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ABSTRACT

We address the problem of parameter estimation of super-
imposed chirp signals in noise. The approach used here is
a computationally modest implementation of a maximum
likelihood (ML) technique. The ML technique for estimat-
ing the complex amplitudes, chirping rates and frequencies
reduces to a separable optimization problem where the chirp-
ing rates and frequencies are determined by maximizing a
compressed likelihood function which is a function of only
the chirping rates and frequencies. Since the compressed
likelihood function is multidimensional, its maximization
via grid search is impractical. We propose a non-iterative
maximization of the compressed likelihood function using
importance sampling. Simulation results are presented for
a scenario involving closely spaced parameters for the indi-
vidual signals.

1. INTRODUCTION

Chirp signals are encountered in many different engineering
applications including radar, active sonar and passive sonar
systems. The problem of parameter estimation of chirp sig-
nals has received a great deal of attention, [3]. These ap-
proaches have been proven to be effective in the sense that
they achieve the Cramer Rao Lower Bound (CRLB). How-
ever most of these approaches are designed for a single chirp
signal. Parameter estimation of superimposed chirp signals
is a difficult signal processing problem. The need for deter-
mining the parameters of superimposed chirp signals arises
in passive sensor array systems, where it has been shown
in [6] that the problem of range and direction of arrival
estimation for moderately far, broadside targets reduces to
that of estimating the parameters of sums of chirp signals.
Liang and Arun [5] have also addressed an iterative maxi-
mum likelihood (ML) approach to this problem. Rank re-
duction techniques were used to get good initial parameter
estimates, which were then used in a maximum likelihood
procedure to get the final estimates. Although the approach
has been shown to achieve good results at high SNRs, there
is no guarantee that the global optimum will be achieved.

Our aim in this paper is to develop a non iterative com-
putationally modest implementation of a ML estimator for

the chirp signal parameters. To develop the estimator, we
first show that the data model involves estimation of linear
and nonlinear parameters of a partial general linear model
[1]. The complex amplitudes form the linear parameter vec-
tor and the chirp rates and frequencies form the nonlinear
parameter vector. The parameter estimation gets decou-
pled, where the nonlinear parameter vector needs to be esti-
mated first by maximizing a compressed likelihood func-
tion involving only the chirp rate and frequencies as un-
known parameters. The complex amplitudes are obtained
from the estimates of chirp rates and frequencies. In this
paper we focus on estimation of chirp rates and frequen-
cies only. The straightforward implementation of the max-
imization of the compressed likelihood function involves a
grid search which is impractical and whose computational
complexity increases with the number of signals. To carry
out this maximization non-iteratively we use a global opti-
mization theorem proposed in [2]. To efficiently implement
the optimization, we use Monte Carlo Importance Sampling
[4]. It is observed that the technique produces good esti-
mates for the unknown parameters even in cases where the
individual parameters are closely spaced. Furthermore, the
computational burden is quite modest.

2. PROBLEM DEFINITION

A sequence ��� �������
	��
��������������� is observed having the
following parametric representation.
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The data described by (1) can be expressed in matrix

form as O 	KP *JQ �SRT6�UV1�W (2)



where
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Since the noise is assumed to be additive white Gaussian
with variance 
 4 , the probability density function of the
data vector

O
in (2) parameterized by

Q ��R � U , is given by,D * O�� Q �SR � U�6 , which is equal to�.�� 
 �
"�$ %�� � �
 4

* O � P * Q ��R 6�U�6�� * O � P * Q �SR 6�U�6��
(5)

Hence the likelihood function of the data � * O � Q �SR � U�6 is
given by � * O � Q �SR � U�6��FD * O�� Q ��R � U�6 (6)

The joint ML estimates of

Q �SR � U is obtained by maximiz-
ing � * O � Q �SR � U�6 . From (5) and (6) this joint maximization
is equivalent to following step�����Q! R  U * O � P *JQ �SRT6�U�6 � * O � P * Q ��R 6�U�6
The parameter vectors

Q �SR which appear in the matrix P
are nonlinearly related to

O
whereas the parameter vector U

is linearly related to
O

. It is known that for such kinds of
joint parameter estimation problems as in (2), the parameter
estimation procedure gets decoupled [1] where estimation
of the unknown nonlinear parameters is done first and the
estimated nonlinear parameters are inserted in the matrixP *JQ �SRT6 to obtain the linear parameter estimate. The esti-
mates of the two nonlinear parameters are obtained as [1]"$#Q&%('*) � #R %('*),+ 	-��. $Q! R " O � * P ' P � P 80/ � P � 6 O + (7)

The function in the right hand side (RHS) of (7) is called
the compressed likelihood function �21 * Q ��R 6 . It can be ob-

served from (7) that obtaining
"$#Q3%4'�) � #R %4'�)5+ will require a

multidimensional grid search over the two parameter vec-
tors. It is because of the lack of closed form solution that
the proposed approaches for these kinds of problems have
been iterative. Liang and Arun [5] have reported a 3 stage
iterative ML approach for this problem. Pincus [2] showed
that for a function of several variables having many local
maxima, it is possible to have a closed form expression for
the variables fetching the global maximum. Motivated by
the result of [2], we develop a non-iterative estimator for"$#Q %('*) � #R %('*) + .

3. GLOBAL OPTIMIZATION THEOREM

The theorem proposed by Pincus [2] was used for obtaining
the maximum/minimum of a multidimensional function. It
is stated as follows. We apply this theorem to obtain the
estimates of the vectors

#Q
and

#R which maximize the com-
pressed likelihood function � 1 *JQ �SRT6 . Based on the theo-
rem [2], the estimates of

#Q
and

#R are given by#� Q � � 	7698/ 8 �����,6:8/ 8 � Q � �<;�>=1 *JQ �SRT6�? Q ?#R (8)
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and

#� Q � � and

#� R � � are the
B�IFJ

components of

Q
and R . It

can be observed from (8) and (9) that the theorem provides
a closed form expression for obtaining the parameters that
maximize the function but its evaluation requires compu-
tation of a multidimensional integral. However it can be
noted that the integrations involved in (8) and (9) are closely
related with integrations involved in probability theory to
compute expected values of random variables having a joint
probability density function (PDF). This is because the nor-
malized function

;�4=1 * Q �SR 6 is positive and has all the prop-
erties of a joint PDF. However the parameter vectors

Q
andR are not random. Thus the normalized function is termed

a pseudo-PDF. Using this concept, the Monte Carlo tech-
niques can be used to replace the multidimensional integra-
tions in (8) and (9). The simplest Monte Carlo approach
would require generation of random vectors

Q
and R dis-

tributed according to the joint PDF

;� = 1 *JQ �SR 6 . However,
;� = 1 * Q ��R 6 is a highly nonlinear function of

Q
and R . As

a result, direct generation of

Q
and R is not easy and one

needs to resort to other Monte Carlo techniques which gen-
erate samples according to some simpler PDF and use those
samples to estimate the means. Importance Sampling be-
longs to this class of Monte Carlo techniques and has been
proved to be a highly effective tool in evaluation of integrals
in Bayesian theory [4]. We thus use importance sampling
described in the next section to efficiently evaluate the esti-
mates of

Q
and R .

4. IMPORTANCE SAMPLING

The importance sampling approach is based on the obser-
vation that integrals of the type

G<K * O 6 ;�>= * O 6�L O can be ex-
pressed as
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* O 6 ;� * O 6�? O (11)

where

;
�
* O 6 is assumed to possess all the properties of a

PDF. Then, the right-hand-side of (11) can be expressed

as the expected value of
K * O 6��� �����
	�� ���
	 , with respect to the

pseudo-PDF

;
�
* O 6 . The function

;
�
* O 6 is called the normal-

ized importance function. Unlike

;� � * O 6 , which in general
is a nonlinear function of

O
,

;
�
* O 6 can be chosen to be some

simple function of
O

, so that realizations of
O

can be eas-
ily generated. Then, the value of the integral in (11) can be
found by the Monte Carlo approximation�
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where
O � is the � IFJ realization of the vector

O
distributed

according to the pseudo-PDF

;
�
* O 6 . The value of



needed

for a good approximation depends on the choice of � . Typi-
cally,

;
�
* O 6 should be chosen similar to

;� * O 6 , as this reduces
the variance of the estimate given by (12). However, another
important point to keep in mind when choosing

;
�
* O 6 is that

it should be simple enough so that
O � ;

�
* O 6 can be easily

generated [4] .
The ideas expressed by (11) and (12) can be applied for

the estimation of

Q
and R , once the importance function

for this problem is defined. In particular, if the normalized
importance function is

;
�
*JQ �SRT6 , then the estimates of the

coordinates of the vector

Q
and R computed using this im-

portance function is expressed as
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and " #R + � 	 �
�
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* Q
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where

Q
� and R � are the � IFJ realizations of the vectors

Q
and R distributed according to the importance function;

�
* Q ��R 6 . The normalized importance function

;
�
* Q �SR 6 needs

to be chosen so that the samples

Q
� and R � can be easily

generated. Furthermore,

;
�
* Q ��R 6 should be a close approx-

imation to

;�>=1 *JQ �SR 6 . Since� 1 *JQ �SR 6:	 O � P * Q ��R 6 ' P � *JQ �SRT6SP * Q ��R 6 8 / � P � *JQ �SRT6 O
it is obvious that the function � = 1 *JQ �SRT6 is not separable in

Q
and R . However, if we force the matrix P � * Q �SR 6�P *JQ �SR 6
to be an identity matrix, then the function �21 * Q �SR 6 will
become separable in

Q
and R . This is the main idea be-

hind choosing the importance function. Thus the impor-
tance function is chosen by forcing the D�� D matrix

P � *JQ �SR 6SP *JQ �SRT6 to be ��� � , where � � is a D��(D iden-
tity matrix. To make the importance function similar to the
function � = 1 *JQ �SR 6 , we choose the importance function as

�
* Q ��R 6 	 "�$&%!*FE O � P *JQ �SRT6 �� P � * Q ��R 6 O 6 (15)

and its normalized version as

;
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5. ESTIMATION OF PARAMETERS

As a result of this choice of �
* Q ��R 6 in (15), the importance

function now becomes separable in

Q
and R and can be

expressed as ;
�
* Q ��R 6 	 ��� � �

;
�
* � � ��� � 6 (17)

This enables generation of D independent samples of

* � � ��� � 6 ,
distributed according to the joint PDF

;
�
* � � ��� � 6 , with the

condition that no two of

* � � ��� � 6 are the same. The D pa-
rameter vectors

* � � ��� � 6 , for
B 	C�#��������� D need to be distinct.

This assumption is necessary for this problem as otherwise
the matrix P � *JQ �SRT6SP * Q ��R 6 will become singular. The
variables � � and � � are generated jointly using the follow-
ing three steps

1. Evaluate the two-dimensional joint PDF

;
�
* � ����6 at� � � discrete set of points on a rectangular grid

and obtain the marginal PDF

;
�
* � 6 as;
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* � ' 6 	��� � ���

;
�
* � ' ��� � 6��0� �

for � 	 �#������� � . From the marginal PDF

;
�
* � ' 6 ob-

tain the cumulative distribution function  
* � 6 , as
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by approximating the integral as a sum.

2. From the marginal PDF

;
�
* � ' 6 so obtained in step 1,

obtain the conditional PDF

;
�
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�
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Evaluate the cumulative distribution function of the
conditional PDF

;
�
* �&$ � 6 as
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for all � � � 	 �#��������� � .



3. Generate � � ��� 4 � ��� � �
����� and obtain ��	  / � * � � 6
and ��	  / � * � 4 $ � 6 . Repeat this steps D times to
obtain a realization of the vector

Q
and R , each of

which has dimension D�� � .
4. Repeat step 3

�
times to obtain

�
realizations of the

vector

Q
and R .

Now these realizations can be used in (13 ) and (14) to
obtain the estimates which are essentially the linear means
of

Q
and R . However we do not use (13) and (14). Rather,

we make further use of the limited ranges of � � and � �
in reducing the computations. Since ��> � � > � and�N> � � > ,

, they posses the properties of a circular ran-
dom variable. Circular mean also alleviates the bias [7]. We
thus compute the circular means and obtain the angle of the
circular means to compute

Q
and R . The expressions for the

estimates based on the circular mean definition are given by,

� #Q � � 	 �,/.�� �
�

��
� ���

"�$&%!* )�, . � Q � � � 6 � = 1 *JQ � �SR � 6�
*JQ
� ��R � 6 (18)

and " #R + � 	 ,,/. � �
�

��
� � �

"�$&%!* ) , . , � R � � � 6 � = 1 *JQ � �SR � 6�
*JQ
� ��R � 6 (19)

It should be noted that using (18) and (19), the normalizing
constants are no longer required as a result of the

�
operator,

thus reducing the computational burden considerably.

6. SIMULATION RESULTS AND CONCLUSIONS

We present an example of estimation of parameters of two
equipower closely spaced chirp signals for which  � 	�#� 0 � 	M�L� �L� 3 � 	 �
��� � . and  4 	 �#� 0 4 	 �L� �
	
� 3 4 	�
����� . The data record length is 50 and SNR is chosen to be
10 dB. In Figure 1, we plot the coordinates of the estimates
of

* 0 � � 3 � 6 and

* 0
4 �
3
4 6 . The x-axis refers to frequency

whereas y-axis refers to chirp rate. The true coordinates is
shown by circles. The estimate for 100 realizations is plot-
ted. It can be observed that the technique is always able to
resolve the signals and the estimates lie very near the actual
signal parameters. The number of realizations

�
needed to

obtain estimates from (18) and (19) for the simulation was
3500 and the minimum value of

E
was 0.4.

However more exhaustive simulations need to be done
to asses the merit of the method, by finding the threshold
SNR for a given data record length at which the CRLB is
no longer achieved. This is currently under investigation.
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