov function

0 1 2 3 4

1 1/2 1/3 2/4

1/2 2/3 2/4 2/5

Figure 5: Markov Chain {X[t]}t≥0

X. For any X ≥ 2, we have

E[X[t+ 1]−X[t]|X[t] = X] =
X − 1

X + 1
− 2X

X + 1
= −1.

Thus, the Lyapunov function X has a strictly negative drift
when X ≥ 2 and hence the steady-state distribution of the
Markov Chain exists. Recall that its drift increases at al-
most by 1, but has unbounded decrement, which has similar
dynamics with the system under the RSG Algorithm.

Next, we will show that even the first moment of this
Markov Chain does not exist, let alone its second moment.
Let X be the limiting random variable of the Markov Chain
and πj , Pr{X = j}. According to the global balance
equations, we can easily calculate

π1 = π0 =
1

3
, πj =

1

3j(j − 1)
. (14)

Thus, we have

E[X] =

∞∑
j=1

jπj =
1

3
+

∞∑
j=2

1

3(j − 1)
=∞.

Fortunately, we can establish the boundedness of the sec-

ond moment of ‖Q(ε)

⊥ ‖ under the RSG Algorithm by ex-
ploiting its unique dynamics under a mild assumption that
Pr{Cl[t] = 0} > 0,∀l ∈ L, which leads to the following
lemma that all TSLS counters have an exponential tail in-
dependent of ε.

Lemma 2. If pl , Pr{Cl[t] = 0} > 0,∀l ∈ L, then, under
the RSG Algorithm, there exists a ϑ ∈ (0, 1), independent of
ε, such that

Pr{T (ε)
l = m} ≤ 2ϑm, ∀l ∈ L. (15)

The proof of Lemma 2 is available in Appendix B.
Remark: We can also show that all TLSL counters still

have an exponential tail independent of ε in non-fading single-
hop network topologies. The extension to the more general
setup is left for future search.

Lemma 2 directly implies (12). The rest of proof mainly
builds on the analytical technique in [4], while it requires

carefully partitioning the space (Q
(ε)
⊥ ,T(ε)). The detailed

outline can be found in Appendix C.

6.2 Proof of Main Result
We first give an upper bound on E[〈c,Q(ε)〉] by using the

methodology of “setting the drift of a Lyapunov function
equal to zero”. We will omit the superscript ε associated
with the queue lengths and TSLS counters for brevity in
the rest of proof. To derive an upper bound, we need the



following fundamental identity (see Lemma 8 in [2]):

E
[
〈c,U(Q,T, J)〉2

]
2

+
E
[
〈c,A− S∗(Q,T, J)〉2

]
2

+E
[
〈c,Q + A− S∗(Q,T, J)〉〈c,U(Q,T, J)〉

]
=E

[
〈c,Q〉〈c,S∗(Q,T, J)−A〉

]
, (16)

which is derived through setting E[∆W‖(Q,T)] = 0.
Next, we give upper bounds for each individual term in the

left hand side of (16) and a lower bound for the right hand
side of (16). Due to the space limitations, we omit the details
and directly give results with some simple explanations.

By setting the mean drift of 〈c,Q〉 equal to zero and using
the fact that Ul ≤ Cmax for all l, we have

1

2
E
[
〈c,U(Q,T, J)〉2

]
≤ ε

2
〈c, Cmax1〉. (17)

This means that there is almost no unused services under
heavy-traffic conditions.

By observing that the RSG Algorithm selects the schedule
S which maximizes 〈c,S〉 with high probability, we can show

E
[
〈c,A− S∗(Q,T, J)〉2

]
≤ζ(ε) + 2b

M∑
j=0

ε

γj
bj +

M∑
j=0

ε

γj

(
(bj)

2 + 〈c, Cmax1〉2
)
, (18)

where we recall that ζ(ε) is defined in Proposition 2, and

πj , Pr
{
〈c,S∗(Q,T, J)〉 = bj

∣∣J = j
}
,

γj , min
{
bj − 〈c, r〉 : for all r ∈ Sj \ H(c)

}
.

Inequality (18) indicates that the second moment of c-weighted
difference between arrivals and services is dominated by the
c2-weighted variance of the arrival process and the variance
of the channel fading process in the heavy-traffic limit.

In addition, by using similar arguments as in the proof for
Proposition 4 in [2], we have

E
[
〈c,Q + A− S∗(Q,T, J)〉〈c,U(Q,T, J)〉

]
≤
√
εE[‖Q⊥‖2]

Cmax

cmin
, (19)

where cmin , min
m∈{l:cl>0}

cm.

Finally, by using the definition of the RSG Algorithm and
Proposition 3, we have

E
[
〈c,Q〉〈c,S∗(Q,T, J)−A〉

]
≥ εE

[
‖Q‖‖

]
− cot(θ)

√
2
(
E[‖Q⊥‖2] + (α(ε))2NT,2

)
ε

×

√√√√ M∑
j=0

1

γj

(
(bj)

2 + 〈c, Cmax1〉2
)
, (20)

where θ ∈ (0, π
2

] is an angle such that 〈c,R∗(Q,T)〉 = b, for

all Q and T satisfying
‖(Q+αT)‖‖
‖Q+αT‖ ≥ cos(θ), and R∗(Q,T) ,

E[S∗(Q,T, J)|Q,T].
By substituting bounds (17), (18), (19) and (20) into iden-

tity (16), we have

εE
[
‖Q‖‖

]
≤ ζ(ε)

2
+B

(ε)
, (21)

where

B
(ε)

,
ε

2
〈c, Cmax1〉+

√
εE[‖Q⊥‖2]

Cmax

cmin

+
1

2

M∑
j=0

ε

γj

(
(bj)

2 + 〈c, Cmax1〉2
)

+ b

M∑
j=0

ε

γj
bj + cot(θ)

√
2
(
E[‖Q⊥‖2] + (α(ε))2NT,2

)
ε

×

√√√√ M∑
j=0

1

γj

(
(bj)

2 + 〈c, Cmax1〉2
)
. (22)

Thus, if limε↓0B
(ε)

= 0, then RSG Algorithm is heavy-traffic
optimal. Noting that NT,2 is independent of ε, to satisfy

limε↓0B
(ε)

= 0, it is enough to have

lim
ε↓0

εE[‖Q⊥‖
2] = 0 and lim

ε↓0
ε (α(ε))2 = 0. (23)

By using Proposition 3, it is easy to see that α(ε) = O( 1
5√ε )

meets the above requirements.

7. CONCLUSION
In this paper, we studied the heavy-traffic behavior of the

recently proposed maximum-weight type scheduling algo-
rithm, called Regular Service Guarantee (RSG) Algorithm,
that not only achieves throughput optimality but also pro-
vides regular services through the control parameter α ≥ 0.
We showed that the RSG Algorithm is heavy-traffic optimal
as long as α = O( 1

5√ε ), where ε is the heavy-traffic parame-

ter characterizing the closeness of the arrival rate vector to
the boundary of the capacity region. Noting that the ser-
vice regularity improves with increasing α, our result reveals
that the RSG Algorithm with a carefully selected parame-
ter α can achieve the best service regularity performance
among the class of the RSG Algorithms without sacrificing
the mean delay optimality under heavy-traffic conditions.
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APPENDIX
A. PROOF OF LEMMA 1

We assume λ(ε) � 0. Indeed, if λ
(ε)
l = 0 for some link l,

then no arrivals occur in the link l. Thus, we do not need
to consider such links. Since normal vector c � 0, we have
λ(0) � 0. In addition, since λ(0) is a relative interior point
of dominant hyperplane H(c), there exists a small enough
δ > 0 such that

Bδ , H(c)
⋂{

r � 0 : ‖r− λ(0)‖ ≤ δ
}
, (24)

representing the set of vectors on the hyperplane H(c) that
are within δ distance from λ(0), lies strictly within the face
F (c) , H(c)⋂R.

In the rest of proof, we will omit ε associated with the
queue length processes, the TSLS counters and parameter
α(ε) for brevity. Noting the difficulty to directly study the
drift of Lyapunov function V⊥(Q,T), we relate it with the
drift of other proper Lyapunov functions, which is charac-
terized in the following lemma.

Lemma 3. Define the following Lyapunov functions:

W (Q,T) , ‖(Q,
√

2αCmaxT)‖2, (25)

W‖(Q,T) , ‖Q‖‖2. (26)

Then, given Q[t] = Q and T[t] = T, their one-step drifts
denoted by:

∆W (Q,T) , [W (Q[t+ 1],T[t+ 1])−W (Q[t],T[t])] ,

∆W‖(Q,T) ,
[
W‖(Q[t+ 1],T[t+ 1])−W‖(Q[t],T[t])

]
,

satisfy the following inequality:

∆V⊥(Q,T) ≤
∆W (Q,T)−∆W‖(Q,T)

2‖(Q⊥,
√

2αCmaxT)‖
. (27)

The proof of Lemma 3 is similar to that in [2] and is omitted
here for brevity.

The rest of proof follows from Lemma 3 by studying the
conditional expectation of ∆W (Q,T) and ∆W‖(Q,T). We
will omit the time reference [t] without confusion.

We first consider E [∆W (Q,T)|Q[t] = Q,T[t] = T]. It is
not hard to show that

E [∆W (Q,T)|Q[t] = Q,T[t] = T]

≤2E [〈Q,A− S∗ ·C〉|Q,T] +K1 − 2αE [〈T, CmaxS
∗〉|Q,T] ,

(28)

where K1 , Lmax{A2
max, C

2
max}+2αLCmax, and we use the

fact that
∑L
l=1 Tl[t+1]−

∑L
l=1 Tl[t] = L−|H∗|−

∑
l∈H∗ Tl[t],

where H∗ , {l ∈ L : S∗l [t]Cl[t] > 0}.
Next, we consider E [〈Q,A− S∗ ·C〉|Q,T]. By using the

definition of projection λ(0), we have

E [〈Q,A− S∗ ·C〉|Q,T]

=〈Q,λ(0) − εc〉 − E[〈Q,S∗ ·C〉|Q,T]

=− ε‖Q‖‖+ 〈Q,λ(0)〉 − E[〈Q + αT,S∗ ·C〉|Q,T]

+ αE[〈T,S∗ ·C〉|Q,T]. (29)

Given the queue-length vector Q[t], TSLS vector T[t] and
the global channel state J [t] at the beginning of slot t, ac-
cording to the definition of the RSG Algorithm, we have

〈Q[t] + αT[t],S∗[t] ·C[t]〉 = max
S∈SJ[t]

〈Q[t] + αT[t],S ·C[t]〉,

which implies

〈Q + αT,E[S∗ ·C|Q,T]〉 = max
r∈R
〈Q + αT, r〉. (30)

Thus, we have

〈Q + αT,E[S∗ ·C|Q,T]〉 = max
r∈R
〈Q + αT, r〉

≥max
r∈Bδ
〈Q + αT, r〉 ≥ max

r∈Bδ
〈Q, r〉+ 〈αT, r∗〉,

where r∗ ∈ arg max
r∈Bδ

〈Q, r〉. Since λ(0) � 0, we can find a

δ > 0 sufficiently small such that rl ≥ rmin for all r =
(rl)l∈L ∈ Bδ and some rmin > 0. Hence, we have

〈Q + αT,E[S∗ ·C|Q,T]〉 ≥ max
r∈Bδ
〈Q, r〉+ αrmin‖T‖1.

By substituting above inequality into (29), we have

E [〈Q,A− S∗ ·C〉|Q,T] ≤ −ε‖Q‖‖+ min
r∈Bδ
〈Q,λ(0) − r〉

− αrmin‖T‖1 + αE[〈T,S∗ ·C〉|Q,T].



Since λ(0) − r is perpendicular to the normal vector c for
r ∈ Bδ, we have

min
r∈Bδ
〈Q,λ(0) − r〉 = min

r∈Bδ
〈Q⊥,λ(0) − r〉 = −δ‖Q⊥‖.

Hence, we have

E [〈Q,A− S∗ ·C〉|Q,T] ≤ −ε‖Q‖‖ − δ‖Q⊥‖
− αrmin‖T‖1 + αE[〈T,S∗ ·C〉|Q,T]. (31)

Thus, by substituting (31) into (28), we have

E[∆W (Q,T)|Q,T] ≤− 2ε‖Q‖‖ − 2δ‖Q⊥‖
− 2αrmin‖T‖1 +K1. (32)

Using techniques in showing (32) in [2], we have

E[∆W‖(Q,T)|Q,T] ≥ −2ε‖Q‖‖ −K2, (33)

where K2 , 2LC2
max.

By using the bounds (32), (33) and Lemma 3, we have

E[∆V⊥(Q,T)|Q,T]

≤
E
[
∆W (Q,T)−∆W‖(Q,T)|Q,T

]
2‖(Q⊥,

√
2αCmaxT)‖

≤
−2δ‖Q⊥‖ − 2αrmin

∑L
l=1 Tl +K1(α) +K2

2‖(Q⊥,
√

2αCmaxT)‖
.

Note that αTl ≥ αTl1{αTl≥1} ≥
√
αTl1{αTl≥1} =

√
αTl −√

αTl1{αTl<1} ≥
√
αTl − 1, and ‖Q⊥‖ ≥ 1√

L
‖Q⊥‖1, where

1{·} is an indicator function. Thus, we have

E[∆V⊥(Q,T)|Q,T]

≤
− 2δ√

L
‖Q⊥‖1 − 2rmin

∑L
l=1

√
αTl +K1 +K2 + 2Lrmin

2‖(Q(k)
⊥ ,
√

2αCmaxT)‖

≤ −min

{
δ√
L
,

rmin√
2Cmax

}
+

K1 +K2 + 2Lrmin

2‖(Q⊥,
√

2αCmaxT)‖
.

Hence, for any 0 < ς < min
{

δ√
L
, rmin√

2Cmax

}
, by taking

d ,
K1 +K2 + 2Lrmin

2
(

min
{

δ√
L
, rmin√

2Cmax

}
− ς
) , (34)

we have the desired result.

B. PROOF OF LEMMA 2
If the event Ej , {Cl[j] > 0, Ci[j] = 0,∀i 6= l} always

happens from j = t −m + 1 to t and there is at least one
packet arriving at link l in this time duration, then under
the RSG Algorithm, link l should be scheduled at least once

during the past m slots and thus T
(ε)
l [t] < m. This implies

Pr{T (ε)
l [t] = m}

≤Pr{Ej didn’t happen for some j ∈ [t−m+ 1, t]}
+ Pr{No packet arrived at link l from t−m+ 1 to t}.

Hence, we have Pr{T (ε)
l [t] = m} ≤ (1− (1− pl)Πi 6=lpi)

m +

qml ≤ 2ϑml , where ql , Pr{Al[t] = 0} < 1, ∀l ∈ L, and

ϑl , max{1 − (1 − pl)Πi 6=lpi, ql} ∈ (0, 1). Hence, we have

Pr{T (ε)
l = m} < 2ϑml . Thus, by taking ϑ , maxl∈L ϑl, we

have the desired result.

C. PROOF OUTLINE OF PROPOSITION 3
In the rest of proof, we will omit ε associated with the

queue length processes, the TSLS counters and parameter
α(ε) for brevity. It is quite challenging to directly give an up-
per bound on E[‖Q⊥‖2]. Instead, we upper-bound the mo-
ment generation function of ‖Q⊥‖, and use the relationship
between the moments of a random variable and its moment
generation function to upper-bound E[‖Q⊥‖2] as shown in
the following lemma.

Lemma 4. For a random variable X with E[eηX ] <∞ for
some η > 0, we have

E[Xn] ≤ 1

ηn

(
log
(
en−1E[eηX ]

))n
, (35)

for n = 1, 2, 3 · · · .
Please see the Appendix D for the proof of Lemma 4.

Let Z[t] ,
(
Q⊥[t],

√
2αCmaxT[t]

)
. We first give an upper

bound on E
[
eη‖Z[t+1]‖

∣∣∣Q[t],T[t]
]
. To that end, let l∗[t] ∈

arg maxl Tl[t]. We partition (Q⊥[t],T[t]) into sets F1, F2

and F3, where

F1 , {‖Z[t]‖ ≤ d} ;F2 ,
{
‖Z[t]‖ > d, ‖Q⊥[t]‖ > Tl∗[t][t]

}
;

F3 ,
{
‖Z[t]‖ > d, ‖Q⊥[t]‖ ≤ Tl∗[t][t]

}
.

Then, we have

E
[
eη‖Z[t+1]‖

∣∣∣Q[t],T[t]
]

=

3∑
i=1

E
[
eη‖Z[t+1]‖;Fi

∣∣∣Q[t],T[t]
]
.

(36)

Next, we consider each term in (36) individually.
(i) On event F1, we can show that if ‖Z[t]‖ ≤ d, then

‖Z[t+ 1]‖2 ≤ d2 + 2
(
Amax + 2

√
LCmax

)
d
√
L

+ L
(
Amax + 2

√
LCmax

)2
+ 2LαCmax , G2

1, (37)

Hence, we have

E
[
eη‖Z[t+1]‖;F1

∣∣∣Q[t],T[t]
]
≤ eηG1 (38)

To consider other two terms in (36), we need the following
lemma.

Lemma 5. Under the RSG Algorithm, if ‖Z[t]‖ > d, then

|‖Z[t+ 1]‖ − ‖Z[t]‖|

≤2Lmax{Amax, Cmax}+
2αCmaxL

d

+ 2αCmax

∑
l∈H∗ Tl[t]√

‖Q⊥[t]‖2 + 2αCmax

∑L
l=1 Tl[t]

, (39)

where H∗ , {l : S∗l [t]Cl[t] > 0}.
The proof is omitted due to space limitations.

(ii) On event F2, we have∑
l∈H∗ Tl[t]√

‖Q⊥[t]‖2 + 2αCmax

∑L
l=1 Tl[t]

≤
LTl∗[t][t]

‖Q⊥[t]‖ ≤ L.

By substituting above inequality into (39), we get

|‖Z[t+ 1]‖ − ‖Z[t]‖| ≤ G2, (40)



where G2 , 2Lmax{Amax, Cmax} + 2αCmaxL
d

+ 2αCmaxL.
Noting that (13) and (40) satisfy conditions of Lemma 2.2
in [4], there exists η1 > 0, and ρ = eηG2 −η(G2 + ς) ∈ (0, 1),
independent of ε, such that

E
[
eη(‖Z[t+1]‖−‖Z[t]‖);F2

∣∣∣Q[t],T[t]
]
≤ ρ,∀0 < η < η1.

Thus, we have

E
[
eη‖Z[t+1]‖;F2

∣∣∣Q[t],T[t]
]
≤ ρeη‖Z[t]‖. (41)

(iii) On event F3, we have∑
l∈H∗ Tl[t]√

‖Q⊥[t]‖2 + 2αCmax

∑L
l=1 Tl[t]

≤
LTl∗[t][t]√

2αCmaxTl∗[t][t]
=

L√
2αCmax

√
Tl∗[t][t]. (42)

By substituting (42) into (39), we get

|‖Z[t+ 1]‖ − ‖Z[t]‖|

≤2Lmax{Amax, Cmax}+
2αCmaxL

d
+ L
√

2αCmax

√
Tl∗[t][t].

In addition, on event F3, we have

‖Z[t]‖ ≤
√
T 2
l∗[t][t] + 2αCmaxLTl∗[t][t]. (43)

Hence, we have

‖Z[t+ 1]‖ ≤‖Z[t]‖+ |‖Z[t+ 1]‖ − ‖Z[t]‖|
≤F1Tl∗[t][t] + F2, (44)

where F1 , L
√

2αCmax+
√

1 + 2αCmaxL and F2 , 2αCmaxL
d

+
2Lmax{Amax, Cmax}. Thus, we have

E
[
eη‖Z[t+1]‖;F3

∣∣∣Q[t],T[t]
]
≤ eηF2eηF1Tl∗[t][t]. (45)

By substituting (38), (41) and (45) into (36), we have

E
[
eη‖Z[t+1]‖|Q[t],T[t]

]
≤ eηG1 + ρeη‖Z[t]‖ + eηF2eηF1Tl∗[t][t].

By taking expectation on both sides, we have

E
[
eη‖Z[t+1]‖

]
≤ eηG1 + ρE

[
eη‖Z[t]‖

]
+ eηF2E

[
eηF1Tl∗[t][t]

]
≤ eηG1 + ρE

[
eη‖Z[t]‖

]
+ eηF2

L∑
l=1

E
[
eηF1Tl[t]

]
. (46)

By Lemma 2, there exist η2 > 0 such that eη2F1ϑ < 1 and
for 0 < η < η2, we have

E
[
eηF1Tl[t]

]
≤ 2

∞∑
m=0

eηF1mϑm =
2

1− eηF1ϑ
(47)

By substituting (47) into (46), we have

E
[
eη‖Z[t+1]‖

]
≤ ρE

[
eη‖Z[t]‖

]
+G, (48)

holding for 0 < η < η0 , min{η1, η2}, where G , eηG1 +
2LeηF2

1−eηF1ϑ
. By using inequality (48) and iterating over t, we

have

E
[
eη‖Z[t]‖

]
≤ ρteη‖Z[0]‖ +

1− ρt

1− ρ G ≤ e
η‖Z[0]‖ +

G

1− ρ ,

which implies E
[
eη‖Q⊥[t]‖

]
≤ eη‖Z[0]‖ + G

1−ρ .

Thus, we have

E
[
eη‖Q⊥[t]‖

]
≤ eη‖Z[0]‖ +

G

1− ρ (49)

where G , eηG1 + 2LeηF2

1−eηF1ϑ
, ρ , eηG2 − η(G2 + ς) ∈ (0, 1),

d = O(α), G1 = O(α), G2 = O(α), F1 = O(
√
α) and F2 =

O(1). Note that we need to choose a η > 0 such that

1− eηF1ϑ < 1 (50)

eηG2 − η(G2 + ς) < 1. (51)

It is not hard to verify that

0 < η ≤ 1

2
min

{
1

F1
ln

1

ϑ
,

1

G2
ln
G2 + ς

G2

}
(52)

satisfies above requirements. If α is large enough such that
ς
G2

< 1 and G2 � F1, then we have

1

G2
ln
G2 + ς

G2
≤ 1

F1
ln

1

ϑ
. (53)

Thus, we can take η∗ , 1
2G2

ln G2+ς
G2

to meet the above re-

quirements, and hence η∗ = O( 1
α2 ).

Taking η = η∗ and noting that η∗ < 1
2F1

ln 1
ϑ

, we have

G

1− ρ =
eη
∗G1 + 2Leη

∗F2

1−ϑeη∗F1

1− (eη∗G2 − η∗ (G2 + ς))

≤
eη
∗G1 + 2Leη

∗F2

1−
√
ϑ

1− (eη∗G2 − η∗ (G2 + ς))

=
eη
∗G1 + 2Leη

∗F2

1−
√
ϑ

1−
(

1 + ς
G2

) 1
2

+ 1
2

(
1 + ς

G2

)
ln
(

1 + ς
G2

)
(a)
=O

 1

1−
(

1 + ς
2G2

)
+ 1

2

(
1 + ς

G2

)
ς
G2

 = O
(
α2) ,

where the step (a) uses η∗G1 = O
(

1
α

)
and η∗F2 = O

(
1
α2

)
.

Thus, we have E
[
eη
∗‖Q⊥‖

]
= O(α2). By using Lemma 4,

we have

E[‖Q⊥‖
2] ≤ 1

(η∗)2

(
log
(
eE
[
eη
∗‖Q⊥[t]‖

]))2
=O

(
α4 (logα)2

)
.

D. PROOF OF LEMMA 4

E[Xn] =
1

ηn
E
[(

log eηX
)n]

(a)

≤ 1

ηn
E
[(

log
(
en−1eηX

))n]
(b)

≤ 1

ηn

(
log
(
en−1E[eηX ]

))n
, (54)

where the step (a) follows from the fact that f(y) = (log y)n

is increasing in y ∈ [1,∞) for n = 1, 2, · · · ; (b) uses the
fact that g(y) =

(
log
(
en−1y

))n
is concave in [1,∞) for n =

1, 2, · · · , and Jensen’s Inequality.


