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Absitract

A tutorial introduction to Cramer-Rao lower bounds for complex-valued parameters
is presented. The vector parameterizing the probability density function of the data
is assumed to contain some complex-valued and some real-valued parameters. The
traditional approach in such problems is to form a real-valued parameter vector by
using the real and imaginary parts of the complex-valued parameters. The resuliing
algebra is often tedious and clumsy. We present a direct approach to this problem
which, we believe, leads to elegant algebraic manipulations. Application to a simple

but common signal processing problem is included to illustrate the calculations.

1 Introduction

The Cramer-Rao lower bound (CRLB) serves as a fundamental tool in estimation theory by
providing a means to study the limits of estimator performance [5, 10]. It may be used (2) to
produce the minimum variance unbiased (MVU) estimator, (4i) for comparing performances
of different estimators, (242) to describe the asymptotic performance of maximum likelihood

estimators (MLE), (iv) to analyze the effect of different model parameters on estimation
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accuracy, (v) as an instrument in designing signal processing systems and algorithms. In
addition, as opposed to other lower bounds such as the Bhattacharya or Barankin bounds
[10], the CRLB is usually simpler to compute. In many cases, closed form expressions for
the CRLB can be derived, from which many useful interpretations can be made.

In elementary derivations of the CRLB, one assumes that the parameter vector 8 € R? and
that the parameterized probability density function (PDF) p(x; 8) obeys certain “regular-
ity” conditions. However, in many signal processing applications, the PDF is parameterized
by some complex-valued and real-valued parameters, or 8 € CP* x R?. The customary ap-
proach is to form a real-valued vector of parameters by concatenating the real and imaginary
parts and then applying the usual theory. Although straightforward, from an algebraic point
of view, this is very tedious and cumbersome. It is better to work directly with complex
quantities and exploit the associated algebra. The resulting expressions are considerably
more intuitive and have the same form as corresponding real-valued cases. Such an ap-
proach is commonplace in other similar situations, viz. minimization of Hermitian forms,
certain complex Gaussian PDFs for complex random vectors, Fourier series and transforms,
ete. [2, 5, 6]. Although extensions of most principles of statistical inference for complex
data and/or parameters have been attempted before [5, 6], the concept of CRLB has not
be adequately addressed. Some attempts, but incorrect, can be found in [11]. (The notion
of CRLB has been generalized along other lines, for example, real separable Banach spaces
4], closed subsets in R” [3].) This paper represents a step in this direction. We emphasize
that no new theory is presented, only an algebra to efficiently manipulate complex-valued
quantities is explored.

An examination of a simple derivation of the CRLB (for example, see [5, Chap. 3]) reveals
that such an extension requires (i) some “regularity” conditions on the PDF p(x; 8), (3)
some sort of Canchy-Schwartz inequality, and (¢7¢) a notion of derivative with respect to
(w.r.t.) the unknown parameters. While the first two requirements are met fairly easily,
the third one is a little complicated. This is because the PDF p(x; 8), being a real-valued
function, is mot an analytic function of the complex-valued parameters (in the sense that
it does not satisfy the Cauchy-Riemann conditions). Fortunately, we can define a limiting
operator that behaves like a derivative [1] and this is quite adequate for our purpose.

The paper begins with an introduction to defining a “derivative” of non-analytic func-
tions of a complex variable such as real-valued functions. The purpose is to only motivate
the plausibility of such a definition, other details in this regard can be found in [1]. The



next section presents a theorem that states the Cramer-Rao inequality and the existence of
efficient estimators for complex parameters. Proof of the theorem can be found in Appendix
A. The final section illustrates the use of the theorems in computing the CRIB for a simple
parameter estimation problem that arises in many signal processing applications. It repre-
sents a significant generalization of the example considered in [9, 11]. An expression for the
elements of the Fisher information matrix (FIM) in the general complex Gaussian case with
information in the mean and covariance is included. A word about the notation used is in
order. We will use superscripts T’ to denote transpose, * to denote complex conjugation, H
to denote Hermitian or complex conjugate-transpose, and subscripts r and 7 to indicate real
and imaginary parts, respectively. For a matrix T, [T]; ; and [T} will denote the kI-th

clement of T and T, respectively.

NOTATIONS AND TERMINOLOGY USED:

g — 8, | parameter vector to be estimated. Contains py complex-valued (8,)
Tl e, | and p; real-valued (6,) variables.
817‘ . .
00 — | 5. real-valued parameter vector formed from 8 by concatenating real and
911 imaginary parts of 8,, Used in conventional approach to CRLBs.
6, .
P complex-valued parameter vector formed from 8. Used in proposed
N 91 approach to CRLBs.
1(60)) : real Fisher information mafrix, a (2p1 + p2) % (2p1 + po) real symmetric
- matrix
1(6) : complex Fisher information matrix, a (2p; + ps) X (2p1 + p2) complex
Hermitian matrix
T390y real CRLB matrix, a (2p; + p2) X (2p1 + p2) real symmetric matrix
-1(9) complex CRLB ﬁlatrix, a (2p1 + p2) x (2p1 + p2) complex Hermitian

matrix



2 Differentiation with respect to Complex Variables

To begin with, consider an analytic function h(z) of a complex variable z = z - jy. Write
h(z) = f(=, y) + 3fi(z, ¥), where f, and f; are the real and imaginary parts of k{z). Note
that the real-valued functions f, and f; are “special” in that they are differentiable w.r.t.
z and y (to all orders) and their partial derivatives satisfy the so-called Cauchy-Riemann

conditions. Since A{z) is analytic,

dh _ . bzt D2) = b(z)

E,;‘_ Az—0 Az (l)

where Az — 0 along any contour in the z-plane. In particular, letting Az — 0 along the

real and imaginary axes we have

dh _ 8fi(z,y) , Ofiz,y)
dz 0z +J Oz (22)
and
dh_ Ofi(z,y) +Jaff($, y)
dz (sy) y)
__[0h(@y)  8i(,y)

Combining equations (2a) and (2b) we obtain

b 1{afr+ in}_g[@fr afi]

+7

dz 2 |0z Bz Oy Oy
_ Y[8f(z,y)  8f(z,y)
T2 [ Oz J Oy ’ (2¢)

where f(z, y) = f,(z, ¥) + 3fi(z, y). By a similar reasoning, for A(z*), an analytic function

of z*, we obtain

dz* 2 dz dy
where fz(z*) = flz,y) = folz, y) + 7 ﬁ(:c, y). Similar expressions for analytic functions of

d_ﬁ — 1 l:af(m: y) +ja.f($, y)] , (Qd)

several complex variables are possible. For instance, let h(z1, 22) be an analytic function of
two complex variables, z1 = 21 + jy1, 22 = 23 + gy2. Let A2y, 22) = f(z1, 2, Y1, y2), then

oh _l[af Bf]

0z 2 0o oy

(3a)
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for k = 1, 2. Likewise, for A(z, z}) = f@1,29,91,12), an analytic function of Z3, 73, We

obtain

aﬁul[af ﬂ] | (3)

8z;; - 5 6_:% + jc?yk
for k=1, 2, and so on.

A natural question to ask is whether equations (2¢) and (2d) make any sense when the
functions are not analytic. Obviously the function must be such that the partial derivatives
on the right hand side (RHS) of these equations exist, i.e. the limit in (1) must exist at least
along the real and imaginary axes in the z-plane (and these need not be related). This is
far less restrictive than analyticity and is satisfied by a large class of functions of a complex
variable. Hence, for such functions, we may be able to use the RHS of equations (2c), (2d)
as definilions of an operator on non-analytic functions. We emphasize that for non-analytic
functions this is, strictly speaking, not a derivative. By sheer abuse of notation, we continue
to use the symbol and nomenclature of (partial) derivative to represent these operators (as is
common in the literature). For some applications, these operators are adequate, one instance
is when the function A(z) is real-valued [1}.

Consider now a real-valued function ¢'(z) of a complex variable z = z + jy. Clearly ¢’ is
not analytic as it does not satisfy the Cauchy-Riemann conditions. Furthermore, since g is
real-valued, it must also depend eszplicitly on z*, or we can write ¢'(2) = g(2, 2*) = f(=z, y),
where f is a real-valued function of two (real) variables. We assume f is differentiable w.r.t.
z and y. We now assume g(z, 2*) is a function of two complex variables such that, for any
complex numbers a and b, the functions ¢,(z) = g(z, a) and ¢;(2*) = g(b, z*) are analytic
functions of z and 2z*, respectively. _

We then note that operating the RHS of equations (2¢) and (2d) on functions z* and «,
respectively, yields zero. This seems to indicate that when definitions (2¢) and (2d) are used,
z and z" behave like “independent” complex variables. With this in mind, we now think of
g(z, 2*) as being an analytic function of two independent complex variables z and 2*. Upon

making this identification, we define partial derivatives of g(z, 2*) w.rt. z and z* by

Oz, 27) _ 1|8f  of

bz 2[(% Jay] ’ (12)
dg(z,2*)  1[df @&f

o= T 3 ['55 Jé‘—y} (1b)

Note that all the theory associated with differentiating analytic functions of two variables can
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now be applied because the functions g,, g are analytic functions of z and z*, respectively
{hence RIS of equations (4a) and (4b) are the true partials of g, and g, evaluated at o = 2*
and b = z, respectively).

Finally, as a further generalization, let ¢'(z) = ¢(z, z*) = f(x, y) be a function of several
complex variables, z = [z; 23 - 2,]" with zx = zx + Jyk, and so on. We define the following
partial derivatives

Cof  of ] [ 0F , OF
9z, 1oy, oz, oy,

o(z, =) I N o7

9(z, z* o 4(z, 2* Fe

5t i ] ETIRY IR CSu e a7 IO
af  of of . Of
_83310 jayp_ _3mp jayp_

We emphasize that (5) also serves as a definition of derivative of (analytic and non-analytic)

complex-valued functions f. For example, for a complex-valued function f = f. + jf;, we
of 3f 3ﬁ
8:1% 8 Tk Bmk

have , and so on. More details and examples can be found in [1].

3 Cramer-Rao lower bounds

Let x denote the observed data with a PDF p(x ; 8) parameterized by a vector of unknown
parameters 8 € (" x R”2, We will denote

01, 6
9, 1 2 (r) i 2p1tp2 1 2p1 P2
g = P EC" xR, 9 = | g, | eRr , 0=16; | eC” xR
? 8. 8.

where @, € ¢ and 0, ¢ ®R”, and p=2p +p;. Let a = g(ﬂ) € C1 x R? be a vector

function of 8 whose estimate & is of interest. Again, we will denote

o &y 25}
a=| " |etm xB?, al)=| a; | er¥Mte  q=| o | €2 xR
aﬂ
Q. L 2

where v, € C" and a, € R%, and ¢ = 2q1 + q;. Corresponding estimates are denoted by &,
&' and &. Also the k-th component of a vector 3 will be denoted by 8[k].
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Definition 1 (Complex Gradient) For any real/comples scalar function h(8)

_ _ 8h T
Oh 98,1]
oh %ghl ah 0
on _ Oh | B,
50 39* , where 96, 2[ ]
oh =
| 586, | _Oh
| 062[ps) |

ah

oh
and the complex derivatives —— 20, 5@; are as defined in equation (5).

Definition 2 (Complez Jacobian) For any real/complex s—dimensional vector function h(8)

dh [ 6h Ok oh Oh Ih 6h oh oh oh
96~ |66.[1) 96:2]  00:[p] B651] OB5[2] T B6i[pe] 90;1] 00,3] 892@21]
where
T O[] R[] 7 T OOR[1] . R[] T - B[] T
90, 1] RRFT| 30,11 730,41 56, %k]
ohf2] _ Onf2] Oh[2]  OA[2] R[]
Oh 1| o.M aah[] obh 4 aeh.[zﬁ 80,11 o _ | B,k
EAE , T _ * B0,[k] S
Oh|s] Ohs] Jh|s] ah[s] Oh|s]
L 06,11~ 70,[1] | L 96,11 " T80,[1] | | 96,14 |

Jor1 <I{<p,1<k<p,.

Here we assume that the real and imaginary parts of these functions are all differentiable
w.r.t. the elements of 8¢). These definitions simply mean that the partials w.r.t. real variables

are defined as usual and the partials w.r.t. complex variables are interpreted as in section 2.

Theorem 1 Under usual regularity conditions, the covariance matriz of any unbiased esti-
mator & is bounded from below by

o = £l - (- )" > (JE) (0 (o8 )H , (©



where the complex Fisher information matriz 1(8) is given by

o-c(fw] )G o

or, for 1 <k I <p,

PInp
1) = ¢ () ®)

The derivatives are all evaluated at the true values of the parameters. In particular, for
g(0) =8, we have C; > I7(6). We call 17(8) the complezx CRLB of 6.

When ?In_ﬂ_}i,éﬂ 1(9) [t(x) — 8] then the estimator 8 = t(x) is unbiased, attains the
complexr CRLB, and is said to be the efficient estimator.

Proof. See Appendix A. o

As seen in the proof of the theorem, only assumptions needed to derive a CRLB for the
real-valued parameter vector () are used, i.e., no “new” assumptions are required. Also the
presence of both 8, and 67 in the vector 8 seems to indicate that @, and 87 are to be treated
as being functionally independent parameters. (This is akin to definitions of derivatives in
section 2.) It also means that there is some redundancy in the complex Fisher information
matrix I{(#), this is explored latex.

As expected the results are very similar to the corresponding analogues for thg real-valued
Inp

aW:

P in the real-valued case. This seems to be the case in other

case. The curious thing however is that the derivative of the log PDF w.r.t. 8*

: a1l
to take on the role played by -
situations too, viz. minimizing Hermitian forms [1] where a complex gradient is defined to

be the derivative w.r.t. 8*.

Connections to real CRLB: Since the complex gradient 5 0*p and the real gradient —8;’1;
are related as
[ Olnp 7 [ dlnp
00,” ¥ 21 07| ORe{6,}
dlnp Blnp . EI ZJI 0 Bl{p _ Olnp ©)
o0~ | 96, | |1 2 axm{e T T 960
dln’ P 0O 0 I dlnp
L 99, . 26, |




the complex Fisher information matrix, I(#), and the real Fisher information matrix, I(6(),

can be related as
H T
10)=¢ 8In*p31nf; _ Olnpdlnyp
00* 90 06 59 ()

We then obtain
CRLB(0) =17(6) = T -* I(61) T = T~ CRIB (00) T~ (1)

) TH =T 1(60)) TH . (10)

and
CRIB (6®) =T CRLB(9) T, (12)
where, from (9),
I T o
Tl'=| -1 ;I 0] . (13)
0 0 I

This relates the complex CRLB derived from Theorem 1, CRLB (), with the real CRLB,
CRLB (6’(”)), derived from the usual theory for real-valued parameter vectors.
Finally, we apply Theorem 1 for a parameter transformation g(0) = 8(). We compute

the complex gradient,

¢ 9 6.+6./27 [ i1 i1 0
* _ _ mH
g, 0 01

so that from Theorem 1 we have
Og

CRLB (g(6) = 60) = (6—9

This means that the CRLBs derived from Theorem 1 and by application of the usual theory

) CRLB(9) (%)H =THCRLB (6) T .

for real-valued parameter vectors always lead to the same results. Also, using (9) and

; 8
(10) and 6 = TH9 in the efficiency condition @E%gi’—_) = I{0) [t(x) — 8], we obtain
; 8
mn—gg(:éfl) = I(§()) [THt(x) - 0(”], which is the efficiency condition is the usual real-

valued theory. In other words, the two approaches are theoretically equivalent, Theorem 1
only provides a simpler algebraic approach to CRLB computations. o

Remark. Since 6 and 8) are related by a linear transformation, one may conjecture that

Theorem 1 can be proved by direct application of the CRLB theory for real-valued pa-
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rameters {5]. This is not so because only real-valued transformations are permitted there.
Furthermore, since g(8) : ©F x R?2 — % x R%, from Theorem 1 we can now calculate
CRLB’s for complex-valued functions of real-valued parameters (e.g., set py = 0, g, = 0).

This can be considered to be yet another generalization.

The only disturbing thing about Theorem 1 is that it is not obvious that the bottom
right p; x py block in I71(8) will be real-valued (being the lower bound on the covariance of
8., a real-valued parameter vector) as one might expect. This is indeed true as the following

lemma states.

Lemma 1 (Structure of complez FIM and complez CRLB) Partition

[ Jlnp T
o a0;
16) = g(alnp% ) _g| Op [ dlnp® olnp¥? alin}
ae* 08 06, 007 064 08,
dlnp
L 98, |
A B | PH L, P
_ B A" f pT _ | - 2p1 X 2p1 2p1 X po }
B e e I I == == | mx2m pxp
P P | Q L | To
where 8‘913; = %311—) was used, and
* H T
11 — g _]z* 3 I21 = [P P*] > 112 = ];)T = Iﬁ » 122 = Q =& (881;15) aalgzp ) 3
A=g (é”np ff"lﬂﬂ)  B-c¢ (f"”np Q@T) P :g(alnp @@H) |
087 067 08, 06, 60, 007

Note that 11y is complez-valued, Hermitian, and Xy is real-velued, symmetric.

Then
CRLB(6,) = [I; — 2 Re{PCP” + P*DP”}] ™" (14)

where C = (A —B*A* 7B}, and D = — A*'BC = — G*BA™". Note that CRLB(6,)

is real-valued, symmetric as required.
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-1
Proof. By the partioned matrix inversion lemma, CRLB (8,) = [Igg — IglI;llIlg] . As
C D*

D c* |’ where C = (A—B*A*—lB)“l,

shown in lemma B.4 in Appendix B , Iﬁl = {

and D = — A*"'BC = — C*BA L. Computing
CP? + D*P?
1211;11112 = [P P*] :l

C D*||pH )
% T =[PP H *nT
D C P DPY + C*P

= PCP7 4 PD'P" 4+ P'DP” 4 P*C*P” = 2Re {PCP7 + PDPY} |

from which (14) follows. Similarly, one can show that

CRLB(6;) = C + (CP¥ +D*P”) CRLB(6,) (PCH+P*DT)
= [CRLB(6;)]" . (15)

Expression (14) is particularly useful in signal processing applications because the complex-
valued parameter @, is usually a nuisance parameter (a signal amplitude) and 8, contains
the structural information that is of greater importance. For example, we cite the common
problem of sinusoidal parameter estimation 5] wherein 8, is the sinusoidal amplitude and
0, is the sinusoidal frequency. o

Note that the complex Fisher information matrix I(8) is Hermitian so the lower bound
on the complex covariance matrix in (6) is also Hermitian. In particular, their diagonal
elements are real-valued. For example, applying the inequality (6) for the [1, 1] element, we
obtain £ (|é1[1] — BI[I]F) > I"'(8). That is to say, we have a bound for the sum of the
variances of the real and imaginary parts of 6, [1]. If a bound on the variance of only the real
part of f;[1] is desired, we use g(@) = (0.1] + 97[1])/2 in Theorem 1 and obtain

€ (,éh[l] - 91r[1]|2) > % [11'1(9) _|_11:P1+1(9) _|_Ip1+1.1(9) +Ip1+1,p1+1(9)]
1

= 5 [1°1(6) + Re {T0m+(g) ] . | (16)

Note that, from (15), I"*(8) = IP*+*1»+1(9) Similarly, the variance of the imaginary part
of §1[1] can be shown to be bounded by 2 [11'1(9) - Re-{Il’P""l(B)}] . In general, the bounds
on the variances of the real and imaginary parts will be unequal (depending on the value
of Re {Il'pl"'l(ﬂ)}). Also note that the sum of the bounds on the individual variances of
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the real and imaginary parts of 64]1] is exactly the bound on (total) variance of f1[1] that is
given by I"1(8).

Ezample (DC level in complex white (Gaussian noise): Consider a simple example of ob-
serving a constant signal A in additive noise. We shall assume A is complex-valued and
is the unknown parameter of interest. The samples of noise are assumed to be uncorre-

- lated, complex Gaussian {5] unit variance, random variables. The PDF of the data vector
x = [z[0]z[1] ... =[NV — 1]]¥ is then given by

pci 4) = 2 exp{= 3 el 4P} |

n=0

50 that

N-1
Inp(x; A)=—Nlnw — > |z[n]— 4 = —~Nlnr — (x— AL)H(x — A1) ,
n=0 :
where 1 denotes the length-IV vector of ones. Using the complex gradient formulas in lemma

B.6 Appendix B, we have

%E = (x — A1)"1 = 1% (x — A1)*
%13 = 1¥(x — A1)

and using (7) with py = 1, p2 = 0, p = 2p; + p; = 2, we have
dlnp dlnp 17
A P | (x~ ALP1 - (x~ A1)71 ]
np np 17(x — A1y
dA 0A )
17E(x — Al)(x — ALYT1  178(x - A1)(x — A1)T1
| 1FE(x — A1) (x — ALT1 1FE(x — A1)"(x — A1)T1

_ [ i1 1fo1 N o
1701 1f1 | | 0 N

where properties E(ww#) = cov(w) and E(wwT) = 0 for complex Gaussian random vectors

w have been used [5]. From Theorem 1 it then follows that var(4) > 1/N. Also, using
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the transformation formula in Theorem 1 as in (16), we obtain var(Re{A}) > 1/2AN and
var(Im{A}) > 1/2N.
To illustrate the conventional approach to this problem, we compute

dlnp

PRe[A] = (x— ADFL 4 17 (x — A1) = 17 2Re{x — A1}

Ay = (= AN — 17 (x— A1) = 17 [(x — A1)* — (x - A1)] =17 2Im{x — A1}

so that
dlnp dlnp 717
ORe{A} | | ORe{A} _ 21" Re{x — A1} Tro T
€1 "oy Alnp = €| i Thmfx — A1) [ 2Re"{x — A1}1 2T {x - A1}1 |

SIm{A} | | OIm{A}

_ [ 17€Re{x — A1}ReT{x — A1}1 1TE€Re{x — A1}ImT {x — A1}1
| 1T€Im{x — AL}Re’ {x — A1}1 1T€Im{x — A1}Im% {x — A1}1
1711 1701 N 0
= 92 =
| 1701 171 0 2N

since for complex white Gaussian random variables [5] the real and imaginary parts are
uncorrelated, Gaussian random variables with identical covariances. It then follows that the
CRLBs for Re{A} and Im{A} are 1/2N each. Although the algebraic derivations of the
two approaches seem to be equally simple, this is because the signal vector (1) is real-valued
in this example. The reader is urged to attempt more general problems (see section 4) to

appreciate the algebraic simplicity involved in the proposed approach. o
AlnpdlnpH
08 08
mation matrix. (Recall that 8 contains only 8, and 8, while 8 contains 87 in addition.) An
inspection of the proof of Theorem 1 indicates that this is possible but a CRLB so defined
has some inconsistencies. First, lemma 1 does not hold, or the bottom right p, x p2 block
dlnpdlnp?
08 06

is not guaranteed to be real-valued, Secondly, the bounds derived via the usunal real-valued

can be used as a candidate Fisher infor-

Finally one wonders whether £

in the inverse of £ , which would be a lower bound for the covariance of ,,

parameter vector approach (by forming 9("")) would, in general, be different from that pro-

i ) Alnpdlnp™ ) : Alnpdlnp?
vided by the inverse of £ (_BQ— 78 . Finally, the inverse of £ 56 o8 may not
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be the greatest lower bound, i.e., it may be too conservative and not attainable. These can

be demonstrated by examining some simple examples.

Remark. Since ac};;p and %’?

[11] propose to compute the CRLB(80)) by inverting £

are related by a linear transformation, Yau and Bresler

Olnpdlnp”

08 08
multiplying by the transformation matrix. While this strategy may be viable, they call the
Olnpdlnp”

06 90

strates. Note that this matrix is complex symmetric but a covariance matrix is Hermitian.

I
Olnpdlnp ) will be

and pre- and post-

inverse of & a CRLB for 8, which is quite incorrect as Theorem 1 demon-

08 69

Furthermore, in many applications, the main diagonal-blocks of & (

zero (in the DC level example, this matrix was ’: ]{:f j[\)r :l) This also makes the inversion a

little tedious.

4 Example

We now illustrate the use of these theorems in two generic problems that frequently arise
in signal processing applications. The algebra, we believe, is -considerably simmpler than
a straightforward use [9] of the real-valued theory. The CRLB expressions derived in this
section have exactly the same form for an equivalent, problem with real data and parameters.
Therefore these results should, with obvious modifications, find application in corresponding
real-valued problems [8].

Ezample 1. Consider a quasi-linear model described by

x=1(3)0, +w (17)

where @,, B are unknown parameters. We observe x, a noisy version of the signal s = H#,
that lies in a parameterized subspace spanned by the p columns of H. The p elements
of 8, are the complex amplitudes of the component signals in s. The noise vector w is
assumned to be zero-mean, white complex Gaussian distributed with unknown variance o?.
We assume B is real-valued for purposes of illustration. This is a common problem in
signal processing [5] and in other areas [8] as well. Examples include parameter estimation

for damped/undamped sinusoids in white noise [5], resolution of overlapping echos [11],
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T T
etc. and their multi-dimensional extensions. Hence 8, = [ﬁng] , 8 = [Bf 87 02] and

8= {Bf o g7 crz]T. The log PDF of the observed data is given by [2, 5]

(x — H6,)” (x — H8,)

2 p

Inp(x; 8)=—Nlro? —

o
so that, from lemma B.6 in Appendix B, we have
alﬂp T *
sp. = HI (x—H0,) /o*
dlnp g B ,
G~ H (x—H8,) /o
Olnp 1 os osT N
= o 9 g o]
dlmnp _ N N (x - H8,)" (x — HS,)
dot g* o )
Here the Jacobian 2% is given b
ere € Jacobian 6[3 glVCIl Y
Js 8(H91)_[BHEL oHg, aﬂel]_{aH p OH .  OH 9]
B ap dB[1] 882)  0Bp,] ap[1] " 9pf2] "t 8B[pd
6, 0 --- 0
dH o1 8H 0 6, .-~ 0 oH
= P = — 2@91
[35[1] 557 Bﬂ[pz]] | =g =)
00 ... 6

where I,, denotes the identity matrix of size p; by p;, and ® denotes the Kronecker product.
Recall that, differentiating a matrix (vector) w.r.t. a real-valued scalar means replacing each

element in the matrix (vector) by the corresponding derivative w.r.t. the scalar.
dlnp

00

and taking expectations, it is easy to check that
&lnp Plnp 9 Inp
= ——— ] =0 =
8(302591) 0,¢ (30239;) , € (a&ag 0,

_8(62111;3):8( N z(waBI)H(x—Hel)) N

ot b

It is easily checked that & ) = 0, or the regularity conditions hold. Differentiating

w.r.t. o?

and

at
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Since the odd order moments of x — Hf, = w are zero, and £ (wwl) = 0 (follows from
properties of complex Gaussian random vectors [5]), we obtain
Olnp BlnpT " Olnp 8lnpT Olnp OlnpT OsH
E| i —— | = 2 =0 =— H/c?
(aa; 90, ) HH/o", €\ 55 20, $\"38 8 o5 H/°

Olnp dlnp? _ ¢ &*lnp 1 ﬁHas +QS_TQS_*
o8 a8 | BoB) 2|08 a8 T 98 B

Using symmetry as in lemma 1, we form

- 9e .

?

H L P
H'H 0 | H %6 0
l
0 HTH* | o 0
1 ap
1(9):; —_—— e — e .__l_ ________ —— ——
ds asT | [ 8s 8s
BE T el o5
I
0 0 [ 0 af% |

It is easy to see that CRLB(0?*) = o*/IN. By the block diagonal nature of 1(8), the complex
CRLB of ¢, and 8 is found by simply inverting the complex F'IM formed from 8., 8] and
B. In other words, CRLB (8,) and CRLB (8) may be found by thinking of only 8., 3 as the

unknown parameters. Then using lemma 1 we obtain

CRLB(8) = %Re{ s BS} — 2Re { Ity (mm) HH%} /oer )

o5 a8 o8
(2 (o™ 8s)]" o2 oHT | 8H -
= ‘pRe{ﬁ Pﬁa—;‘H =E;— [Re{(Ipz ®91)H% Pﬁ@ﬁ (Ip2®91)H
(18)
where P§ =1~ H (H7H) ™ HY and
\ -1 1 O ds -1
CRLB(8,) = o?(H"H)" + (H'H) HH£ CRLB (8) 7 B (H7H)™ .(19)

Equation (18) is of particular interest in many signal processing applications because
contains important physical information about the underlying signal {e.g. range, doppler,

frequency, arrival angle, etc.). We consider a few special cases which are of some interest.
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1. B and &2 are known. Then

9. | b I(B)—l H'H o0 dlnp | HYx — H'IG,
e *t o H'H | 06 | HTx* - H'H*9,*

Hence we have

dlnp

HYH) " Hx - 9,
o =1(8) (
50

(B7H") " Hx* — 6,

H

so that by Theorem 1, 8, = (HH H) B X is the efficient estimator.

2. Let pi = p, and let the k-th column of H, denoted by hi, depend only on S[k]. An

example is sinusoidal parameter estimation [5]. Then

1 o0 -~ 0
b _ [8h1 ohy 8hpl} 0 Gf2f -~ 0 _ce
a8 ap[t] 9p[2]  OB[p] P o
0 0 - Op]
and hence (18) becomes CRLB(8) = & [Re{®,7G"P4GO,}|™.  Next,
write 01[k] = |01[k]le*¥ and denote |@,| = diag{l6:[1]], - -, i[pi]]}, &, =
diag {em R ej¢1[P1]}, so that @, = |@,| ®,. Using this we obtain

CRLB (8) = if;|@1 ™" [Re {#.7GHP4G 3, ] e

and
o2

2|64[#]|
which brings out the explicit dependence on the signal to noise ratio of the k-th sig-
nal component, |[01[k]|?/o®. To obtain CRLB (8,), we use g—ﬁ = G @, and above
expression for CRLB (3) in (19). Hence we have

CRLB(B[k]) = [Re {#.7G"P}G &, }]

crLB @) ~ o[ (7H)” 11 (7) " G o, 6
[Re{2.7G"PLG 8.} " |0, ©,%GH (HHH)*]
= o? [ (H"H) " +1 ()" B7G &, [Re{2.7G7P4G 8.} 6,7GH (HHH)_I} ,
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Note that the bound on the complex amplitudes, CRLB (8, ), depends on the true value
of the amplitudes only via the phase differences (¢; - 4;), it does not depend on the
magnitudes. If 3 were to be known the bound would have been just o2 (HH H) _1, i.e.
the second term in above expression represents the increase in the bound because g is
also unknown. For other interpretations of these expressions, see [7, 11]. This example
can be generalized to include models wherein the columns h; are parameterized by
vector parameters 3, also see [11].

3. (Multiple snapshot models):

Xo H, 0o ... 0 81,0
X1 0 H; 0 91 1
N = ) e . s 91 =
X1 0 0 -+ Hpy 011

Usually all the Hy’s are equal and are parameterized by a vector 8 common to all

blocks [9, 11]. Further details can be worked out by simplifying £;

Ezample 2. (General Complex Gaussian CRLB) We now further generalize the previous
example by considering the data to be simply complex Gaussian with a mean s and covariance
matrix C jointly parameterized by a vector 8. As before, 8 may consist of some real-
valued and some complex-valued parameters. Then the k, /-th element of the complex Fisher
information matrix I(f) can be computed as

gs ¥ . Os s . 8s oC o1 oC

10, = a0 © oo T e © 33*[k]+tr{6‘9*[k] BH[I]C_I} -

for 1 <k, < p. This result is proved as lemma B.5 in Appendix B. In fact this general
result can be used in Example 1 but our goal there was to illustrate the derivations from
first principles.

It is believed that most of the other expressions for the CRLBs for real-valued parameters
(for example, asymptotic CRLB for complex wide sense stationary Gaussian processes) can

be extended along these lines as well.
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5 Conclusions

An introduction to Cramer-Rao lower bounds for complex-valued parameters was presented.
The vector parameterizing the PDF of the data is assumed to contain some complex-valued
and some real-valued parameters. We present a direct approach to this problem by working
with the complex-valued quantities per se. This, we believe, leads to elegant algebraic
manipulations unlike customary approaches which lead to somewhat clumsy algebra. Explicit

expressions for the CRLB in a simple but common signal processing problem are given.
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Appendix A
Proof of Theorem 1

We begin by checking that

[ Olnp T
064 iy -1 0
Olnp| lmp ¢ [ 1=, Olnp
8{89]—8 5t | = ;I 41 0 ]€ 500 =0, (A1)
611}_p 0 0 I
. 06, |

from (B-2). Since &) is an unbiased estimate of al it follows that é& is an unbiased

estimate of ce. From lemma B.2 in Appendix B and definition 2, it follows that

ng dg g g :/&QInPT
06 06[1] 89[2) a0(p] x 08

p(x; 8)dx . (A —2)

Now

A Bin p” L 0mpT olnp®
fx(a—a) S5 P(xi0) dx = fxaw (x; 6) dx—/xa a5 P(x; ) dx

T
= /X&alnp p(x; 6) dx—cxé’T{alnp} _ %

08 00 a6’

from (A-1) and (A-2). For any a € €4, b € €”, we then obtain

dlup yog
o
/x (& —a) 50 bp(x 6) dx = a” (%Pb

s0 that using the Cauchy-Schwartz inequality (lemma B.3 in Appendix B) we obtain

Jg A . ‘ dlnp® dnpT
oF < H[ _ PRy S ] W:
agb < a /X(a @) (&—a)"p(x; 0) dxfa - b7 | [ 2B ZRE p(x; 6) dx| b
= a"Cgza - b7I(H)b , (A-3)
where we define the p x p Hermitian matrix
_ o f0lmp0lnp” _ o {Olnpdlnp
1(3)‘5(39 86 )“‘5(69*“8"@*“ ! (A -4
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. 0 .
as the complex Fisher information matrix. In particular, choosing b = I7(8) (a—g) a in
(A-3) we obtain

08 a0

og
o —1
‘ 391 (9)—-- a

2< (a% Csa) ( a7 081-1(9)08 a) .

g - : . .
Since 20 I8 (9) is Hermitian and at least positive semidefinite, cancelling terms on both

sides we obtam

H[C&—"—*I_l(e) }aZO 3 (Aﬁ5)
for any a € 7. This means that the difference matrix in {(A-5) is positive semidefinite or

{C&m 231—1(9) } >0 .

In particular

H
[Cali, i = E18[k] — ol = var(al#]) > [ggrl(m% Lk |

Note that I(8) defined in (A-4) is only guaranteed to be positive semidefinite, we assume
that it is positive definite.
Next, we relate the elements of 1{6) to the second derivatives of the log PDF, this would
complete the proof for the first part of Theorem 1. For 1 <k < py, 1 <1 < py, consider
3*Inp 9, dlnp d [10lnp ;8Inp
86*[k) 001] ~  00~[k] (ae[z]) = 06 [k] [E 20, 2 aei[z]]
1 0 7 d 10lnp ;38Inp
(5 6,5+ 589,;[1%]) [5 36,1 569,-[5]]
11 &%lnp 3 Inp J| Olop & lnyp
T 1 [89,[1&]63,.[1] 39,-[16]69,-[1]] [39[ k)a0,[1] Oﬂr[k]aﬁg[l]}
Upon taking expectations and using (B-4) we have
g( Flnp ) _ ¢ 1 [c'ﬂnp dlnp dlnp Blnp] J [alnp Slnp Olp 31np]
o0*[k] 89[1] 4 100,[k] 00,[1] ~ 06,[k] 86.[1] 4 | 00;(k] 86.{1] 09,[k 86,[]]
_ ¢ F dlnp +£8111p] ‘ [l(?lnp B l@lnp}
200,[k] 200k 200.[ 2080,

_ g (alnia Blnp) - 1)),
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Other cases of k and [ are handled similarly and this completes the proof for the first part
of Theorem 1.

To prove the second part, we note that the Cauchy-Schwartz inequality holds exactly if
and only if g(x) = ch*(x) for some constant ¢. In (A-3) where the inequality was applied,
this condition means that equality is attained if and only if

or 5 oo
R " npH__,  Og
(& — &) a—c(ﬂ)—aw I (8)89 a
holds for all a € ¢P. Hence we need
9g. 4 Blnp s ,
Let T = agI_I(E?), a q by p matrix, so that (A-6) can be written as

o6
? Jlnp

c*(6) E [T]k,l m = &{k] — alk]

=1
for 1 <k < ¢. Differentiating both sides w.r.t. 8[n] for 1 < n < p and taking expected values

w.r.t. X we obtain (using the chain rule and regularity condition) -

03w}, 00, - [ 2]

=1
But the left hand side of above equation simplifies to

OO, =) [ggrone)]| =co [3F]

so that we need ¢(8) = 1. Therefore equality holds in Theorem 1 if and only if

g dlnp
o O gg =&—a. (A-1)

Taking expectations in (A-7), and using the regularity condition in (A-1), we conclude that

kon

& is unbiased. Although (A-7) in itself is seldom of much use, it simplifies when g(8) =46.

In such a case, we have

dlnp A
W:I(G)[G—G] , (A—8)
which helps identify the efficient estimator as stated in Theorem 1. Finally, it is easy to
establish that the real-valued estimator 9(1") formed from @ is unbiased and attains the real

CRLB given by I"(8(), i.e. efficient in the usual sense [5, 10].
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Appendix B

Lemma B.1 The usual approach to CRLB for the unknown parameters 8 (or o = g(8)) is

to consider a vector of real-valued parameters,

917‘ Qp x5y
ry — Tl AT ]
0 =18y | ,aD=]ay |, &= a;|,
92 8 2.4)

and use the available theory. The following conditions are then assumed in a simple deriva-

tion of the CRLB theorem [5].

Unbiased estimates. & (&m) =al"), or

oyr Lo 5P
£ (8 5T = & . (B — 1)
é2 a,

. i Jlnp
Regularity conditions. £ (W) =0, or

~0. (B —2)

This basically states that the order of differentiation w.r.t. 8() and integration over x can

be interchanged, more elaborately (B-2) means that

D[R] e 00 (% 60)
awm]:LJ”H o OX - (B-3)

for 1<k <q, 1 <I<p Next,for 1 <k <gq,1<1{<p, we also have

dlnp dlnp Plnp
i (5‘9‘?)[%] a6’(”[3]) =t (ae(r)[k] amr)[z]) ' (B-—-4)
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Lemma B.2 Recall that g@)=a=|aof | ,0=|0| ,p=204p:, ¢=2¢ + .
o, 0,
dglk arpq @l p
W[[”]:/xa[k] oy P 0% 0) dx (B —5)
Jor 1 <k <q, 1 <I1<p. IfO[] is real-valued, the derivative has the usual meaning, if []

is complez-valued, the derivative is as defined in section 2.

Then

Proof. Consider the case 1 <k < ¢q;, 1 <1< py. Then

dglk| d . P ) |
oo = o & G = o fxa[k]p(x,a) dx
d )

B %(aar[z] _Jagi[”) fx(&r[k]ﬂm[k]) p(x; 8) dx
= i (i 1)

- f [k}a‘zf{’]d —/ [k]g?ﬁ (x; 0) dx

step 1 followed from equation (B-1), steps 2, 3, and 5 by definitions, and step 4. follows by .

repeated application of (B-3). Other cases of k and ! are handled similarly. This proves the

lemma.

Lemma B.3 (Cauchy-Schwartz inequality). Let g(x), h(x) be arbitrary complez-valued
functions of x € RY or €V, and let w(x) be a non-negative real-valued function. Then

[ 96) A6 i ix| < [ 1660w ax] [ () o, (B9

with strict equality if and only if g(x) = ch*(x) for all X, for some complez constant c.

Proof. easy to check.
A B

Lemma B.4 Let B A* be a nonsingular Hermitian matriz where A is a p; by py
nonsingular Hermitian matriz and B is a py by p1 complez symmetric matriz. Then
A B | ¢ D
* = * ’ (B - 7)
B A D C

where C = (A — B*A*"'B) ™, end D = -~ A*~'BC = - C*BA ™.
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Proof. Using the partitioned matrix inversion lemma we have

A B | . | (A — B"‘A"‘—IB)_1 — (A - B*A*—lB) -1 B*A*1
B A*| | -(A*-BATB) BA™ (A*—BAB)”

_ [ C —CB*A*1 _ C _ATIB*C*

- |-cBATT ¢ || -ABC ’

because the matrix is Hermitian. This proves the lemma.

Lemma B.5 Let x ~ CN (s(8), C(8)) i.e., the observed data is compler Gaussian dis-
tributed with information in the mean and covariance. The elements of the complez Fisher

information matriz are given by

gs o s ds ¥ Js gc oc
1(6)], , = c c™ t C7—=C™} . -
O = o © e T oo © goE T T{BH*[k] 901 } (B8
Proof. 1t 1s well known that the real Fisher information matrix I(6(")) can be computed by
5, 6]

ds Js ocC ac
(r) o ~1 -1 ~1 .
e, , 2Re{amr)[k] C 69(,,)[1]}“]:{89(”[@0 SI0C } (B—9)

for 1 < k, ! < p. Consider first the case of for 1 < k < p1, 1 <1 < pyin (B-8). Then, by
definition, we have

[I(e)]k.! = % [[I(B(?‘))]k‘] - [I(G(T))] k+p1,l+p1] +i “I(Q(T))] kJ‘rmJ B [I(B("”))] kJ+P1]

= 3o )+ (o <o)

7 os #_ . 0s B s 7 . O
t3 [Re{aei[k] C aa?.[z]} Re{ae,p[k] C e
1, [8Cc ,8C ., 8C ., 0C
+ 4“{39,.[;%]0 oo ToamC aamC
] oc ._,90C ., 9oC __,0C _,
24 —~ .
+ o e e
Then using the fact that 2Re{aTb} = a¥Th + b Ta we have
H H ‘H o
T(0)], , = i 3965 _1 Os 4 Os o1 Js N Js _1 Os N Js o1 Js
: k] 6.1l 88.[]] ae6.[k] = 80;[k] 08;[1] 064l D8,k
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4 os . 0Os + Js HC‘I 35 as H . 8 _ 0s H 8
4 | 56,[k] 08.[1  86,[1 08,k 0,[k] a6,y 981
1 {9C ., (10C 4 oC
+ Etr{aar[k]c (2 56,11 ~ 28041 ) }
] oC 1.9C _J BC
+ 2“{691-[@0 (2 90,1 ~ 2864
_ 1 8 HC_1_1_as ] Os -I-l HC 1 9s 5 Os
T 280,k 200l 2060 2 00 k] 286,]11 206,
" "
+£6s o1 1 Os L ds \ g Os C_llas 2 Os
208, 200,[k] " 200:[k] 00,{1] 200,[k) * 200;[k]

1 8¢ g 0C \ ., 0C
+tr{(239 ] 289.,-[k])c 200" }

_ (1 95 ;5 B HC”185+185 +£35 HC—1 ds
200,k 206;[k] a8[]] 200.[1] 206, 0+[k]

9C __ 0C .
+tr{89*[k]c B0 }

ds ¥ | 8s ds #__, Bs oc ., 0C
= o © oo Teem © ammﬁ“{aa%c anC [

Note that (,;5:;[';] will not be Hermitian even though C is Hermitian, hence the third term in
above expression will be complex in general. (Note that sometimes it may be easier to com-
pute the partials w.r.t. C™"'so that the third term may be replaced by tr { g%c%% })

The other cases of k and I can be handled similarly so that this completes the proof of

the lemma.,

Lemma B.6 Let z and a be N x 1 complez-valued vectors, and let W be N x N, complez-

valued Hermitian matriz. Then,

daz ot dafz
dz L
Ozl a dzHa
5z =% ey T
o H
BzaWz — (Wa)* | Bza \in - Wy
Z Z

Proof. See [1].
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