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ABSTRACT
Round robin and its variants are well known scheduling policies

that are popular in wireline networks due to their throughput opti-

mality, delay insensitivity to �le size distributions and short-term

fairness. �e la�er two properties are also extremely important

for emerging wireless applications, such as Internet of �ings and

cyber-physical systems. However, there is no direct wireless analog

of round robin with all the desirable properties in wireless networks,

where wireless interference and channel fading are predominant.

�e main reason is due to the fact that it is very di�cult to even de-

�ne what round robin means in wireless networks. �is motivates

us to develop a round-robin-like algorithm in wireless networks

that has nice properties as round robin in wireline networks. To

that end, we utilize a counter called the Time-Since-Last-Service

(TSLS) that keeps track of the time of each �le since its last service,

and observe that scheduling a �le with maximum TSLS in a sin-

gle server is equivalent to serving �les in a round robin fashion.

Based on this key observation, we develop a TSLS-based algorithm

that balances the tradeo� between the TSLS value and the channel

rate for each link and show that the proposed algorithm achieves

maximum system throughput, which demands a nontraditional ap-

proach due to the abrupt dynamics of the TSLS metrics. Numerous

simulations are provided to validate its desired properties such as

delay insensitivity and excellent short-term fairness performance

as in the case of round robin algorithms of wireline networks.
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1 INTRODUCTION
Round robin and its variants, such as Weighted Fair �eueing

(WFQ) [6], are widely used in wireline networks due to their sev-

eral a�ractive properties. First, it is very easy to be implemented.

Fig. 1 illustrates the operation of round robin algorithm in a single

server system. Second, round robin provides maximum through-

put since it continuously utilizes the full capacity of a link and

it has an insensitivity property (see [8]). �e insensitivity prop-

erty refers to the fact that the probability distribution of queue

lengths (and hence the average delay) is insensitive to the �le-size

distributions. �is property is particularly a�ractive since it is well-

known that �le-size distributions are heavy-tailed (or at least have

very large variance) and service disciplines other than round robin

(such as �rst-in, �rst out or FIFO) have mean delays that are very

sensitive to �le-size distributions (see [10]), which cannot meet

the stringent performance needs of diverse network applications.

Moreover, round robin provides short-term fairness in the sense

that if there are n �les, then each �le gets 1/n fraction of the band-

width. �is short-term fairness can be measured as the variance

of inter-service time of each �le characterizing how o�en the �le

is served, also called service regularity. �is together with mean

delay and throughput are quite important performance metrics for

Internet of things (IoT) and cyber-physical systems.

time slot: 1 2 3 4 5 6 7

Figure 1: Round robin algorithm in a single server system:
At the �rst slot, there are one “red” �le with two packets and
one “blue” �le with three packets. A new “yellow” �le with
one packet joins the system at the second slot.

For example, in almost all IoT applications (e.g., health care,

smart home, environmental monitoring, and manufacturing), there

are a large number of devices, where each device generates tra�c

that is sparse or intermi�ent in time but delay sensitive. To see

this, consider a smart home application, where some sensors are

monitoring the house condition while others monitoring the safety

of the house. In such an application, each sensor intermi�ently

updates its status. Hence, in these IoT applications, it is quite im-

portant to develop scheduling algorithms that can respond quickly

to the service needs of each device while e�ciently utilizing the

limited wireless resources. One solution is to periodically schedule

each device for data transmission; however, one has to trade o� this

periodicity with the need to adapt unpredictable tra�c pa�erns

under the wireless interference and channel fading.
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Surprisingly, existing wireless scheduling policies do not mimic

the behavior of round robin algorithms exactly or even closely in

general wireless networks. One of the �rst works to study round-

robin-type algorithms for wireless networks is [17], where an ap-

proximation to WFQ was proposed for wireless networks. �e main

idea was built around a heuristic to limit the amount by which a �ow

would lead or lag behind a true WFQ scheduler. However, this algo-

rithm still serves packet at each link in a �rst-come-�rst-serve order

and thus can su�er large delay when the arrival process is bursty.

Moreover, it is only limited to fully-connected networks. Since then,

extensive research e�ort has been exerted in the wireless schedul-

ing design that targets various aspects of �ality-of-Service (QoS),

such as throughput (e.g., [1, 14, 18, 21, 23–25]), mean delay (e.g.,

[7, 16, 22]), and service regularity (e.g., [15, 16]). Motivated by the

research activities in bandwidth sharing networks (e.g., [19, 1, 20,

25]), the authors in [2, 5] generalized the ideas of processor-sharing

in queueing networks and developed balance fairness schedulers in

wireless networks that exhibit delay insensitivity property. How-

ever, this balance fairness scheduler requires the full knowledge of

the capacity region, leading to the di�culty in practical implemen-

tations. More recently, the authors in [19] developed a proportional

scheduler that possesses excellent delay performance (see [27]). But,

similar to balance fairness scheduler, this scheduler also requires

the full knowledge of the capacity region, and thus faces the same

implementation issues in practical networks. In [3], the authors

developed a �ow-aware CSMA algorithm, where each dynamic

�ow a�empts to access the wireless channel a�er some random

time and transmits a packet if the channel is sensed idle. �is al-

gorithm serves each �le in a fair way and can be regarded as the

randomized version of round robin algorithm. Unfortunately, this

CSMA algorithm is hard to extend to the case of wireless fading,

which is the predominant phenomenon in wireless networks. In-

deed, as pointed out in [13], the existing throughput-optimal CSMA

algorithms heavily rely on the fact that the CSMA parameters do

not change signi�cantly over time so that the instantaneous service

rate distribution can stay close to the stationary distribution, which

is violated under channel fading. Another interesting work [9]

developed MAC-layer queue-length-based policy that essentially

runs MaxWeight across queues based on the number of their �les

and serves �les within each queue in a round-robin fashion. Al-

though this scheduler exhibits good mean delay performance over

previous scheduling rules, this scheduler does not perform round

robin across queues, and fail to achieve good short-term fairness.

�e main reason behind the di�culty in developing a wireless

counterpart of round robin algorithm is the wireless interference

as well as the fact that channel conditions of di�erent users can be

widely di�erent, and thus, unlike wireline networks, it is very di�-

cult to even de�ne what round robin means in wireless networks,

let alone to develop such algorithms. �is motivates us to develop

a round-robin-like wireless scheduling algorithm that possesses

the desired properties of round robin algorithm in wireline net-

works. �e closest prior work on emulating round robin in wireless

networks is the so-called proportional fair scheduler [11]. In the

case of downlink wireless transmission, proportional fair scheduler

suggests transmi�ing to the user which has the largest value of the

following index: the index is the ratio of the maximum possible

data rate that can be realized under the current channel state to

the average rate that the user has received so far. �e proportional

fair scheduling rule maximizes the sum of the log mean rates of

the users and it is known that this algorithm specialized to the

case of wireline networks reduces to the round robin scheme. �us,

in one sense, this scheduler can be viewed as a natural general-

ization of round robin. However, proportional fairness achieves

only long-term fairness and does not have tight control over short-

term fairness as round robin does in wireline networks. Further,

proportional fairness is not delay insensitive to �le-size distribu-

tions unless one makes signi�cant approximations in modeling

the implementation of proportional fairness. To the best of our

knowledge, delay insensitivity properties of proportional fairness

(e.g., [2, 4, 5]) have been established only under the assumption

that the achieved rate of a user is equal to its mean available rate,

whereas in reality, these two quantities can be quite di�erent. Ad-

ditionally, proportional fairness cannot be easily implemented in

distributed se�ings. Another interesting work [26] proposed a wire-

less scheduling algorithm that guarantees a maxmin fairness across

links. However, it is totally unclear how to extend this algorithm

to the case with channel fading. More recent work [20] developed

distributed randomized TDMA scheduling for wireless networks.

But, this algorithm does not adapt the dynamic network tra�c.

Our work is motivated by the recent observations in [15, 16]: in

a single-server system, if we maintain a Time-Since-Last-Service

(TSLS) counter for each �le that keeps track of how much time

has been passed since its last service, then serving the �le with the

maximum TSLS is exactly equivalent to the round robin algorithm.

Indeed, in the steady-state, the TSLS vector in a single-server system

under the round robin algorithm is a permutation of {0, 1, 2, . . . ,N−
1}, where N is the number of �les in the system. �us, this provides

a promising method to emulate round robin algorithms for wireless

networks taking into account wireless interference and channel

fading. However, it is still unclear how to balance the weight of each

link between the TSLS and the channel rate to achieve the desired

properties of round robin algorithms in wireline networks. �e

following items list our main contributions along with references

to where they appear in the text:

• In Section 2, we introduce the time-since-last-service counter

for each �le and establish a tight relationship between the time-

since-last-service and service regularity performance in the pres-

ence of �ow-level dynamics.

• In Section 3, we develop a novel scheduling algorithm that

mimics the round robin algorithm, and show that the proposed

scheduling algorithm achieves throughput optimality.

• Comparative simulations are provided in Section 4 to show

that our proposed algorithm exhibits excellent delay and service

regularity performance compared to the existing algorithms.

2 SYSTEM MODEL
We consider a wireless network with K links, where each link rep-

resents a transmi�er-receiver pair that are within the transmission

range of each other. We assume that the system operates in slo�ed

time with normalized slots t ∈ {1, 2, . . .}. Due to the wireless inter-

ference, the success or failure of a transmission over a link depends

on whether one of its interfering links is also active in the same

slot, which is called the link-based con�ict model. We call a set of
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links that can be active simultaneously a feasible schedule. Let Ω
be the collection of feasible link schedules.

We useAi [t] to denote the number of �les arriving at link i in slot

t that are independently distributed over links, and independently

and identically distributed (i.i.d.) over time with �nite mean λi > 0,

and Ai [t] ≤ Amax

i for some Amax

i < ∞, ∀i, t ≥ 0. Also, these newly

arriving �les cannot be scheduled until the next time slot. We use

Fi, j [t] to denote the number of packets of �le j arriving at link

i that follows any random distribution with �nite mean ηi > 0

and Fi, j [t] ≤ Fmax

i for some Fmax

i < ∞. Also, we assume that

qi , Pr{Fi, j [t] = Fmax

i } > 0, ∀i = 1, 2, ...,K . Let ρi , λiηi be the

tra�c intensity at link i .
Let Ni [t] be the set of �les at link i in time slot t . We use

Si, j [t] = 1 to denote that the �le j at link i is scheduled in slot t and

Si, j [t] = 0 otherwise. We call S = (Si, j [t], j ∈ Ni [t], i = 1, 2, . . . ,K)
the feasible �le schedule denoting which �les can be served simul-

taneously at time t . Let S be the collection of feasible �le schedules.

With a li�le abuse of notation, we also use Si [t] to denote whether

the service is provided at link i in time slot t . We use Ri, j [t] to

denote the number of residual packets of �le j at link i in slot t . �e

�le leaves the system once all its packets have been served, i.e., its

residual �le size reduces to 0.

We assume that each link i independently experiences i.i.d. ON-

OFF channel fading over time with Ci [t] = 1 denoting that the

channel is available for link i at time t . Let C[t] = (Ci [t])Ki=1
be the

channel state at time t andϕc , Pr{C[t] = c} denote the probability

that the channel state is c at time t , where c is K−dimensional. Let

C be the collection of all possible channel state vectors of 0s and 1s.

�en, the capacity region is de�ned as Λ ,
∑
c∈C ϕc · Conv{c · Ω},

where Conv{A} is the convex hull of the set A and x · y denotes

the componentwise product of the vectors x and y.

We call the system stable if the underlying Markov Chain is

positive recurrent. It has been shown in [23, 24] that the capacity

region Λ gives upper bounds on the achievable link rates in packets

per slot that can be supported by the network under stability for a

given interference model. We say that a scheduler is throughput-
optimal if it achieves the network stability for any tra�c intensity

vector ρ , (ρi )Ki=1
that lies strictly inside the capacity region Λ.

In addition to the throughput performance, in this work, we are

also interested in the mean delay and service regularity of each �le.

�e mean �le delay is de�ned as the expected time for each �le

to complete its service a�er it arrives at the system. �e service

regularity performance measures how o�en each �le gets service,

which together with mean �le delay are extremely important for

real-time applications. As pointed by our work [15, 16], the ser-

vice regularity performance is highly related to the statistics of the

inter-service time. To that end, we use Ii, j [m] to denote the time

between the (m − 1)th and the mth
service for �le j at link i . We

use the variance of inter-service time of �les to characterize the

service regularity performance. �e smaller the variance of the

inter-service time, the more regular the service. Our goal is to de-

velop a round-robin-like algorithm that possesses good throughput,

small delay and excellent service regularity performance that meets

the stringent needs of fast growing wireless applications.

3 WIRELESS ROUND ROBIN SCHEDULING
In this section, we develop a round-robin-like scheduling algorithm

that is throughput-optimal in general wireless networks.

3.1 Algorithm Description
Motivated by [15, 16], we introduce a counter Ti, j [t] for �le j at

link i at time t , namely Time-Since-Last-Service (TSLS), to keep

track of the time since �le j at link i was last served. In particular,

Ti, j increases by 1 in each time slot when �le j at link i does not

transmit one packet, either because it is not scheduled or because

the channel at link i is not available, and drops to 0 otherwise. More

precisely, the evolution of Ti, j is described as follows:

Ti, j [t + 1] =
(
Ti, j [t] + 1

) (
1 − Si, j [t]Ci [t]

)
. (1)

�us, the TSLS records the �le’s “age” since the last time it

received service, and its evolution is tightly related to the inter-

service time. Indeed, we can establish a key relationship between

the mean TSLS and the second moment of inter-service time.

Lemma 3.1. For any policy under which the system is stable (i.e.,
the expected number of �les is �nite), we have

E

[
T i

]
=
E

[
I i

(
I i − 1

)]
2E

[
I i

] ,

where T i and I i denote the time-average TSLS and inter-service time
of all �les that arrive at link i , respectively.

�e proof is available in Appendix A. Although Lemma 3.1 is

closely related to [15, Lemma 1], the implementation scenarios

are quite di�erent. Indeed, in [15, Lemma 1], a TSLS counter is

maintained for each link and a relation is established between its

mean value and the second moment of inter-service time for each

link, while in this paper we maintain a TSLS counter for each �le at

each link. In this sense, Lemma 3.1 can be regarded as the �ow-level

version of [15, Lemma 1].

Lemma 3.1 provides a method to improve service regularity

performance by keeping the mean TSLS low, which can be achieved

by serving the �le with the maximum TSLS at each time. In fact,

in fully-connected non-fading networks, serving the �le with the

maximum TSLS is exactly equivalent to the round robin algorithm.

However, it is not clear how to develop the TSLS-based algorithm

further to mimic the behavior of round robin algorithm in general

wireless networks that take both wireless interference and channel

fading into account. In such a case, we need to carefully balance

the weight for each �le between the TSLS and its channel rate. To

facilitate the �exibility in the algorithm design, we de�ne a set of

functions:

F , set of non-negative, increasing, di�erentiable and concave

functions f (·) : R+ → R+ with f (0) = 0 and limy→∞ f (y) = ∞.

G , { f ∈ F : for any k ≥ 1, b ≥ 0, there exists a constant c > 0

such that f (kx + b) ≤ f (x) + c,∀x ≥ 0}.

Roughly speaking, G is a class of logarithmic functions, such

asf (x) = log(1+x), f (x) = log log(e+x), and f (x) = log(1+x)/д(x),
where д(x) is an arbitrary positive, increasing and di�erentiable
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function which makes f (x) an increasing concave function. Next,

we propose the following TSLS-based algorithm.

Algorithm 1 (TSLS-Based Algorithm). In each time slot t ,
select a feasible schedule S∗[t] ∈ S such that

S∗[t] ∈ arg max

S[t ]∈S

K∑
i=1

∑
j ∈Ni [t ]

f
(
Ti, j [t]

)
Ci [t]Si, j [t], (2)

where f ∈ G.

Under the TSLS-based algorithm, only the �le with the maximum

TSLS at each link can be served, and thus the TSLS-based algorithm

serves �les at each link in a round robin fashion and run MaxWeight

across links based on their product of the logarithmic function of

maximum TSLS and channel rate. It is clear that the TSLS-based

algorithm is exactly the round robin algorithm in fully-connected

networks with non-fading.

It is worth mentioning that the TSLS-based algorithm can be

easily amended for existing protocol design. At each link, there is

usually a two-layer structure for controlling �le transfer: transport

and MAC layers. Transport layer controls the packet injection into

the MAC layer, while the MAC layer makes the scheduling decisions

to transmit the MAC-layer packets. �e TSLS-based algorithm

corresponds to the case when the transport layer of each �le injects

one packet into the MAC layer whenever the MAC layer has no

packet belonging to this �le. Hence, the MAC layer always contains

one packet of each existing �le. In this sense, the TSLS Ti, j [t] can

be interpreted as the delay of the packet of �le j in the MAC layer

at link i in slot t . Next, we show that the proposed TSLS-based

algorithm is throughput optimal.

Proposition 3.2. �eTSLS-based Algorithm is throughput-optimal,
i.e., it stabilizes the system for any tra�c intensity vector ρ that is
strictly within the capacity region Λ.

Here, we would like to point out that the proof of throughput

optimality of our proposed TSLS-based policy is quite di�erent from

that of traditional queue-length-based policies, whose proofs are

based on the dri� analysis of a quadratic Lyapunov function or its

variants. Note that the TSLS of a �le resets to zero whenever this �le

is served, no ma�er how large its previous value was. �erefore, the

dynamics of TSLS are quite abrupt and are fundamentally di�erent

from that of queue-lengths, which poses signi�cant challenges on

the proof of throughput optimality of TSLS-based policies. Indeed,

in [15], we proposed a MaxWeight policy using a weight of each link

that is a linear combination of queue-length and TSLS, and showed

its throughput optimality through a new Lyapunov function. But,

in that work, the queue-length still plays an important role in the

decision making and thus its throughput optimality is not quite

surprising. In contrast, our proposed algorithm is only based on the

TSLS values and does not depend on the queue-length in an obvious

manner, and thus its throughput optimality is more challenging to

establish. Nevertheless, we successfully tackle this di�culty in the

following subsection.

3.2 Proof of �roughput-Optimality
In this subsection, we show that the proposed TSLS-based Algo-

rithm is throughput-optimal in the sense that it stabilizes the system

for any tra�c intensity vector ρ under which there exists a sched-

uling algorithm stabilizing it.

We �rst establish an important fact that the di�erence between

the expected logarithmic function of maximum TSLS and that of

maximum age is constant, which is the key in establishing the

throughput optimality of the TSLS-based Algorithm. To that end,

we useWi, j [t] to denote the age of �le j at link i in slot t . Hence,

Wi, j [t] always increases by 1 if its corresponding �le does not leave

the system, and resets to 0 otherwise. More precisely, the evolution

ofWi, j [t] can be wri�en as

Wi, j [t + 1] =
(
Wi, j [t] + 1

) (
1 − 1{Ri, j [t+1]=0}

)
, (3)

where 1{·} is an indicator function and we recall that Ri, j [t] is the

residual size of �le j at link i in time slot t .

Lemma 3.3. Under the TSLS-based Algorithm, for each link i , given
any δi ∈ (0, 1), there exists a Gi > 0 such that

E
[
f

(
W max

i [t]
) ]
≤ 1

1 − δi
E

[
f

(
Tmax

i [t]
) ]
+Gi ,∀t ≥ 0, (4)

whereW max

i [t] , maxj ∈Ni [t ]Wi, j [t] andTmax

i [t] , maxj ∈Ni [t ]Ti, j [t]
denote the maximum age and maximum TSLS of �les at link i in time
slot t , respectively.

Proof. Since there are at most Amax

i �les arriving at link i in

each time slot, at most Amax

i + 1 �les have the same TSLS value at

link i , which implies that

|Ni [t]| ≤ (Amax

i + 1)Tmax

i [t],∀t ≥ 0,∀i = 1, 2, ...,K , (5)

hold for any sample path, where |A| denotes the cardinality of set

A.

In addition, �les are served in round robin order within each

link under the TSLS-based algorithm, and thus for any sample path,

�les with the size of Fmax

i that came a�er time slot τ = t −W max

i [t]
do not leave link i in time slot t , i.e.,

t−1∑
τ=t−W max

i [t ]+1

Ai [τ ]∑
j=1

1{Fi, j [τ ]=Fmax

i } ≤|Ni [t]|. (6)

By combining (5) and (6), we have

t−1∑
τ=t−W max

i [t ]+1

Ai [τ ]∑
j=1

1{Fi, j [τ ]=Fmax

i } ≤
(
Amax

i + 1

)
Tmax

i [t], (7)

holding for any sample path.

GivenW max

i [t], ∑Ai [τ ]
j=1

1{Fi, j [τ ]=Fmax

i } , τ = t−W max

i [t]+1, ..., t−
1, are i.i.d, and thus according to the Law of Large Numbers, given

any δi ∈ (0, 1), ∃Hi > 1 such that for anyW max

i [t] > Hi , we have

Pr


t−1∑

τ=t−W max

i [t ]+1

Ai [τ ]∑
j=1

1{Fi, j [τ ]=Fmax

i } ≥
λiqi

2

(
W max

i [t] − 1

)
≥1 − δi , (8)

where we recall that λi , E[Ai [t]] > 0 and qi , Pr{Fi, j [t] =
Fmax

i } > 0.
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By combining (7) and (8), we have

Pr

{
λiqi

2

(
W max

i [t] − 1

)
1{W max

i [t ]>Hi } ≤
(
Amax

i + 1

)
Tmax

i [t]
����W max

i [t]
}

≥1 − δi . (9)

If
λiqi

2

(
W max

i [t] − 1

)
1{W max

i [t ]>Hi } ≤
(
Amax

i + 1

)
Tmax

i [t], we have

W max

i [t]1{W max

i [t ]>Hi } ≤
2

(
Amax

i + 1

)
λiqi

Tmax

i [t] + 1, (10)

which implies

W max

i [t] =W max

i [t]1{W max

i [t ]>Hi } +W
max

i [t]1{W max

i [t ]≤Hi }

≤
2

(
Amax

i + 1

)
λiqi

Tmax

i [t] + 1 + Hi . (11)

Note that
(Amax

i +1)
λiqi

≥ Amax

i
λi
≥ 1. Since f ∈ G, there exists a constant

Gi ≥ 0 such that

f
(
W max

i [t]
)
≤ f

(
Tmax

i [t]
)
+Gi . (12)

Hence, we have

Pr

{
f

(
W max

i [t]
)
≤ f

(
Tmax

i [t]
)
+Gi

��W max

i [t]
}

≥ Pr

{
λiqi

2

(
W max

i [t] − 1

)
1{W max

i [t ]>Hi } ≤
(
Amax

i + 1

)
Tmax

i [t]
����W max

i [t]
}

≥1 − δi , (13)

which implies

E
[
f

(
Tmax

i [t]
) ��W max

i [t]
]

≥E
[
f

(
Tmax

i [t]
) ��f (

Tmax

i [t]
)
≥ f

(
W max

i [t]
)
−Gi ,W

max

i [t]
]
(1 − δi )

≥
(
f

(
W max

i [t]
)
−Gi

)
(1 − δi ) (14)

Hence, we have

f
(
W max

i [t]
)
≤ 1

1 − δi
E

[
f

(
Tmax

i [t]
) ��W max

i [t]
]
+Gi , (15)

which implies the desired result by taking expectation on both

sides. �

Next, we provide a simple inequality that will be useful in the

main proof.

Lemma 3.4. For any f ∈ F , we have

MU∑
m=ML

f ′(m) ≤ f (MU ) − f (ML) + f ′(1), (16)

holding for anyMU ≥ ML ≥ 1.

Proof. �e proof basically follows from the Fundamental �eo-

rem of Calculus and is similar to [14, Lemma 1]. �

We are ready to prove Proposition 3.2. As the Lyapunov function,

we take the total sum of function of age of all �les, which are

currently in the system. Mathematically, we select the Lyapunov

function V (R,W) ,
K∑
i=1

∑
j ∈Ni

Ri, j f
(
Wi, j

)
. �en, we have

∆V [t] ,V (R[t + 1],W[t + 1]) −V (R[t],W[t])

=

K∑
i=1

( ∑
j ∈Ni [t+1]

Ri, j [t + 1]f
(
Wi, j [t + 1]

)
−

∑
j ∈Ni [t ]

Ri, j [t]f
(
Wi, j [t]

) )
. (17)

For each link i = 1, 2, ...,K , we have∑
j ∈Ni [t+1]

Ri, j [t + 1]f
(
Wi, j [t + 1]

)
=

∑
j ∈Ni [t ]

Ri, j [t + 1]f
(
Wi, j [t + 1]

)
+

Ai [t ]∑
j=1

Ri, j [t + 1]f
(
Wi, j [t + 1]

)
(a)
=

∑
j ∈Ni [t ]

f
( (
Wi, j [t] + 1

) (
1 − 1{Ri, j [t+1]=0}

))
Ri, j [t + 1]

+

Ai [t ]∑
j=1

Fi, j [t]f (1)

(b)
=

∑
j ∈Ni [t ]

f
(
Wi, j [t] + 1

)
Ri, j [t + 1]

(
1 − 1{Ri, j [t+1]=0}

)
+ f (1)

Ai [t ]∑
j=1

Fi, j [t]

=
∑

j ∈Ni [t ]
f

(
Wi, j [t] + 1

)
Ri, j [t + 1] + f (1)

Ai [t ]∑
j=1

Fi, j [t]

(c)
=

∑
j ∈Ni [t ]

(
f

(
Wi, j [t]

)
+ f ′

(
xi, j

) ) (
Ri, j [t] −Ci [t]S∗i, j [t]

)
+ f (1)

Ai [t ]∑
j=1

Fi, j [t]

(d )
≤

∑
j ∈Ni [t ]

Ri, j [t]f
(
Wi, j [t]

)
+

∑
j ∈Ni [t ]

Ri, j [t]f ′
(
Wi, j [t]

)
−

∑
j ∈Ni [t ]

f
(
Wi, j [t]

)
Ci [t]S∗i, j [t] + f (1)

Ai [t ]∑
j=1

Fi, j [t], (18)

where step (a) uses equation (3) and the fact that the newly arriving

�les are not served in the current slot; (b) follows from the assump-

tion that f (0) = 0; (c) uses the Mean Value �eorem for some xi, j
betweenWi, j [t] andWi, j [t] + 1, and the fact that S∗i, j [t] ≤ 1 and

Ri, j [t] ≥ 1, for any j ∈ Ni [t]; (d) follows from the fact that f ′(y)
is non-increasing and non-negative due to the function f (y) being

increasing and concave for any y ≥ 0.
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By substituting (18) into (17), we have

∆V [t] ≤
K∑
i=1

©«
∑

j ∈Ni [t ]
Ri, j [t]f ′

(
Wi, j [t]

)
−

∑
j ∈Ni [t ]

f
(
Wi, j [t]

)
Ci [t]S∗i, j [t]

ª®¬
+ f (1)

K∑
i=1

Ai [t ]∑
j=1

Fi, j [t]

≤
K∑
i=1

©«
∑

j ∈Ni [t ]
Ri, j [t]f ′

(
Wi, j [t]

)
−

∑
j ∈Ni [t ]

f
(
Ti, j [t]

)
Ci [t]S∗i, j [t]

ª®¬
+ f (1)

K∑
i=1

Ai [t ]∑
j=1

Fi, j [t], (19)

where the last step uses the fact that the TSLS value is always not

greater than the age of its associated �ow, i.e., Ti, j [t] ≤Wi, j [t] for

any j ∈ Ni [t], i = 1, 2, ...,K and t ≥ 0. �us, we have

E [∆V [t]] ≤
K∑
i=1

E

[ ∑
j ∈Ni [t ]

Ri, j [t]f ′
(
Wi, j [t]

)
−

∑
j ∈Ni [t ]

f
(
Ti, j [t]

)
Ci [t]S∗i, j [t]

]
+ f (1)

K∑
i=1

ρi . (20)

Next, we consider the term E


∑

j ∈Ni [t ]
Ri, j [t]f ′(Wi, j [t])

 . Note

that all �les at time t arrived a�er time t −W max

i [t] − 1, and �les

arriving a�er time t −Tmax

i [t] are not served between t −Tmax

i [t]+
1 and t − 1, where we recall that W max

i [t] , maxj ∈Ni [t ]Wi, j [t]
and Tmax

i [t] , maxj ∈Ni [t ]Ti, j [t] denote the maximum age and

maximum TSLS of �les at link i in time slot t . �is implies that

E


∑

j ∈Ni [t ]
Ri, j [t]f ′

(
Wi, j [t]

) ������Tmax

i [t],W max

i [t]


(a)
≤E

[
Amax

i Fmax

i

t−Tmax

i [t ]∑
τ=t−W max

i [t ]
f ′(t − τ )

+

t−1∑
τ=t−Tmax

i [t ]+1

f ′(t − τ )
Ai [τ ]∑
j=1

Fi, j [τ ]
����Tmax

i [t],W max

i [t]
]

(b)
= ρi

t−1∑
τ=t−Tmax

i [t ]+1

f ′(t − τ ) +Amax

i Fmax

i

t−Tmax

i [t ]∑
τ=t−W max

i [t ]
f ′(t − τ )

=ρi

Tmax

i [t ]−1∑
m=1

f ′(m) +Amax

i Fmax

i

W max

i [t ]∑
m=Tmax

i [t ]
f ′(m), (21)

where step (a) follows from the fact that �les arriving a�er time

t−Tmax

i [t] are not served until time t and the fact that the number of

incoming packets at each link i in each time slot is not greater than

Amax

i Fmax

i ; (b) uses the fact that �les arriving a�er time t −Tmax

i [t]
are independent fromW max

i [t] and Tmax

i [t].

By using Lemma 3.4, inequality (21) becomes

E


∑

j ∈Ni [t ]
Ri, j [t]f ′

(
Wi, j [t]

) ������Tmax

i [t],W max

i [t]


≤ρi
(
f

(
Tmax

i [t] − 1

)
− f (1) + f ′(1)

)
+Amax

i Fmax

i
(
f

(
W max

i [t]
)
− f

(
Tmax

i [t]
)
+ f ′(1)

)
≤ρi f

(
Tmax

i [t]
)
+Amax

i Fmax

i
(
f

(
W max

i [t]
)
− f

(
Tmax

i [t]
) )

+
(
ρi +A

max

i Fmax

i
)
f ′(1), (22)

which implies that

E


∑

j ∈Ni [t ]
Ri, j [t]f ′

(
Wi, j [t]

)
≤ρiE

[
f

(
Tmax

i [t]
) ]
+Amax

i Fmax

i E
[
f

(
W max

i [t]
)
− f

(
Tmax

i [t]
) ]

+
(
ρi +A

max

i Fmax

i
)
f ′(1), (23)

By substituting inequality (23) into (20), we have

E [∆V [t]]

(a)
≤

K∑
i=1

ρiE
[
f

(
Tmax

i [t]
) ]
−

K∑
i=1

E


∑

j ∈Ni [t ]
f

(
Ti, j [t]

)
Ci [t]S∗i, j [t]

 + B1

+

K∑
i=1

Amax

i Fmax

i E
[
f

(
W max

i [t]
)
− f

(
Tmax

i [t]
) ]

(b)
=

K∑
i=1

ρi f
(
Tmax

i [t]
)
−

K∑
i=1

E
[
f

(
Tmax

i [t]
)
Ci [t]S∗i [t]

]
+ B1

+

K∑
i=1

Amax

i Fmax

i E
[
f

(
W max

i [t]
)
− f

(
Tmax

i [t]
) ]
, (24)

where the step (a) is true for B1 , f ′(1)∑K
i=1

(
ρi +A

max

i Fmax

i

)
+

f (1)∑K
i=1

ρi ; and (b) follows from the fact that the served �le under

the TSLS-based Algorithm should have the largest TSLS at each

link, since at most one �le can be scheduled at each link in each

time slot.

By using Lemma 3.3, we have

E [∆V [t]] ≤
K∑
i=1

ρiE
[
f

(
Tmax

i [t]
) ]
−

K∑
i=1

E
[
f

(
Tmax

i [t]
)
Ci [t]S∗i [t]

]
+

K∑
i=1

Amax

i Fmax

i
δi

1 − δi
E

[
f

(
Tmax

i [t]
) ]
+ B2 (25)

where B2 , B1 +
∑K
i=1

Amax

i Fmax

i Gi .

Note that the capacity region Λ (see [23]) is also equivalent to

a set of tra�c intensity vectors ρ = (ρi )Ki=1
such that there exist

non-negative numbers α(s) satisfying

ρi ≤
∑
c
ϕc

∑
s∈Ω

α(s)sici , ∀i = 1, 2, ..,K , (26)

where both c = (ci )Ki=1
and s = (si )Ki=1

are zero-one vectors, and∑
s∈Ω α(s) = 1. For any tra�c intensity vector ρ ∈ Int(Λ), we can

pick δi > 0, ∀i = 1, 2, ...,K , su�ciently small enough such that the
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vector

(
ρi +A

max

i Fmax

i
δi

1−δi

)K
i=1

∈ Int(Λ). Hence, there exists an

ϵ > 0 such that

ρi +A
max

i Fmax

i
δi

1 − δi
≤

∑
c
ϕc

∑
s∈Ω

α(s)sici − ϵ, ∀i = 1, 2, ..,K .

(27)

�us, we have

E [∆V [t]] ≤ − ϵ
K∑
i=1

E
[
f

(
Tmax

i [t]
) ]
+ B2

+

K∑
i=1

∑
c
ϕc

∑
s∈Ω

α(s)siciE
[
f

(
Tmax

i [t]
) ]

−
K∑
i=1

E
[
f

(
Tmax

i [t]
)
Ci [t]S∗i [t]

]
. (28)

Given any Tmax[t], according to the TSLS-based Algorithm, we

have

K∑
i=1

∑
c
ϕc

∑
s∈Ω

α(s)sici f
(
Tmax

i [t]
)

=
∑
c
ϕc

∑
s∈Ω

α(s)
K∑
i=1

f
(
Tmax

i [t]
)
cisi

≤
∑
c
ϕc

∑
s∈Ω

α(s)max

s∈Ω

K∑
i=1

f
(
Tmax

i [t]
)
cisi

=
∑
c
ϕc max

s∈Ω

K∑
i=1

f
(
Tmax

i [t]
)
cisi

=E

[
max

s∈Ω

K∑
i=1

f
(
Tmax

i [t]
)
Ci [t]si

]
=E

[ K∑
i=1

f
(
Tmax

i [t]
)
Ci [t]S∗i [t]

]
, (29)

which implies

K∑
i=1

∑
c
ϕc

∑
s∈Ω

α(s)sici f
(
Tmax

i [t]
)
≤

K∑
i=1

E
[
f

(
Tmax

i [t]
)
Ci [t]S∗i [t]

]
.

By substituting the above inequality into (28), we have

E [∆V [t]] ≤ − ϵ
K∑
i=1

E
[
f

(
Tmax

i [t]
) ]
+ B2

≤ − ϵ
K∑
i=1

(1 − δi )E
[
f

(
W max

i [t]
) ]
+ B, (30)

where the last step utilizes Lemma 3.3 and B , ϵ
∑K
i=1

Gi (1 − δi ) +
B2 > 0.

By summing the above inequality over t = 0, 1, . . . ,M , we have

lim sup

M→∞

1

M

M−1∑
t=0

K∑
i=1

E
[
f (W max

i [t])
]
≤ B

γ
, (31)

where γ , ϵ(1 − δmax) > 0 and δmax , maxi=1,2, ...,K δi .

Since all �les at time t arrived at the system a�er time t−W max

i [t],
we have∑

j ∈Ni [t ]
Ri, j [t] ≤ Amax

i Fmax

i W max

i [t],∀i = 1, 2, . . . ,K , (32)

which implies that for any f ∈ G

f
©«

∑
j ∈Ni [t ]

Ri, j [t]
ª®¬
(a)
≤ f

(
Amax

i Fmax

i W max

i [t]
)

(b)
≤ f

(
W max

i [t]
)
+G ′i

(c)
≤ f

(
W max

i [t]
)
+G ′

max
, (33)

where step (a) follows from that the fact that f is increasing; (b)
follows the de�nition of f ∈ G and is true for some G ′i > 0; (c) is

true for G ′
max

, maxi=1,2, ...,K G ′i > 0.

By substituting (33) into (31), we have

lim sup

M→∞

1

M

M−1∑
t=0

K∑
i=1

E

f ©«
∑

j ∈Ni [t ]
Ri, j [t]

ª®¬
 ≤

B

γ
+ KG

′
max
< ∞.

�is implies stability-in-the-mean property and thus the underlying

Markov Chain is positive recurrent [12].

4 SIMULATIONS
In this section, we provide simulation results for our proposed TSLS-

based algorithm with logarithmic function (i.e., f (x) = log(x + 1))
and compare its performance to both queue-length-based and age-

based algorithms. In particular, we investigate the throughput (cf.

Section 4.1), mean �le delay and service regularity (cf. Section 4.2)

performance of our policy in a fully-connected ON-OFF fading net-

work with K = 5 links and a 3 × 3 switch. While the algorithm was

described for wireless networks, it also applies to other communica-

tion networking applications where interference-type constraints

exists, such as a switch. Since switches are widely used in data cen-

ters and the Internet, we demonstrate our algorithm in that context

as well. �e number of arriving �les at each link in each time slot

follows a Bernoulli distribution. �e �le size at link i has the follow-

ing distribution: it is equal to M with probability (ηi − 1)/(M − 1)
and 1 otherwise, where M ≥ 2 is some parameter that measures

the burstiness of the �les and ηi > 1 is the mean �le size at link i .
Indeed, it is easy to calculate that the variance of �le size at link i
is equal to (M − ηi )(ηi − 1), which linearly increases with the pa-

rameter M . In the fully-connected network, the probability vector

of channel being ON is p = [0.1, 0.1, 0.9, 0.9, 0.9], mean �le size

vector is η = [5, 10, 20, 5, 15], and the tra�c intensity at each link

satis�es the following relationship: ρ1 = ρ2 = ρ3/3 = ρ4/3 = ρ5/3.

According to [25, Lemma 1], the capacity region can be represented

as ρ = θ × [0.0908, 0.0908, 0.2724, 0.2724, 0.2724], where θ ∈ (0, 1)
is called the arrival load. In the case of the 3 × 3 switch, the mean

�le size matrix is η = [5, 2, 2; 3, 10, 5; 5, 4, 5], and capacity region is

ρ = θ × [0.7, 0.2, 0.1; 0.15, 0.6, 0.25; 0.15, 0.2, 0.65], where θ ∈ (0, 1).

4.1 �roughput Performance
Fig. 2 shows the average queue-length under our proposed TSLS-

based algorithm in both fully-connected fading networks and 3 × 3
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switch whenM is equal to 50. It can be observed from Fig. 2 that the

TSLS-based algorithm stabilizes the system for any θ ∈ (0, 1) in the

above network setups, which validate the throughput optimality of

our proposed algorithm.
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(b) 3 × 3 switch

Figure 2: �e throughput of the TSLS-based Algorithm

4.2 Delay and Service Regularity Performance
In this subsection, we investigate the delay and service regularity

performance of our proposed TSLS-based Algorithm and compare

it to both queue-length-based and age-based algorithms with both

linear (i.e., f (x) = x) and logarithmic (i.e., f (x) = log(x + 1))
functions. In particular, the queue-length-based algorithm means

running MaxWeight across links based on the functions of number

of �les of each link and serving packets within each link in a round

robin fashion. Similarly, the age-based algorithm schedules links

via MaxWeight based on the functions of the maximum age of �les

at each link and serves packets in a round robin way at each link.

Note that the MAC-layer queue-length-based algorithm proposed

in [9] corresponds to the queue-length-based algorithm with the

logarithmic function.

Fig. 3 shows the mean �le delay and service regularity per-

formance of our proposed TSLS-based algorithm as well as both

queue-length-based and age-based algorithms with respect to the

parameter M in a fully-connected network with ON-OFF fading

channel when the arrival load is θ = 0.9. Note that in fully con-

nected networks, both queue-length-based and age-based algo-

rithms are insensitive to the functional forms. In other words, both

queue-length-based and age-based algorithms with any increasing

functions correspond to the queue-length-based and age-based al-

gorithms with the linear function, respectively. We can observe

from Fig. 3 that both mean �le delay and service regularity lin-

early increase with the parameter M under the age-based algorithm,

while they almost keep the same under both queue-length-based

and TSLS-based algorithms. Recall that the larger the M , the higher

variance of �le size. �is indicates that the network performance

under the age-based algorithm is quite sensitive to the variance

of the �le size, while they are independent of variance of the �le

size under both queue-length-based and TSLS-based algorithms.

Although age-based algorithm serves packets in a round robin

fashion, it schedules links based on the First-Come-First-Serve dis-

cipline and thus the di�erent distributions of �le size across links

still have signi�cant impact on its performance. In contrast, both

queue-length-based and TSLS-based algorithms exhibit an insensi-

tivity property in the sense that both mean �le delay and service

regularity under these two algorithms are independent of network

tra�c characteristics except the mean tra�c intensity. However,

by closely looking at the slowdown
1

performance in Fig. 4a, we

can observe that the average slowdown under our proposed TSLS-

based algorithm almost stays the same as the parameter M varies,

while it slightly increases under the queue-length-based policies.

�is clearly shows the delay insensitivity property of our proposed

algorithm. In addition to that, our proposed TSLS-based algorithm

outperforms the queue-length-based algorithm in terms of both

mean delay and service regularity performance and exhibits signif-

icant gains in service regularity performance. �is is because that

our proposed algorithm serves �les in a round robin fashion not

only within each link but also across the links. We can observe the

similar phenomenon from Fig. 5 and Fig. 4b for the 3 × 3 switch.
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Figure 3: Fully-connected network: arrival load θ = 0.9
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Figure 4: Average slowdown: arrival load θ = 0.9

Since our TSLS-based algorithm outperforms queue-length-based

algorithm for a �xed arrival load θ = 0.9, it is also useful to know

if this observation holds for all tra�c loads. To that end, we further

compare their performance in terms of tra�c load when M is �xed

to 60. We can observe from Fig. 6 that the TSLS-based algorithm

always performs be�er than the queue-length-based algorithm in

terms of both mean �le delay and service regularity performance

1
�e slowdown of a �le is its �le delay divided by its size. If the mean slowdown is

a constant independent of network tra�c characteristic other than its mean tra�c

intensity, then the mean �le delay is said to be insensitive.
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in fully-connected networks, and shows large performance gains in

service regularity. Interestingly, such a performance improvement

increases as the arrival load increases. Similar observations can be

made in the 3 × 3 switch, as shown in Fig. 7.
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Figure 5: 3 × 3 switch: arrival load θ = 0.9
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Figure 6: Fully-connected network: M = 60
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Figure 7: 3 × 3 switch: M = 60

5 CONCLUSION
In this work, we developed a round-robin-like algorithm that has

a�ractive throughput, mean delay and service regularity perfor-

mance as the round robin algorithm in wireline networks. We

maintained a time-since-last-service (TSLS) counter for each �le,

and established a tight relationship between the mean TSLS and

the second moment of inter-service time in the presence of �ow

dynamics. Based on this, we proposed a TSLS-based scheduling

algorithm that nicely balances the weight between the TSLS and the

channel rate. We established the throughput optimality property

of our proposed algorithm, and showed its excellent delay and ser-

vice regularity in comparison to various other alternatives through

extensive simulations.
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A PROOF OF LEMMA 3.1
Let si, j and di, j be the arrival and departure time of �le j at link i ,
respectively. We usemi, j to denote the number of times that �le j
at link i has been served by time t . Recall that Ii, j [k] denotes the

inter-service time between (k − 1)th and kth service of �le j at link

i . �en, we have

min{t,di, j }∑
t=si, j

Ti, j [t] =
si, j+Ii, j [1]∑
t=si, j+1

Ti, j [t] +
si, j+Ii, j [1]+Ii, j [2]∑
t=si, j+Ii, j [1]+1

Ti, j [t]

+ . . . +

min{t,di, j }∑
t=si, j+Ii, j [1]+...+Ii, j [mi, j ]+1

Ti, j [t] (34)

We observe the following fact: assume �le j at link i receives its

(k − 1)th and kth service at time slot t1 and t2, respectively, where

t2 > t1. �en, by de�nition, Ii, j [k] = t2 − t1 and Ti, j [t] = t − t1 − 1,

∀t1 < t ≤ t2. Using this fact, we know the kth summation on the

right hand side of (34) gives Ii, j [k](Ii, j [k] − 1)/2, except for the last

one. �erefore, we have

mi, j∑
k=1

Ii, j [k](Ii, j [k] − 1)
2

≤
min{t,di, j }∑

t=si, j

Ti, j [t]

≤
mi, j+1{di, j >t }∑

k=1

Ii, j [k](Ii, j [k] − 1)
2

. (35)

By summing all the �les coming before time t , we have∑
j :si, j ≤t

mi, j∑
k=1

Ii, j [k](Ii, j [k] − 1)
2

≤
∑

j :si, j ≤t

min{t,di, j }∑
t=si, j

Ti, j [t]

≤
∑

j :si, j ≤t

mi, j+1{di, j >t }∑
k=1

Ii, j [k](Ii, j [k] − 1)
2

, (36)

�is combines with the following fact that

mi, j∑
k=1

Ii, j [k] ≤ min{t ,di, j } − si, j + 1 ≤
mi, j+1{di, j >t }∑

k=1

Ii, j [k],

and implies that∑
j :si, j ≤t

∑mi, j
k=1

Ii, j [k ](Ii, j [k ]−1)
2∑

j :si, j ≤t
∑mi, j+1{di, j >t }
k=1

Ii, j [k]

≤
∑
j :si, j ≤t

∑min{t,di, j }
t=si, j Ti, j [t]∑

j :si, j ≤t
(
min{t ,di, j } − si, j + 1

)
≤

∑
j :si, j ≤t

∑mi, j+1{di, j >t }
k=1

Ii, j [k ](Ii, j [k ]−1)
2∑

j :si, j ≤t
∑mi, j
k=1

Ii, j [k]
. (37)

Note that

lim

t→∞

∑
j :si, j ≤t

∑mi, j
k=1

Ii, j [k ](Ii, j [k ]−1)
2∑

j :si, j ≤t
∑mi, j+1{di, j >t }
k=1

Ii, j [k]

= lim

t→∞

∑
j :si, j ≤t mi, j∑

j :si, j ≤t
(
mi, j + 1{di, j>t }

)
·

1∑
j :si, j ≤t mi, j

∑
j :si, j ≤t

∑mi, j
k=1

Ii, j [k ](Ii, j [k ]−1)
2

1∑
j :si, j ≤t (mi, j+1{di, j >t })

∑
j :si, j ≤t

∑mi, j+1{di, j >t }
k=1

Ii, j [k]

=
E

[
I i

(
I i − 1

)]
2E

[
I i

] ,

where the second last step uses the fact that

∑
j :si, j ≤t mi, j → ∞

as t → ∞ and

∑
j :si, j ≤t 1{di, j>t } < ∞ hold for almost all sample

paths.

Similarly, we can show that

lim

t→∞

∑
j :si, j ≤t

∑mi, j+1{di, j >t }
k=1

Ii, j [k ](Ii, j [k ]−1)
2∑

j :si, j ≤t
∑mi, j
k=1

Ii, j [k]
=
E

[
I i

(
I i − 1

)]
2E

[
I i

] .

On the other hand, we have

lim

t→∞

∑
j :si, j ≤t

∑min{t,di, j }
t=si, j Ti, j [t]∑

j :si, j ≤t
(
min{t ,di, j } − si, j + 1

) = E [
T i

]
.

�us, we have the desired result.
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