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Abstract

In reverberation limited environments, the non-target noise power in active SONAR

data x is non-constant over range and bearing and from ping to ping. The goal of nor-

malization is to make the noise only output of the detection test statistic T0(x) as

constant as possible. Successful normalization makes SONAR signal processing much

simpler. For example, in automatic tracking, normalizing increases the probability

that true tracks get initiated and decreases the probability that false tracks get ini-

tiated. Normalizers work by estimating the background noise power, and using that

estimate to divide T0(x) by. The split window normalizer (SWN) is a common method

of normalization. It normalizes each range cell of the data by finding a local noise

power estimate, and dividing the cell by that local estimate. Because the data is non-

stationary the SWN normalizes a range cell by forming an estimate using bins near

the cell to be estimated. This limits the total amount of data available to estimate any

range cell.

The normalizer developed in this paper is based on the minimum variance spectral

estimator (MVSE). The MVSE is a power spectral density (PSD) estimator that easily

extends to multiple dimensions. The properties of spectral estimators will allow us to

avoid the non-stationarity problem and use all available data to estimate each range

cell. This allows the normalizer to use the data over the ranges, bearings and pings to

perform a three dimensional (3D) estimate of the background power. This 3D estimate

uses more data to normalize each element of the data than the SWN. Using more data

should produce a better estimate. The SWN is compared to the new normalizer using

a simple track initiation algorithm developed in this paper. Simulation results indicate

the MVSE normalizer is more effective than the standard SWN for active SONAR
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normalization.

Index Terms: Active SONAR, multiple target tracking, normalization, reverber-

ation, track initiation.
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1 Introduction

The goal of SONAR is to find a target of interest under the water. The underwater target

could be a variety of things, for example: a school of fish, a mine, or a submarine. To

accomplish this goal, active SONAR transmits sound in the water, and then receives the

echo off the target of interest. The transmitted and reflected sound is referred to as a ping.

The sound reflecting off the target arrives at the SONAR in a background of ambient noise

and reverberation. Ambient noise is sound generated by anything in the water other than

the intentional sound transmitted by the SONAR system. Some examples of things that can

generate sound are: marine life, waves, and ships. Reverberation is sound transmitted by the

SONAR system reflecting off anything other than the target [1]. Some examples of things

that can reflect sound are: manmade objects, the surface and the bottom of the ocean,

and marine life. Clutter in RADAR is electromagnetic radiation reflecting off anything

other than the target [2], so the clutter problem in RADAR is similar to the reverberation

problem in SONAR. In active SONAR, reverberation often dominates the effect of ambient

noise so that the effect of ambient noise can be ignored [3]. When this is the case, the

environment is referred to as a reverberation limited environment. This paper assumes an

active SONAR in a reverberation limited environment and references to a noise background

will mean reverberation only. (Note, sometimes reverberation is referred to as interference

since it is correlated with the transmit signal.)

Reverberation power levels change with range and bearing and change from ping to ping.

This causes SONAR data x to be non-white over range and bearing and non-stationary from

ping to ping. The problem of detecting a target with one ping of data, is the problem of
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detecting a target in non-white noise. The optimum solution to detecting a target in non-

white noise is to prewhiten the data, and then apply a detection statistic T (x) to the whitened

data [2], [1], [4]. When the target in not in the data, the noise only output of the detection test

statistic T0(x) is constant over range and bearing. The optimal method requires knowledge

of the noise covariance, which in practical SONAR systems, is unavailable. If the data

were stationary from ping to ping, we could get a good estimate of the noise covariance

by using multiple pings of data. Unfortunately, SONAR data is not stationary from ping

to ping. A common approach to this problem is to apply the detector to the data without

prewhitening, resulting in a non-constant T0(x), and then applying a normalization algorithm

to compensate for this non-constancy. The combination of a detector and a normalizer is a

constant false alarm rate (CFAR) processor [5]. In addition to the challenge of the changing

noise power background, normalizers are also with faced with the problem of multiple close

targets and intentional interference (jamming). The problem of normalizing in the presence

of jamming is not investigated in this paper.

Since practical SONARs cannot do the optimal prewhitening, normalization is an im-

portant part of SONAR signal processing. For instance normalization is an important part

of multiple target tracking (MTT) systems. MTT is the estimation of the state of moving

targets, using the outputs of one or more sensors [6]. MTT is used in RADAR and SONAR

systems [7], [6], and [8]). A simple MTT system consists of the following elements: data

from a sensor, a normalizer, an algorithm to initiate tracks, and a tracker. A block diagram

for the simple MTT system discussed above is shown in Figure 1.

In an MTT system, the data from a sensor is processed by a detector. The output of

the detector is then normalized to compensate for the non-white and non-constant noise
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Figure 1: Simple MTT Block Diagram

background [9]. A brief overview of normalization can be found in [10]. A description of

normalization as applied to SONAR can be found in Chapter 4 of [9]. There, the author

describes a variation of the SWN, the Two-Pass Split-Window normalizer (TPSWN). In

[11] the authors compare several types cell averaging (CA) CFAR processors (normalizers)

commonly used in RADAR.

After normalization, data is then processed by a track initiation algorithm. A track

initiation algorithm should initialize a track, whenever a new target appears in the scene,

while minimizing the number of false tracks due to false alarms from the detector (see Hu

[12]). In Hu [12] and Leung [13], the authors provide a description and performance analysis

of track initiation algorithms. Track initiation becomes a more difficult problem when the

background is non-white and non-constant [6].

In this paper we use the minimum variance spectral estimator (MVSE) as the basis

of the 3D MVSE normalizer (3DMN). We propose the 3DMN as an improvement to the

standard TPSWN. We compared the two normalizers by finding each normalizer’s probability

of correct track initiation (PCI), versus signal to interference ratio (SIR). This is done for
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the both single target case and the multiple target case. For other methods of comparing

normalizers see [14], [15], and [16]. The track initialization algorithm used in this paper was

derived based on the generalized likelihood ratio test (GLRT). See [4] for a discussion of the

GLRT.

Section 2 finds the GLRT statistic on which the track initiation algorithm is based on.

Section 3 describes the TPSWN and the 3DMN. Section 4 contains simulation results.
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2 Track Initiation Algorithm

2.1 The Problem Statement

In this section we use the generalized likelihood ratio test (GLRT) to derive a track initiation

algorithm. The algorithm developed initiates tracks using an arbitrary number of pings. In

deriving the algorithm we motivate the need for normalization and also develop a way to

compare normalizers.

2.2 Description of the data

The data used in this paper is multiple discrete range-bearing snapshots (multiple pings of

discrete range-bearing data) processed by a matched filter and an envelope detector (taking

the magnitude squared). The range-bearing-ping cells prior to the envelope detector are de-

noted by x̃(m,n, t) (the “∼” denotes complex data) and the data after the envelope detector

are denoted by x(m,n, t), where m is the range index, n is the beam index, and t is the ping

index. The indexes take on the following values: m-range lines, m = 0, . . . ,M − 1, n-beams,

n = 0, . . . , N − 1, and, t-pings, t = 0, . . . , T − 1. x̃(m,n, t) is the sum of many independent

scatterers. Most cells will contain only non-target scatters, while other cells will contain

target and non-target scatters. Because x̃(m,n, t) is the sum of many independent scatters

it can be assumed to be complex Gaussian noise (CN) with zero mean [1]. In cells with only

reverberation the variance is Pr(m,n, t). Pr(m,n, t) will be referred to as the reverberation

background or just background. In cells with reverberation and a target the variance is

Pr(m,n, t) + PA(m,n, t). Note, Pr(m,n, t) and PA(m,n, t) are not covariance matrices, they

are the variance (power) of x̃ at (m,n, t). Also note, if v ∼ CN with zero mean and variance
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σ2 and u = |v|2 then v ∼ Exponential with parameter σ2 [4], which we will write Exp(σ2).

Since x(m,n, t) = |x̃(m,n, t)|2 it is distributed as,

x(m, n, t) ∼





Exp(Pr(m,n, t)) when x(m,n, t) is a cell with no target

Exp(Pr(m,n, t) + PA(m,n, t)) when x(m,n, t) is a cell with a target

(1)

As an example, Figure 2 contains 4 pings of range-bearing data. Each ping of data contains

64 range lines (the rows) and 32 beams (the columns) of independent and non-identically

distributed exponential noise.
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Figure 2: Four pings making up 3D data. Color bar indicates power level.
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2.3 Derivation of the GLRT Track Initiation Algorithm

The track initiation algorithm was derived using the following assumptions: there is exactly

one target, target extent in range and bearing are known, known reverberation background

Pr, target initial position is unknown, target signal to interference ratio (SIR) is unknown

but is the same in each cell with a target, and the target velocity is unknown but limited

to 1 of K known constant velocities. The combination of the target extent and velocity are

referred to as a “target model”. Because the SIR is the same in each target cell, PA(m,n, t)

= 10(SIR/10)Pr(m,n, t), where SIR is in dB. This algorithm could be extended to the case

of unknown target extent and non-constant velocities, but this would require more complex

notation and is not done in this paper.

We set up the following hypothesis test to derive the track initialization algorithm. Under

the no target hypothesis H0, the data has the probability density function (PDF)

p(x(m,n, t)) =
1

Pr(m,n, t)
exp

(−x(m,n, t)

Pr(m,n, t)

)
. (2)

Under the target hypothesis H0, the data has the PDF

p(x(m,n, t)) =





1
c1Pr(m,n,t)

exp
(
−x(m,n,t)

c1Pr(m,n,t)

)
when (m,n, t) ∈ Ai(m0, n0)

1
Pr(m,n,t)

exp
(
−x(m,n,t)
Pr(m,n,t)

)
otherwise.

(3)

where c1 = 1 + 10(SIR/10), Ai(m0, n0) is the set of range-bearing-ping cells associated with

target model i and whose starting location is at m0, n0 in ping one. Since x(m, n, t) =

|x̃(m,n, t)|2, x(m,n, t) ≥ 0 so that this restriction is implicit in equations (2) and (2).
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Ai(m0, n0) is defined as follows,

Ai(m0, n0) = {ai(t = 0), ai(t = 1), . . . ai(t = T − 1)} (4)

where, ai(t) = [m0 + tvm
i ,m0 + em + tvm

i ]× [n0 + tvn
i , n0 + en + tvn

i ], m0 is the start of the

target range cells, n0 is the start of the target bearing cells, em is the line extent, en is the

beam extent, vm
i is the speed in lines, and vn

i is the speed in beams. Because target’s velocity

is limited to 1 of K known velocities, vm
i and vn

i are constrained, but not known. Figure 3 is

an example of equation (4) when m0 = 8 ,n0 = 16, vm
i = 0, vn

i = 2, em = 1 and en = 1.
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Figure 3: Target Model Example

When setting up the GLRT, we have the following unknowns: target starting location

(m0, n0), and target model i. Because the PDF under H0 is completely known, the GLRT
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can be written as (see [4])

LG(x) = max
m0,n0,i

p(x; m0, n0, i, c1Pr;H1)

p(x; Pr;H0)
. (5)

The PDF under H1 is

p(x; m0, n0, i, c1, Pr,H1) =
∏∏ ∏

(m,n,t)∈Ai(m0,n0)

1

c1Pr(m,n, t)
exp

( −x(m,n, t)

c1Pr(m,n, t)

)

.
∏∏ ∏

(m,n,t)/∈Ai(m0,n0)

1

Pr(m,n, t)
exp

(−x(m,n, t)

Pr(m, n, t)

)
.

The PDF under H0 is

p(x; Pr,H0) =
∏∏ ∏

(m,n,t)∈Ai(m0,n0)

1

Pr(m,n, t)
exp

(−x(m,n, t)

Pr(m, n, t)

)

.
∏∏ ∏

(m,n,t)/∈Ai(m0,n0)

1

Pr(m,n, t)
exp

(−x(m,n, t)

Pr(m, n, t)

)
.

Because the two PDF are the same for cells without a target we can write the GLRT as

LG(x) = max
m0,n0,i

∏∏ ∏
(m,n,t)∈Ai(m0,n0)

1
c1Pr(m,n,t)

exp
(
−x(m,n,t)

c1Pr(m,n,t)

)

∏ ∏∏
(m,n,t)∈Ai(m0,n0)

1
Pr(m,n,t)

exp
(
−x(m,n,t)
Pr(m,n,t)

) . (6)

Rewriting (6) we have

LG(x) = max
m0,n0,i

[∏∏ ∏
(m,n,t)∈Ai(m0,n0)

1
c1Pr(m,n,t)

]
exp

(∑∑ ∑
(m,n,t)∈Ai(m0,n0)

−x(m,n,t)
c1Pr(m,n,t)

)
[∏∏∏

(m,n,t)∈Ai(m0,n0)
1

Pr(m,n,t)

]
exp

(∑∑ ∑
(m,n,t)∈Ai(m0,n0)

−x(m,n,t)
Pr(m,n,t)

) .

(7)
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Regrouping terms together equation (7) becomes

LG(x) = max
m0,n0,i

∏∏ ∏

(m,n,t)∈Ai(m0,n0)

Pr(m,n, t)

c1Pr(m,n, t)
exp


 ∑∑∑

(m,n,t)∈Ai(m0,n0)

x(m,n, t)

Pr(m,n, t)
−

∑∑ ∑

(m,n,t)∈Ai(m0,n0)

x(m,n, t)

c1Pr(m,n, t)


 . (8)

We can drop
∏ ∏∏

(m,n,t)∈Ai(m0,n0)
Pr(m,n,t)

c1Pr(m,n,t)
since it is a positive constant and will not affect

the maximization. After dropping the constant and simplifying equation (8) we get

LG(x) = max
m0,n0,i

exp


 ∑∑ ∑

(m,n,t)∈Ai(m0,n0)

x(m,n, t)

(
1

Pr(m,n, t)
− 1

c1Pr(m,n, t)

)
 .

Taking the natural logarithm, we have

lG(x) = ln(LG(x)) = max
m0,n0,i

∑∑ ∑

(m,n,t)∈Ai(m0,n0)

x(m,n, t)

(
1

Pr(m,n, t)
− 1

c1Pr(m,n, t)

)
. (9)

Combining terms from equation (9) produces

lG(x) = max
m0,n0,i

∑∑ ∑

(m,n,t)∈Ai(m0,n0)

x(m,n, t)

(
c1 − 1

c1Pr(m,n, t)

)
. (10)

Taking the constant out of the sums yields

lG(x) = max
m0,n0,i

c1 − 1

c1

∑∑ ∑

(m,n,t)∈Ai(m0,n0)

x(m,n, t)

Pr(m,n, t)
. (11)
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Finally, we note that the since (c1 − 1)/c1 is greater than zero the test statistic in equation

(11) can be modified to

l(x) = max
m0,n0,i

∑∑ ∑

(m,n,t)∈Ai(m0,n0)

x(m,n, t)

Pr(m,n, t)
. (12)

Equation (12) could also be written as

T (x) = max
m0,n0,i

M−1N−1T−1∑∑ ∑
m=0n=0t=0

Ii(m0, n0)
x(m,n, t)

Pr(m,n, t)
(13)

where,

Ii(m0, n0) =





1 (m,n, t) ∈ Ai(m0, n0)

0 otherwise.

Note that equation (13) is a “correlation” between the target models Ii(m0, n0) and the

given range-bearing-ping data x(m,n, t) divided by the known background power Pr. The

combination of m0,n0, and i that produces the largest test statistic is the maximum likelihood

estimator (MLE) for target model i, and initial position (m0, n0). Equation (13) is similar

to a “time domain” version of the 3D matched filter discussed in [17] and [18]. However,

unlike earlier work this method does not assume a known target intensity distribution or

target velocity.

Equation (13) requires knowledge of Pr which in practical problems is not available. So,

to use equation (13), we will first have to find an estimate of Pr. This estimate will come

from the normalizers described in the next section. It is assumed that the better an estimate

is for Pr, the better the results when equation (13) is used to initialize tracks.
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3 Description of Two Normalization Algorithms

3.1 Two Pass Split Window Normalizer (TPSWN)

The basic SWN (or CA CFAR processor) finds a local power estimate around a range cell,

then uses that power estimate to normalize the cell. The local power estimate is found by

averaging range cells in windows around either side of the cell to be normalized. The windows

around the cell to be normalized should be big enough to get a good (low variance) estimate

of the background power, but small enough to not be too biased by the non-stationarity of

the data. When using a SWN, this is an unavoidable tradeoff and limits the amount of data

used to estimate each range-bearing-ping cell power. The windows on either side of the cell

are separated by a gap window which is bigger than the biggest likely target. This keeps

the target from biasing the background power estimate. But, the gap window shouldn’t too

large, because it excludes the cells nearest to the cell to be normalized. The windows and gap

are then moved down the beam until all the range cells in the beam have been normalized.

This is repeated for all the beams in the data for each ping.

There are many variations of SWN employed in SONAR systems. The variations try to

improve the SWN’s ability to estimate the background in the presents of non-uniform noise

and multiple close targets. Variations on the SWN can be found in [9],[14] and [15]. We used

the TPSWN because: it is in common use and it has good performance in the presences of

non-uniform noise background. Below is a description of the TPSWN that is used in this

paper.

A local first-pass mean z is found for each range cell m and for all beams n in each ping
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t. This will require n× t first-pass means, given by

zn,t(m) =
1

k

m+(Ws+(Wg−1)/2)∑

i=m−(Ws+(Wg−1)/2)

Ω(i)x(i, n, t) (14)

where Ws is number of range cells on one side of the cell to be normalized (the sum window),

Wg is the odd number of skipped range cells in the middle of the sum windows (the gap

window), k = 2Ws and

Ω(i) =





0 if |i−m| ≤ (Wg − 1)/2

1 otherwise .

The gap window (0’s) in Ω is chosen to have more range cells than the expected range

extent of the target. The sum window should have enough range cells to provide adequate

averaging, but be small enough so the noise power is approximately constant over Ω.

Each first-pass mean is then compared to its respective range cell for all beams in each

ping.

yn,t(m) =





x(m,n, t) if x(m,n, t) < rzn,t(m)

zn,t(m) if x(m,n, t) ≥ rzn,t(m)

With the clip threshold r chosen to be a compromise between downward bias of the signal

estimate and the probability that high level is part of the signal [19]. Some methods to

choose r are presented in [14] and [15].
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A local second-pass mean is found for each range cell from the sequence yn,t(m).

yn,t(m) =
1

k

m+(Ws+(Wg−1)/2)∑

i=m−(Ws+(Wg−1)/2)

Ω(i)yn,t(i) (15)

Once we have n× t second-pass means yn,t(m) we can normalize the data as follows,

xSW (m,n, t) = x(m,n, t)/yn,t(m). (16)

Note yn,t(m) in equation (15) can be thought of as an estimate of the exponential PDF

parameter Pr in equation (1). Ping one of yn,t(m) is plotted in Figure 4a along with the

exponential PDF reverberation parameter Pr(m,n, t) (Figure 4b). The normalized data,

xSW , is then used in the track initialization algorithm.

3.2 3D MVSE Normalizer (3DMN)

The 3DMN is based on a 3D power spectral density (PSD) estimator. At the output of a

detector, SONAR data is positive and therefore it can be thought of as a PSD [20]. So, a

sequence of range-bearing plots stacked on top of each other can be treated as a 3D PSD.

A PSD estimator will alow us to estimate x(m,n, t) as it changes over range, bearing, and

ping. Since a PSD is stationary by definition, we can estimate a changing x(m,n, t) and

avoid non-stationary problem. The PSD estimator used in the 3DMN is the 3D minimum

variance spectral estimator (MVSE). The MVSE is also know as Capon’s method [21]. The

MVSE was chosen because, unlike autoregressive (AR) estimation, it easy extends to three

dimensions and it has better resolution than classical spectral estimators [22]. A preliminary
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Figure 4: TPSWN estimate vs. true background.

version of this normalizer was presented in [23]. A detailed discussion of the MVSE and

how it can be extended to multiple dimensions can be found in [24] and [25]. The 3DMN is
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implemented as follows:

1) First find the estimated autocorrelation matrix R̂xx. The elements of R̂xx are a subset

of the elements from the 3D autocorrelation function (ACF). In this paper, elements from

the 3D ACF are referred to as autocorrelation function elements (ACE). In the 3DMN, the

ACE are found by performing a 3D inverse Fourier transform (IFT) on a mirror imaged

(made even) version of the 3D data x(m,n, t). The data are mirror imaged to reduce bias in

the MVSE. (See Appendix A for a discussion of mirror imaging.) Because the data can be

thought of as a 3D PSD, the 3D inverse Fourier transform results in a 3D ACF [20]. The 3D

ACF function contains the ACE needed for the R̂xx. The ACE are arranged in R̂xx in exactly

the same way as an autocorrelation matrix of a first quadrant (quarter plane in 2D) AR model

[24]. We want to select enough ACE to get a good estimate of the reverberation background

but not so many that we introduce too much variance to the background estimate. Appendix

B has further details on the construction of the autocorrelation matrix see.

2) Next, the 3D MVSE is found as

P̂ (m,n, t) =
(pm + 1)(pn + 1)(pt + 1)

eHR̂−1
xxe

(17)

where pm is the largest range line lag, pn is the largest beam lag, pt is the largest ping lag,

H is the hermitian transpose, eH =

[z0
1z

0
2z

0
3 z0

1z
0
2z

1
3 . . . z0

1z
0
2z

pt

3 z0
1z

1
2z

0
3 . . . z0

1z
pn

2 z0
3 . . . z0

1z
pn

2 zpt

3 z1
1z

0
2z

0
3 . . . zpm

1 zpn

2 zpt

3 ]

with z1 = exp(j2πm/M) , z2 = exp(j2πn/N), and z3 = exp(j2πt/T ). A one ping slice

P̂m,n,t=1 is plotted (see Figure 5a) along with the exponential PDF reverberation parameter
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Pr(m,n, t) (see Figure 5b).

3) Finally, once we have P̂ (m,n, t) we can normalize the data as

x3DMN(m,n, t) = x(m,n, t)/P̂ (m,n, t). (18)

The normalized data, x3DMN , is then used in the track initialization algorithm.

3.3 Bias and Variance in the Normalizers

The bias and variance of the two normalizers were compared using computer simulations.

The first step was to generate the simulated data. The data consisted of 4 pings of range-

bearing plots, for each trial of the simulation. Each range-bearing plot has 64 range lines

and 32 beams. This results in 8192 range-bearing-ping cells (64 · 32 · 4). Each cell consists of

independent non-identically distributed exponential data. The cells consist of reverberation

power only. The cells are distributed as exponential with parameter Pr(m,n, t), where

Pr(m,n, t) is decaying in range and varies slowly with bearing and ping. This model was

chosen because it is reasonable for reverberation. Figure 6 is a plot of Pr(m,n, t) used in the

simulation. Figure 7 is a single realization of the noise background x(m,n, t) distributed as

exponential with the parameter Pr(m,n, t), as seen in Figure 6. A total of fifty realizations

were generated.

After the data was generated, all fifty realizations were normalized by both normalizers.

The TPSWN had the following parameter settings: the sum window Ws = 10, the gap

window Wg = 3, and the clip threshold r = 3. These parameters were chosen by trial

and error to give the best probability of correct initiation (PCI) for a probability of false
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initiation (PFI) of 0.01. For details on this see section 4. We were able to pick the smallest,

and best gap window because we know that in Section 4, the computer simulation section

uses a single cell target, so a gap of one matches the target. In practice the TPSWN does

not enjoy this advantage. The MVSE in the 3DMN normalizer used ACE with the following

lags: thirteen range lags (lm = 0, 1, 2, ..., 12), seven beam lags (ln = 0, 1, 2, ..., 6) and three

ping lags (lt = 0, 1, 2). The ACE were chosen by trial and error, but knowledge of the target

was not used to help pick the parameters.

In order to more easily view the estimator variance, beam sixteen of ping one was chosen.

The other beams in other pings looked similar. Figure 8 consists of fifty overlaid realizations

of y16,1(m) (for details on yn,t(m) see equation (15)) from the TPSWN and Pr(m, 16, 1).

Figure 9 consists of fifty overlaid realizations of P̂m,16,1 from 3DMN and Pr(m, 16, 1). For

details on P̂m,n,t see equation (18). As can be seen from Figures 8 and 9 the 3DMN has

less variance than the TPSWN. Figure 10 is a plot of the average of 50 realizations of both

estimates. As can be seen from Figure 13 the 3DMN estimate has less bias than the TPSWN

estimate.

Because the parameters for both the normalizers have been picked by trial and error

using the noise backgrounds made with the exponential PDF parameter Pr(m,n, t) from

Figure 6, one might wonder how well they will work with another noise background. So, we

repeat the above procedure but with the exponential PDF parameter in Figure 11. Figure 12

consists of fifty overlaid realizations of y16,1(m) from the TPSWN and Pr(m, 16, 1). Figure

13 consists of fifty overlaid realizations of P̂m,16,1 from the 3DMN and Pr(m, 16, 1). As can

be seen from Figures 12 and 13 the 3DMN has less variance than the TPSWN. Figure 14

plots averages of the 50 realizations of both normalizers. As can be seen from Figure 14 the
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3DMN has less bias than the TPSWN.
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Figure 5: 3DMN estimate vs. true background.
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Figure 6: Plot of Pr(m,n, t).
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Figure 7: A plot of a single realization of x(m,n, t).
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Figure 8: Overlaid realizations of y16,1(m).
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Figure 9: Overlaid realizations of P̂m,16,1.
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Figure 11: Plot of another Pr(m,n, t).
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Figure 13: Overlaid realizations of P̂m,16,1.
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4 Track Initiation Computer Simulations

In this section we plot the results of the PCI versus the SIR for the 3DMN and the TP-

SWN. The first step was to generate the simulated exponentially distributed data. Next

the simulated data was normalized by both the 3DMN and the TPSWN. The two sets of

normalized data were then processed with the GLRT track initialization algorithm. After

the track initiation was completed, the PCI/SIR curves were composed. See Figure 15 for

overview.

Figure 15: Simulation Block Diagram

4.1 Simulate Detector Output

We generated 4 pings of range-bearing plots for each trial of the simulations. Each range-

bearing plot has 64 range lines and 32 beams. Each cell consists of independent non-

identically distributed exponentially distributed data. The cells consist of reverberation

only or reverberation plus a target. The reverberation only cells, used in generating Figures

19, to 22, are distributed as Exp(Pr(m, n, t)), where Pr(m,n, t) is a decaying in range and
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varies slowly with bearing and ping. Figure 6 is a plot of Pr(m,n, t) used in the simulation

and Figure 7 is a realization of the noise background made using the exponential parameter

in Figure 6. The reverberation only cells, used in generating Figure 23, are distributed as

Exp(Pr(m,n, t)), where Pr(m,n, t) is increases in range and varies slowly with bearing and

ping. Figure 11 is a plot of Pr(m,n, t) used in the simulation generating Figure 23.

The cells with a target and reverberation are distributed as Exp(PA(m, n, t)+Pr(m,n, t)),

where PA(m,n, t) = 10(SIR/10)Pr(m,n, t) in a cell with a target and 0 otherwise. SIR is the

signal to interference ratio in dB. The multiple 10(SIR/10) is constant over the cells with a

target. So, the simulated data x(m,n, t) has the distribution,

x(m,n, t) ∼





Exp(PA(m,n, t) + Pr(m,n, t)) if cell (m,n, t) contains a target

Exp(Pr(m, n, t)) otherwise.
(19)

In all the simulations, only one range-bearing cell per ping has power from a target. Because

there are four pings per realization of x(m,n, t) there are four cells that contain power form

a target in each realization of x(m,n, t). For example in the simulations that made Figures

19 and 20, the target was at a constant range and moving up in beams as shown in Figure

3. To be specific, the data cells x(8, 16, 1), x(8, 18, 2), x(8, 20, 3), and x(8, 22, 4) had a target

present. With the target at range 8, it is in the high reverberation portion of the data.

Figure 16 is an example of the range-bearing plot for a single ping of a simulated 9 dB target

when injected into the high reverberation region of the background noise data.
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Figure 16: Example of target injected into the background noise.
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4.2 Normalize the Simulated Detector Output

Each realization x(m,n, t) was normalized by the two normalizers as described in Section

3. This resulted in normalized data x(m,n, t). In the simulations the TPSWN had the

following parameter settings; Ws = 10, Wg = 3, and r = 3. The MVSE in the 3DMN

normalizer used ACE with the following lags: thirteen range lags (lm = 0, 1, 2, ..., 12), seven

beam lags (ln = 0, 1, 2, ..., 6) and three ping lags (lt = 0, 1, 2).

4.3 GLRT Track Initialization

To perform the track initiation algorithm as derived in equation (13) we would need Pr, which

we don’t have. So we replace x(m,n, t)/Pr(m,n, t) with the normalized data x(m,n, t). Now

we can find the “correlation” between the normalized data x(m,n, t) and the target models,

Ii(m0, n0), as

max
m0,n0,i

∑∑ ∑

(m,n,t)

Ii(m0, n0)x(m,n, t). (20)

The simulations used eight target models Ii(m0, n0). The target models were all single cell

models and matched in speed to the simulated target. The target models consist of eight

combinations of moving zero or two beams left or right beam and zero or two lines up and

down in line (see Figure 17).

&%

'$
6

-¾

?

¡¡µ
@@R

@@I
¡¡ª

Figure 17: The Eight target model trajectories

The maximum in equation (20) occurs at a particular m0, n0 and i0 that provides the
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initial location and subsequent trajectory of a possible target. m0 and n0 gives the location

of the target in ping one. i0 gives the direction and speed of the target. Therefore, the

location of the target in pings two, three, and four can be calculated using the target model

i0.

Figure 18 is a graphic depiction of the process of MVSE normalization followed by the

track initiation in (20). Figure 18a is one realization of one ping of the data x(m,n, t = 1).

Figure 18b is one ping of the normalized data x3DMN(m,n, t = 1). Figure 18c shows the

location of the maximum of equation (20). Figure 18c was made by keeping i fixed to one,

and letting m and n vary over their ranges. The lower 3 sub-Figures of Figure 18 are a

zoomed view of 20.

4.4 PCI/SIR Curves

Thresholds that result in a probability of false initiation (PFI) of 0.01 were found for the

3DMN and TPSWN. (A 3DMN threshold for a PFI of 0.001 was also found.) These were

found by using 10, 000 realizations of reverberation only data . The data was normalized

with both of the above normalizers. Both normalized outputs were operated on by the track

initiation test statistic (equation (20)). A threshold was chosen for each normalizer/track

initiator that produced the desired PFI. The thresholds used in this paper are summarized

in Table 1.

After the thresholds were found, the PCI/SIR curves were generated by first generating

1,000 realizations of x(m,n, t) with a SIR dB target for SIR = {5, 6, . . . 14}. Then each

x(m,n, t) is normalized with both the normalizers. Then, both normalized data sets are

operated on by equation (20), which produces a maximum at a particular (m0, n0, i0) for
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Figure 18: Example of processing.
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Figure 18: Example of processing (Zoomed in).
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Normalizer Pr(m,n, t) PFI 10−2 PFI 10−3

3DMN Figure 6 23.9 26.8
TPSWN Figure 6 48.4 xxx
3DMN Figure 11 22.5 xxx
TPSWN Figure 11 34.5 xxx

Table 1: Thresholds for the normalizers.

each normalizer. If (m0, n0) is the location of the true target in ping 1 and if i0 is the correct

target model and the maximum exceeds the thresholds above, then the target was correctly

initiated, otherwise it is not correctly initiated.

The procedures described above, with the target located at x(32, 16, 1), x(32, 18, 2),

x(32, 20, 3), and x(32, 22, 4) and using the reverberation background in Figure 6, produces

the curves in Figure 19. As can be seen the in Figure 19 there is more than a 3 dB improve-

ment in track initiation performance by using the 3DMN over using the TPSWN.

The 3 dB improvement in correct initiation can be used to reduce the false initiation

probability by rasing the threshold for the 3DMN. As can be seen in Figure 20 a ten fold

reduction in false initiation probability was achieved while still having a better PCI than the

TPSWN.

As mentioned in the introduction normalizers are also with faced with the problem of

multiple close targets. A second target was added to the data to test the 3DMN verses the

TPSWN with more than one target. So, in addition to the target at x(8, 16, 1), x(8, 18, 2),

x(8, 20, 3), and x(8, 22, 4), there was also a target with the same SIR at x(12, 16, 1), x(12, 18, 2),

x(12, 20, 3), and x(12, 22, 4). With two targets, the location and target model of both targets

must be correct to be considered a corrice initialization. As can be seen in Figure 21 both

normalizers perform much worse but the 3DMN still has a 3 dB advantage.

38



Sofar the target has been put in the high reverberation part of the data, so now we will

put the target in lower reverberation parts of the data. The data that generated Figure

22 had the target put at x(32, 16, 1), x(32, 18, 2), x(32, 20, 3), and x(32, 22, 4), which is the

lower reverberation power area of the data.

The last simulation was done with a different reverberation power background, the one in

Figure 11 instead of the one in Figure 6. In this case, to keep the target in the high reverber-

ation area it was put at x(16, 16, 1), x(16, 18, 2), x(16, 20, 3), and x(16, 22, 4). Because the

number of ACE used in the 3DMN were picked by trial and error, using the reverberation

background in Figure 6, changing the background will give an idea of the robustness of the

normalizer.

This performance improvement comes at the cost of increased computational complexity.

In the above simulations, the 3DTIN took about 34 times as long to normalize the data as

the TPSWN. If computational speed is critical, then fast algorithms such as the ones in [26]

or [27], might be modified for this application.
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Figure 19: Single target in high reverberation area.
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Figure 20: A factor of 10 lower PFI for the 3DMN than the TPSWN with a single target in
high reverberation area.
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Figure 21: Two close targets in high reverberation area.
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Figure 22: Single target in low reverberation area.
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Figure 23: Single target in different reverberation background.
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5 Conclusion

A normalization algorithm based on the MVSE has been developed. This normalizer inputs

multiple range-bearing plots from an active SONAR detector and outputs a normalized

version of those range-bearing plots. This algorithm differs from more common normalizers

in that it uses a spectral estimation technique to circumvent the non-stationarity problem,

primarily caused by reverberation. Because non-stationarity is no longer a problem, the

3DMN can use more data to normalize each point in the range-bearing-ping space than

traditional normalizers. Also, a target initialization algorithm based on the GLRT, has been

derived. This target initialization algorithm was used to motivate the need for normalization,

and was used to compare the 3DMN to the TPSWN. The 3DMN was then shown to be more

effective than the TPSWN in initializing active SONAR tracks. We observed the 3DMN

achieve a better PCI verses SIR than the TPSWN, in the following circumstances: high

reverberation areas, low reverberation areas, and two close targets. We were able to use this

improvement in PCI to achieved a ten fold reduction in false alarms while having the 3DMD

have a better PCI than the TPSWN.
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A Appendix

When the estimated PSD not symmetric around zero, the MVSE can produce a severely

biased estimate. So, the data are mirror imaged before finding the ACE with the IFT.

Figure 24a is an example of a PSD and Figure 24b is the same PSD mirror imaged. Figure
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Figure 24: A PSD and its mirror imaged PSD version.

25 is an example of a one dimensional (1D) PSD and two MVSE estimates of that 1D

PSD. One MVSE was performed using a R̂xx made from ACE found with an IFT on a

mirror imaged PSD. The other one was estimated without mirror imaging the PSD. Figure

25 shows, the MVSE done with a mirror imaged PSD has less bias. In this paper, all the

MVSEs are performed using 3D data that are mirror imaged. Even though it is difficult to

visualize how 3D data are mirror imaged, it is easy to check if the mirror imaging was done
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correctly. To check if the mirror imaging was done correctly perform an IFT on the mirror

imaged data. If the IFT has only real parts, within roundoff error, then the mirror imaging

was done correctly. This is because, a PSD is symmetric if and only it has an IFT that is

real [28].

B Appendix

The 3D R̂xx is constructed as follows:

1) Select the maximum range line lag pm, the maximum beam lag pn, and the maximum

ping lag pt.

2) Find the find the needed ACE using a 3D IFT as

r̂xx(lm, ln, lt) =
1

MNT

M−1N−1T−1∑∑ ∑
m=0n=0t=0

x(m,n, t) exp(j2π(mlm/M + nln/N + tlt/T ))

for lm = 0,±1,±2 . . . ,±pm, ln = 0,±1,±2 . . . ,±pn, and lt = 0,±1,±2 . . . ,±pt.

3) Arrange the ACE into a autocorrelation matrix that has the same form as an autocor-

relation matrix from a first quadrant AR model. For example if pm = 1,pn = 1, and pt = 1

then R̂xx =




r̂xx(0,0,0) r̂xx(0,0,−1) r̂xx(0,−1,0) r̂xx(0,−1,−1) r̂xx(−1,0,0) r̂xx(−1,0,−1) r̂xx(−1,−1,0) r̂xx(−1,−1,−1)
r̂xx(0,0,1) r̂xx(0,0,0) r̂xx(0,−1,1) r̂xx(0,−1,0) r̂xx(−1,0,1) r̂xx(−1,0,0) r̂xx(−1,−1,1) r̂xx(−1,−1,0)
r̂xx(0,1,0) r̂xx(0,1,−1) r̂xx(0,0,0) r̂xx(0,0,−1) r̂xx(−1,1,0) r̂xx(−1,1,−1) r̂xx(−1,0,0) r̂xx(−1,0,−1)
r̂xx(0,1,1) r̂xx(0,1,0) r̂xx(0,0,1) r̂xx(0,0,0) r̂xx(−1,1,1) r̂xx(−1,1,0) r̂xx(−1,0,1) r̂xx(−1,0,0)
r̂xx(1,0,0) r̂xx(1,0,−1) r̂xx(1,−1,0) r̂xx(1,−1,−1) r̂xx(0,0,0) r̂xx(0,0,−1) r̂xx(0,−1,0) r̂xx(0,−1,−1)
r̂xx(1,0,1) r̂xx(1,0,0) r̂xx(1,−1,1) r̂xx(1,−1,0) r̂xx(0,0,1) r̂xx(0,0,0) r̂xx(0,−1,1) r̂xx(0,−1,0)
r̂xx(1,1,0) r̂xx(1,1,−1) r̂xx(1,0,0) r̂xx(1,0,−1) r̂xx(0,1,0) r̂xx(0,1,−1) r̂xx(0,0,0) r̂xx(0,0,−1)
r̂xx(1,1,1) r̂xx(1,1,0) r̂xx(1,0,1) r̂xx(1,0,0) r̂xx(0,1,1) r̂xx(0,1,0) r̂xx(0,0,1) r̂xx(0,0,0)




. (21)
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Figure 25: MVSE done with and without mirror imaged PSD
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