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ABSTRACT

A new approach to representing a time-limited, and essentially bandlimited signal x(t), by a set of discrete
frequency/time values is proposed. The set of discrete frequencies is the set of frequency locations at which
(real and imaginary parts of) the Fourier transform of x(t) cross certain levels and the set of discrete
time values corresponds to the traditional level crossings of x(t). The proposed representation is based
on a simple bandpass signal model called a Sum-of-Sincs (SOS) model, that exploits our knowledge of
the bandwidth/timewidth of x(t). Given the discrete fequency/time locations, we can reconstruct the x(t)
by solving a least-squares problem. Using this approach, we propose an analysis/synthesis algorithm to
decompose and represent composite signals like speech.

1. INTRODUCTION
Traditionally, analog signals are converted to

discrete-time signals by sampling the signal on a uni-
formly spaced grid of time points. Given these sam-
ples, according to a version of the sampling theorem,
the analog signal can be reconstructed accurately, if
the time between samples is less than the reciprocal
of twice the bandwidth of the signal [1]. In this pa-
per we are interested in alternate methods of signal
representation that are motivated by natural sensory

systems such as the auditory system. Obviously the
auditory system does not use a uniform time grid
to encode acoustic signals. Although the precise na-
ture of its neural code is still unknown, the audi-
tory system appears to encode low and medium fre-
quency sounds that are critical for speech and music
perception using interspike intervals of many neural
spike trains [2, 3, 4, 5, 6]. Zero/level crossings of a
bandpass signal (i.e., the time locations at which a
waveform crosses the time axis or some other ampli-
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tude level) are easy to detect and are potential can-
didates for signal representation in natural sensory
systems. Biological neurons are known to fire when
their transmembrane potential exceeds a threshold
voltage [7] and hence could signal the location of
zero/level crossings. This has prompted the ques-
tion: Is it possible to encode bandpass signals us-
ing zero/level crossings? Although this question has
been around for thirty years [8], a reliable way to en-
code an arbitrary bandpass signal by its zero/level
crossings and to resynthesize the signal given these
crossings, has not been available. In this paper, we
propose a novel model-based method which can en-
code bandpass signals using zero/level crossings in
time and/or frequency domains.

In sampling theory “implicit sampling” [9] is a
method of signal representation in which one speci-
fies a grid of amplitude levels, and a signal is repre-
sented by the time instants (à la neural spike times)
at which it crosses those levels. Unfortunately, there
is no general theory of implicit sampling that relates
the frequency content of a signal and the number of
levels required. However, a special case of implicit
sampling that uses zero crossings has been studied
extensively [8, 10, 11, 9]. In particular, Logan [8] dis-
cusses in detail the conditions under which a band-
pass signal is represented by its zero crossings. Lo-
gan’s results show that zero crossings can represent
bandpass signals (to within a scale factor) only in
very special cases. These cases are discussed in a
later section. Logan concludes that in general ‘re-
covering a signal from its sign changes appears to
be very difficult and impractical’ [8] (page 487). In
this paper we recast the zero/level-crossings-based
signal representation problem using various band-
pass signal models thereby circumventing some of
the difficulties faced by Logan.

Figures 1 and 2 outline the frequency domain and
time domain signal representations proposed in this
paper. In the frequency domain representation, the
locations where the real and imaginary parts of the
Fourier transform of a time limited and essentially
band limited signal x(t), cross certain levels are used
to represent the signal. Similarly, in the time do-
main representation, the locations where the signal
x(t) and its Hilbert transform x̂(t) cross certain lev-
els, are used to represent the signal. In either do-
main, given these level crossing locations it is possi-

ble to accurately reconstruct the original signal, by
invoking a simple bandpass signal model to repre-
sent x(t). We call this signal model as sum-of-sincs
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Fig. 1: Frequency domain signal representation:
λ1,λ2,...,λp represent the signal x(t). Only level
crossings on the positive side of the frequency axis
are used.
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Fig. 2: Time domain signal representation:
t1,t2,...,tl represent the signal x(t).

(SOS) model. This model exploits the fact that we
know the time width and/or the bandwidth of the
signal x(t). The SOS signal models are developed in
sections 2 and 3 for the frequency and time domains
respectively. Using these signal models and the level
crossing locations we can determine the Fourier coef-
ficients corresponding to the signal x(t) and thereby
reconstruct x(t). This signal representation method
is then applied to composite signals like speech in
section 4. The basic approach is to decompose a
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composite signal into multiple time and band lim-
ited signal components and use the above mentioned
approaches to represent each signal component. We
show by simulation that speech signals can be rep-
resented with high accuracy using the proposed ap-
proach.

2. BANDPASS SIGNAL REPRESENTATION
BY A SET OF DISCRETE FREQUENCY LOCA-
TIONS

In section 2.1 we develop the SOS model for
a time-limited, essentially bandlimited signal x(t).
Given the zero crossings of the (real and imaginary
parts of the) Fourier transform of x(t), we can cal-
culate the SOS model coefficients by solving a sim-
ple eigenvalue problem. Using the model coefficients
the original signal can be reconstructed. If arbitrary
level crossings are used in place of zero crossings,
then the model coefficients can be obtained by solv-
ing a linear least-squares problem. In section 2.2
we show how a time delay τ can be used to induce
additional zero/level crossings in the Fourier trans-
form of the signal x(t) to ensure satisfactory signal
representation. In practice, the Fourier transform of
the signal x(t) may be computed using a filter bank.
The zero/level crossing locations along the frequency
axis can be determined by interpolating across filter
outputs (see figure 16). An example demonstrat-
ing signal reconstruction from zero/level crossings is
given in section 2.4.

Let x(t) be a real-valued, finite-duration signal.
Also, assume that x(t) has been obtained by
windowing a bandpass signal s(t) using a finite-
duration, smooth, window function w(t). w(t) is
non-zero only over the interval 0 to γ seconds. As a
concrete example, x(t) may be visualized as a band-
pass filtered (in some frequency range) speech signal
that is multiplied by the window w(t). A typical ex-
ample of x(t) is shown in figure 5. Let X(f) denote
the Fourier transform of x(t).

X(f) =

∫ γ

0

x(t)e−j2πftdt. (1)

Since x(t) is time-limited, X(f) is not strictly ban-
dlimited. But, since we assumed that x(t) has al-
ready been bandpass filtered, we can assume that
it is essentially bandlimited to a frequency range
f1 < |f | < f2. As per Slepian’s definition [12], a sig-
nal x(t) is said to be ǫ-bandlimited if the energy in

the signal outside the band f1 < |f | < f2 is less than
a specified value ǫ. ǫ may be chosen small enough
that |X(f)| is practically zero outside the frequency
interval f1 < |f | < f2. The real part of X(f) is
shown in figure 7 (imaginary part not shown).

2.1. A Sum-of-Sincs (SOS) Model in the Fre-
quency Domain

Let us also define another signal xd(t) which is
a delayed version of x(t). xd(t) = x(t − τ). xd(t) is
shown in figure 6. The reason for this delay should
become apparent later in the section. It follows that

Xd(f) = X(f)e−j2πfτ . (2)

The magnitude of Xd(f) is of course the same as the
magnitude of X(f). However, as shown in figure 8,
the real part of Xd(f) shows more number of axis
crossings compared to the real part of X(f) in figure
7. So does the imaginary part of Xd(f) compared
to the imaginary part of X(f) (figure not shown).
Clearly, the number of additional zero-crossings in
Xd(f) depends on the duration of the delay τ (< γ).
Now, let us periodically extend xd(t), with period γ,
and call the resulting signal xp(t). xp(t) is shown in
figure 9.

xp(t) =
∞
∑

n=−∞

xd(t−nγ) =
∞
∑

n=−∞

x(t−τ −nγ). (3)

Using the Fourier series expansion for xp(t) and the
fact that X(f) ( and also Xd(f)) is ǫ-bandlimited to
the interval f1 Hz to f2 Hz, we have

xp(t) =

N
∑

k=M

(ak cos(2πkf0t) + bk sin(2πkf0t)), (4)

where f0 = 1/γ and ak and bk are the Fourier co-
efficients. The integers M and N are such that
f1 ≤ Mf0 < f1 + f0 and f2 − f0 < Nf0 ≤ f2.
A typical magnitude spectrum of xp(t) is shown in
figure 10. We can write Xp(f) as follows.

Xp(f) =
N

∑

k=M

[

(ak − jbk

2

)

δ(f − kf0)

+
(ak + jbk

2

)

δ(f + kf0)
]

. (5)

If we window xp(t) by a rectangular window r(t)

r(t) =

{

1 τ ≤ t ≤ τ + γ
0 otherwise

(6)
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we get xd(t) = xp(t)r(t). Thus, a model for Xd(f)
is

Xd(f) = Xp(f) ∗ R(f)

=

N
∑

k=M

[

(ak − jbk

2

)

R(f − kf0)

+
(ak + jbk

2

)

R(f + kf0)
]

. (7)

where R(f) is the Fourier transform of r(t) and ∗
denotes convolution operation. R(f) is given by the
following formula.

R(f) = γ
sinπfγ

πfγ
e−j2πf(τ+γ/2)

= A(f) + jB(f), (8)

where A(f) and B(f) denote the real and imaginary
parts of R(f), respectively. We shall call A(f) and
B(f) generically as frequency domain ”Sinc” func-
tions. Plugging eq.(8) into eq.(7), the real and imag-
inary parts of Xd(f), which are named Xdr(f) and
Xdi(f) respectively, can be expressed as follows.

Xdr(f) =
1

2

N
∑

k=M

[

ak

{

A(f − kf0) + A(f + kf0)
}

+bk

{

B(f − kf0) − B(f + kf0)
}

]

Xdi(f) =
1

2

N
∑

k=M

[

ak

{

B(f − kf0) + B(f + kf0)
}

+bk

{

A(f + kf0) − A(f − kf0)
}

]

(9)

Since Xdr(f) and Xdi(f) are expressed as a linear
combination of shifted versions of the Sinc functions,
we call this model the Sum-of-Sincs (SOS) model.

Let us denote by λk, k = 1, 2, .., p the locations along
the frequency axis at which the real part Xdr(f) is
zero. Analogously, let νk, k = 1, 2, .., q denote the q
discrete frequency values corresponding to the zero
crossings of Xdi(f) on the positive side of the fre-
quency axis. The functions Xdr(f) and Xdi(f) may
cross or may only touch the frequency axis at these
points, but in any case, we call them zero crossings.

Xdr(f)
∣

∣

f=λk

= 0 k = 1, 2, .., p,

Xdi(f)
∣

∣

f=νk

= 0 k = 1, 2, .., q. (10)

We assume that, (p+q), the number of zero crossings
is greater than or equal to the number of Fourier
coefficients 2 × (N − M + 1). Writing the above
equations in matrix-vector notation we have

Xc = 0, (11)

where the vector c contains the unknown Fourier
coefficients,

c = [aM aM+1 . . . aN bM bM+1 . . . bN ]T , (12)

X =

[

X1

X2

] [

A1 + A2 B1 − B2

B3 + B4 A4 − A3

]

,

where the matrices Ak and Bk have elements which
are the Sinc functions A(f±kf0) and B(f±kf0) eval-
uated at various zero crossing locations. The subma-
trices X1 and X2 have p and q rows respectively. If
xd(t) (more accurately its periodic extension xp(t))
can exactly be described by the finite Fourier series
in eq.(4)), it can be shown that c is a unique vector
in the null space of X. However, in practice, since
x(t) is often not strictly bandlimited, the homoge-
neous equations above can be only approximately
satisfied. In that case, we can optimally estimate
the vector of Fourier coefficients c (to within a scale
factor) by minimizing the quadratic form

Qf = cT XT Xc (13)

subject to the constraint that cT c = 1. The solution
vector c is of course the eigenvector of XT X corre-
sponding to its smallest eigenvalue [13]. Therefore,
if the locations of sufficient number of zero crossings
of the real and imaginary parts of the Fourier trans-
form of the delayed signal xd(t) are known, then the
Fourier coefficients c can be computed, and the sig-
nal xp(t) (and hence x(t)) can be reconstructed (to
with in a scale factor) using the finite Fourier series
in eq.(4). A scale factor needed to match the signal
x(t) has to be separately calculated. Thus x(t) is
implicitly represented by the (p + q) frequency lo-
cations λk and νk. Note that the Fourier transform
calculations needed to determine the zero crossing
locations are performed on a short duration signal
xd(t), and can be implemented in real time.

2.2. “Zero Sampling Theorem” and Time Delay
τ

Why do we delay x(t) by τ seconds? A suffi-
ciently long time delay τ (< γ) is needed to ensure
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that there are sufficient number of zero crossings in
the real and imaginary parts of Xd(f) to determine
the 2× (N −M + 1) real-valued Fourier coefficients
in eq.(11). How much time delay is needed for a
given signal x(t)? Note that x(t) is time-limited to γ
seconds and essentially bandlimited to B Hz, where
B = f2 − f1. Therefore, according to the sampling
theorem, we need at least 2Bγ values to represent
x(t). To answer the question on the length of τ ,
consider the Fourier spectrum of x(t).

X(f) = |X(f)|e−j(2παf+φ(f)) (14)

where the phase term includes a possible linear trend
denoted by α. Since

Xd(f) = |X(f)|e−j(2π(α+τ)f+φ(f)) (15)

the linear phase contribution α gets added to τ
there by resulting in increased zero crossings in
Xdr(f) and Xdi(f). There will be on the aver-

age two zero crossings in Xdr(f) and Xdi(f) for
every 1

α+τ Hz (because |X(f)| gets multiplied by
cos(2π(α+τ)f) or sin(2π(α+τ)f)). Since the signal
bandwidth is B Hz, we have 2B(α + τ) zero cross-
ings for each, Xdr(f) and Xdi(f), amounting to a
total of 4B(α + τ) zero crossings. α = 0 is the
worst case since it results in minimum number of
zero crossings. Therefore, 4Bτ has to equal or ex-
ceed 2Bγ specified by the sampling theorem. Thus,

τ ≥ γ/2, (16)

to ensure sufficient number of zero crossings. We
can call this result the “zero sampling theorem”. If
α is non-zero (such will be the case for a signal that
grows within the window) then τ can be less than
γ/2.

2.3. Using level crossings to determine model co-
efficients

Since we have a model for the Fourier transform
of the signal xd(t), it is also possible to obtain the
SOS model coefficients using level crossings instead
of just the zero crossings. Let l1 to lp and v1 to
vq denote the various levels that Xdr(f) and Xdi(f)
cross, within the frequency interval f1 to f2. Let
λk denote the location along the frequency axis at
which the real part of Xd(f) equals lk. See figure
3. Similarly, let νk denote the discrete frequency

value at which the imaginary part of Xd(f) equals
vk. That is,

Xdr(f)
∣

∣

f=λk

= lk k = 1, 2, .., p,

Xdi(f)
∣

∣

f=νk

= vk k = 1, 2, .., q. (17)

This results in a set of linear equations similar to
the one in eq.(11) except the rightside is the vector
of levels.

Xc = l, (18)

where l = [l1, l2, ..., lp, v1, v2, ..., vq]
T . It is not neces-

sary to use all the level crossing locations. However,
the number of equations in eq.(18) has to be greater
than or equal to the number of Fourier coefficitents
i.e., (2 × (N − M + 1)). We can then solve for c

using least squares. That is,

c = (XTX)−1XTl. (19)

The signal x(t) can be reconstructed by using the
Fourier coefficients vector c. No additional scale fac-
tor is required unlike the zero-crossings-only case.
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Fig. 3: Examples of levels l1 to lp shown with re-
spect to Xdr(f).

Thus, the amount of delay τ and the number of lev-
els provide two independent ways of increasing the
number of discrete frequency locations that can be
used to represent the signal. One could be traded off
against the other. The number of such discrete fre-
quency locations must equal or exceed the number
of degrees of freedom (2Bγ) that is inherent to the
signal x(t). In the following subsection we show an
example wherein a bandpass signal is represented by
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the zero/level crossing locations and reconstructed
from them.

2.4. Example of signal reconstruction from dis-
crete frequencies

A bandpass signal s(t) was generated using the
following formula.

s(t) = 2.5 cos(2π × 1900t + 0.9273)

+ cos(2π × 2081t)

+0.7151 cos(2π × 2150t − 1.2137).(20)

The frequencies and amplitudes were chosen arbi-
trarily. The signal components’ frequencies lie in the
range of 1900 Hz to 2150 Hz. A 12 ms segment of
this signal is shown in figure 4. A γ = 6 ms Hanning
window, w(t), was used to window the signal s(t).
x(t) = s(t)w(t). The resulting x(t) is shown in figure
5. The spectrum X(f) is essentially zero outside

 )(ts

 )(mst12

4

-4

0

1

-1

 )(tw

Fig. 4: Signal s(t).

the frequency range of f1 = 1500 Hz to f2 = 2600
Hz. The delayed signal xd(t) with τ = 3.5 ms is
shown in figure 6. Note that τ is greater than γ/2.
The periodically extended signal, xp(t), is shown in
figure 9.

The real parts of X(f) and Xd(f) are shown in fig-
ures 7 and 8 respectively. Note that the real part
of Xd(f) has more number of zero crossings when
compared to the real part of X(f). This is the case
for imaginary part of Xd(f) as well. In this case,
the number of zero crossings in the real and imagi-
nary parts of Xd(f) that lie in the range f1 = 1500
Hz and f2 = 2600 Hz are 12 (=p) and 14 (=q)
respectively. The fundamental frequency of xp(t),

)(tx

6
 )(mst

3

-3

0

Fig. 5: Windowed signal x(t) = s(t)w(t).

 )(txd

 )(mst9.53.5

 γτ

Fig. 6: Shifted windowed signal.

f0 = 1/γ, is 166.67 Hz. The 7 harmonic compo-
nents that lie between 1500 Hz to 2600 Hz are 1500,
1666.67, 1833.33, 2000, 2166.67, 2333.33 and 2500
Hz. These frequencies along with the zero crossings’
locations were used in eq.(11) to obtain the Fourier
coefficients ak and bk. The 14 Fourier coefficients
were: a1 to a7 were 0.0023, 0.0583, 0.5343, 0.5796,
−0.0633, −0.0816, 0.0084 and b1 to b7 were 0.0136,
−0.1294, −0.3015, 0.2843, 0.4117, 0.0795, 0.0050.
Since we lose the information about the overall am-
plitude of the signal by relying on the zero cross-
ings, the reconstructed signal has to be appropri-
ately scaled. The scale factor can be easily obtained
by using a least squares fit to the original signal,
which in this case turned out to be −0.9927. The
original signal xd(t) and the reconstructed signal
x̃d(t) are shown in figure 11 (solid line for xd(t) and
dotted line for x̃d(t)). We have scaled the waveform
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Fig. 8: Real part of Fourier Transform of xd(t).

xd(t) such that it swings between ±1. The maximum
value of the error xd(t) − x̃d(t) is less than 3% and
is shown in figure 12. The reconstruction error can
be reduced further by including in our computation
the zero crossings that lie in the range of frequen-
cies beyond the interval of 1500 to 2600 Hz. More
importantly, if the number of zero crossings (p + q)
is reduced by limiting them to lie in the frequency
range where |Xd(f)| is large, then the signal esti-
mate x̃d(t) is still a decent approximation to xd(t),
especially in the middle of the window.

Using level crossings: We also attempted recon-
structing the signal x(t) (or xd(t)) using frequency
domain (non-zero) level crossings. As in the zero
crossing case, the level crossings that lie in the fre-
quency range 1500 Hz to 2600 Hz were chosen. How-
ever we used only two positive levels for Xdr(f) (and
Xdi(f)). The levels were 0.1 and 0.5 times the max-

 γ γ τ

 )(txp

 t

Fig. 9: Periodic extension of xd(t).
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Fig. 10: Magnitude spectrum of xp(t).

imum of |Xdr(f)| (and |Xdi(f)|). See figure 3 which
depicts the levels. In this case we used only two
levels although the total number of level crossings
were 38 (20 for Xdr(f) and 18 for Xdi(f)). These
levels and the corresponding level crossing locations
were used in setting up the simultaneous equations
in eq.(18). We then solved for the Fourier coeffi-
cient vector c. The original and reconstructed sig-
nal and the approximation error for this case are
shown in figures 13 and 14 respectively. The maxi-
mum absolute error in this case is about 1%. Hav-
ing more levels or both positive and negative levels
did not make much difference in the final results.
The above procedure was continually repeated by

sliding the window w(t) over the entire signal s(t).
Each time the Short Time Fourier Transform of the
windowed signal is computed and the level cross-
ing locations of the real and imaginary parts are de-
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Fig. 11: Original and reconstructed windowed sig-
nal. Frequency domain zero crossings were used.
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Fig. 12: Approximation error xd(t) − x̃d(t).

termined. Using these discrete frequency locations
the Fourier coefficients are computed. The resyn-
thesized signal estimates are then overlapped and
added. Figure 15(a) shows the original (solid line)
and reconstructed (dotted line) signal over the en-
tire 12 ms range. The approximation error is shown
in figure 15(b). The approximation error is always
less than one percent.

It is well known [14] that a Short Time Fourier
Transform (STFT) calculation can be interpreted
(as well as implemented) as a filter bank, shown in
figure 16, where the shape of the filter impulse re-
sponses are determined by the shape of the window
w(t). Note that each filter includes the delay τ in
its impulse response. The filters may be positioned
with a coarse frequency resolution and then we can
interpolate between the neighboring filter outputs to

 )(mst

 )(),( txtx dd

1

-1

~

Fig. 13: Original and reconstructed windowed sig-
nal. Frequency domain level crossings were used.
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.012
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~

Fig. 14: Approximation error xd(t) − x̃d(t).

find the exact zero/level crossing locations. In fact
the example above was implemented as a filter bank
with (137) filters spaced 8 Hz apart . The filterbank
shown in figure 16 is a basic building block which
can be adapted to represent signals over the entire
frequency range. For signals centered at higher fre-
quencies, because such signals have the potential to
exhibit more rapid envelope/phase modulations, to
represent them adequately it is necessary to narrow
the window length γ with appropriate reduction in
τ . Consequently, the filters in the filterbank can be
spaced farther apart. The opposite is the case for
a signal centered at lower frequencies and the filters
in this case will be more closely spaced. (This is
not unlike wavelet analysis. The significant differ-
ence being the need for the delay τ in our case). It
is curious that the traveling wave in the cochlea also
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Fig. 15: (a) The entire original and reconstructed signal. Frequency domain level crossings were used.
(b) Approximation error s(t) − s̃(t).
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of the filters are the modulated window functions (including the delay τ). Zero/level crossings are obtained
by interpolating across the filters.

experiences a delay that is inversely proportional to
the tuning frequency. The cochlear partition that is

tuned to high frequencies is physically located close
to the oval window at the entrance to the cochlea
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and the low frequencies are located farther down
the basilar membrane, thereby experiencing larger
delay.

3. BANDPASS SIGNAL REPRESENTATION
BY A SET OF DISCRETE TIME INSTANTS

Invoking time/frequency duality, and using an
approach analogous to the one outlined in section
2, we can represent the signal x(t) by discrete time
instants as well. However, the analogy between the
time and frequency domains is not exact, since in
practice, only the signal x(t) (and not its Fourier
Transform X(f)) is available for observation and
processing. Consider xd(t) (the delayed version of
x(t)), the same signal described in section 2. Let
x̂d(t) denote the Hilbert transform of xd(t) [15].
Therefore, X̂d(f) = −j sgn(f)Xd(f). Let xa(t) de-
note the analytic signal [15] associated with xd(t).

xa(t) = xd(t) + j x̂d(t). (21)

Thus Xa(f), the Fourier transform of xa(t) is con-
fined to the frequency range of f1 to f2 on the posi-
tive side of the frequency axis, and has a bandwidth
B (B = f2 − f1). The magnitude spectrum |Xa(f)|
is sketched in figure 17 which is identical to |Xd(f)|
for f > 0. Comparing figure 17 and figure 6, we no-

 

1f
 

2f
 f

 )( fX a

0

B

Fig. 17: Magnitude spectrum of the analytic signal
xa(t).

tice the analogy between f1 and B in figure 17 and
τ and γ in figure 6, respectively. Now, consider the
periodic extension of Xa(f) with a period of B Hz
shown in figure 18. Let us denote this periodically
extended spectrum as Xap(f). Let T0 = 1/B. Thus
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 f0
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Fig. 18: Magnitude of the periodically extended
Xa(f). Q(f) is the B Hz wide rectangular window.

the corresponding time signal is

xap(t) = T0 xa(t)

∞
∑

n=−∞

δ(t − nT0). (22)

However, since xa(t) is non-zero only over the in-
terval τ to τ + γ seconds, we can write xap(t) as
follows.

xap(t) = T0

L
∑

n=K

xa(nT0)δ(t − nT0), (23)

where K is an integer such that KT0 is closest to
but not less than τ , and L is an integer such that
LT0 is closest to but not exceeding τ + γ. If we
window Xap(f) with a rectangular window Q(f) (see
figure 18) (which is unity for f1 ≤ f ≤ f2, but zero
elsewhere), we have Xa(f) = Xap(f)Q(f). Thus, we
get the model for the analytic signal (which is the
analog of eq.(7)),

xa(t) = xap(t) ∗ q(t)

= T0

L
∑

n=K

xa(nT0)q(t − nT0), (24)

where q(t) is the inverse Fourier transform of Q(f).

q(t) = B
Sin(πBt)

(πBt)
ej2πt(f1+

B

2
)

= C(t) + j D(t), (25)

where C(t) and D(t) are generically called the time-
domain ”Sinc” functions, the counter parts of A(f)
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and B(f) in eq.(8). Plugging eq.(25) into eq.(24) we
obtain expressions for xd(t) and x̂d(t), i.e., the real
and imaginary parts of xa(t) as follows.

xd(t) = T0

L
∑

n=K

[

xd(nT0)C(t − nT0)

− x̂d(nT0)D(t − nT0)
]

x̂d(t) = T0

L
∑

n=K

[

xd(nT0)D(t − nT0)

+ x̂d(nT0)C(t − nT0)
]

(26)

Let tk, k = 1, 2, .., l and τk, k = 1, 2, ..,m denote the
zero crossings of xd(t) and x̂d(t) respectively.

xd(t)
∣

∣

t=tk

= 0 k = 1, 2, .., l,

x̂d(t)
∣

∣

t=τk

= 0 k = 1, 2, ..,m. (27)

We can write the above equations more explicitly
in matrix-vector notation as in eq. (28), and more
compactly as follows,

[

Ct −Dt

Dτ Cτ

] [

xd(nT0)
x̂d(nT0)

]

= 0. (29)

As in section 2.1 we can use the above l+m equations
to solve for the unknown sample values xd(nT0), and
x̂d(nT0), n = K,K + 1, .., L, if desired. Alternately,
we can also directly solve for the Fourier coefficients
ak and bk as follows. Since we have a periodic sig-
nal model for xd(t) (see eq.(4)), its sample values
xd(nT0), and x̂d(nT0) can be expressed in terms of
cosines and sines as in eq. (30) which can be written
in compact form as follows.

[

xd(nT0)
x̂d(nT0)

]

=

[

CS SI

SI −CS

]

c (31)

Substituting eq.(31) in eq.(29) we get

Yc = 0 (32)

where c is the vector of Fourier coefficients (defined
in eq.(12)) and

Y =

[

Y1

Y2

]

=

[

Ct −Dt

Dτ Cτ

] [

CS SI

SI −CS

]

.

(33)
Y1 and Y2 are l × (L − K + 1) and m × (L − K +
1) submatrices respectively. The Fourier coefficients

can then be obtained by minimizing the quadratic
form Qt (analogous to the one in eq.(13))

Qt = cT YT Yc, (34)

subject to the constraint cT c = 1. Again, c is the
eigenvector corresponding to the smallest eigenvalue
of YT Y. Thus, the zero crossing locations tk (and
τk) represent the signal xd(t) (and x̂d(t)) to within
a scale factor. However, this assumes that we have
sufficient number of equations. Since the lowest
frequency component in the signal xd(t) is f1 Hz,
xd(t) will have atleast 2f1 zero crossings per second.
Since the signal is γ seconds long, xd(t) will have
atleast 2f1γ zero crossings (and an additional 2f1γ
for x̂d(t)). Since γ = 1/f0, we have a total of 4f1/f0

zero crossings. The number of unknown Fourier co-
efficients (ak and bk) is 2B/f0. Thus 4f1/f0 has to
be greater than 2B/f0. That is B < 2f1, or

f1 > B/2,

which is analogous to the condition in eq.(16). If the
number of zero crossings is insufficient, in principle,
we can modulate xa(t) by ej2π∆ft and then obtain
the zero crossings of the real and imaginary parts
of xa(t)ej2π∆ft, thereby increasing the number of
equations. Thus the frequency shift ∆f is analogous
to the time delay τ in section 2.

As in section 2.3, we can also use level crossing lo-
cations to obtain the SOS model coefficients. Let

l = [w1, w2, ..., wl, u1, u2, ..., um]T

denote the l (and m) levels that xd(t) (and x̂d(t))
crosses. Let t1 to tl and τ1 to τm be the correspond-
ing time locations. Then the corresponding simulta-
neous equations are

[

Y1

Y2

]

c = l. (35)

Again we can solve for c using least squares.

Note that we have used the Hilbert transform of
xd(t) to simplify the derivation of the signal model
in eqs.(26) and (27). We do not need the zero
or level crossing locations of x̂d(t) to solve for the
SOS model coefficients. Note that the upper part
of the Y matrix, (i.e., Y1) depends only on the
zero/level crossings of xd(t). Hence if the number of
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T0





















C(t1 − KT0) . . . C(t1 − LT0) −D(t1 − KT0) . . . −D(t1 − LT0)
...

. . .
...

...
. . .

...
C(tl − KT0) . . . C(tl − LT0) −D(tl − KT0) . . . −D(tl − LT0)
D(τ1 − KT0) . . . D(τ1 − LT0) C(τ1 − KT0) . . . C(τ1 − LT0)

...
. . .

...
...

. . .
...

D(τm − KT0) . . . D(τm − LT0) C(τm − KT0) . . . C(τm − LT0)









































xd(KT0)
...

xd(LT0)
x̂d(KT0)

...
x̂d(LT0)





















= 0,

(28)

















xd(KT0)
...

xd(LT0)
x̂d(KT0)

...
x̂d(LT0)

















=

















cos(2πMf0KT0) . . . cos(2πNf0KT0) sin(2πMf0KT0) . . . sin(2πNf0KT0)
...

. . .
...

...
. . .

...
cos(2πMf0LT0) . . . cos(2πNf0LT0) sin(2πMf0LT0) . . . sin(2πNf0LT0)
sin(2πMf0KT0) . . . sin(2πNf0KT0) − cos(2πMf0KT0) . . . − cos(2πNf0KT0)

...
. . .

...
...

. . .
...

sin(2πMf0KT0) . . . sin(2πNf0KT0) − cos(2πMf0KT0) . . . − cos(2πNf0KT0)

































aM

...
aN

bM

...
bN

















(30)

level crossings l associated with xd(t) is large enough
(l > 2(N − M + 1)), then we can use only the level
crossing equations

Y1c = w, (36)

to solve for c (where w = [w1, w2, ..., wl]
T ).

We applied the above algorithm to the signal given
in the example described in section 2.4. We used
the level crossings of the waveform xd(t) and x̂d(t)
(although we need not use the zero/level crossings of
x̂d(t)). The waveforms xd(t) and x̂d(t) were scaled
to lie between −1 and 1. We used only two levels
0.1 and 0.5 for both xd(t) and x̂d(t). The frequency
range was B = f2 − f1 = 2600 − 1500, as before.
There were 52 level crossings, 26 each for xd(t) and
x̂d(t). Using these level crossings we solved eq.(35)
for c using least squares. The original and recon-
structed signals are shown in figure 19(a) (solid line
for xd(t) and dotted line for x̃d(t)). The approx-
imation error is shown in figure 19(b). The cor-
responding figures for the entire 12 ms signal are
shown in figures 20(a) and 20(b). When compared
to the frequency domain method shown in figures
14 and 15(b) the error in the time domain case is
slightly larger. This can be attributed to the fact
that, whereas the signal is strictly time limited by
the window w(t) in the frequency domain case, the
assumption in figure 17 that Xd(f) is strictly ban-
dlimited is only approximately true.

In summary, we have developed an implicit sam-
pling method for representing signals by discrete
time/frequency locations, the locations at which the
signal and/or its Fourier transform (real and/or
imaginary parts) crosses certain levels. The only
restriction is that the signal is time limited to γ
seconds and is approximately bandlimited to B Hz.
Given a composite signal like speech we can decom-
pose it into frequency bands, each with its own γ
and B values depending on the center frequency of
the band, use the level crossings in each band to rep-
resent the entire signal. We illustrate this approach
in the following section.

4. SPEECH SIGNAL REPRESENTATION
In this section we apply the two methods devel-

oped in sections 2 and 3 to represent a composite
wideband signal like speech. We use two sentences
that are drawn from the TIMIT database as exam-
ples. These sentences are: “Does Hindu ideology
honor cows?” (/timit/train/dr7/mbbr0/sx245.wav)
and “Will Robin wear a yellow lily?”
(/timit/test/dr3/mmab0/sx12.wav), both spo-
ken by a male. The sampling frequency is 16kHz.
These speech signals were pre-filtered using a
so-called third-octave filterbank. A third-octave
filter bank is an internationally standardized filter
bank that is often used in audio analysis [16]. In
our version of the filterbank there are eleven filters
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Fig. 19: (a) Reconstructed and original signal (b) Approximation error xd(t) − x̃d(t).
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Fig. 20: (a) Reconstructed and original signal (b) Approximation error s(t) - s̃(t).

covering a frequency range of 155 Hz to 4490 Hz.
These filters are divided into two groups. The first
four filters (see table 1) that have center frequencies
below 1000 Hz, are equally spaced in frequency.
They all have the same bandwith (184 Hz). The
next seven filters that lie beyond 1000 Hz have
center frequencies fc[k], k = 5, 6, .., 11, given by the
following formula.

fc[k] = 2(k−5)/3 1000Hz, k = 5, 6, .., 11. (37)

That is, the consecutive filters are spaced a third of
an octave apart. For the last seven filters, the upper
and lower band edges of the kth filter are given by
the geometric means

fch[k] =
√

fc[k]fc[k + 1], (38)

and

fcl[k] =
√

fc[k − 1]fc[k], (39)

respectively. From the above equations, it can be
shown that the bandwidth of the kth filter (for the
last seven filters) is given by the formula

BW [k] = fc[k]
21/3 − 1

21/6
k = 5, 6, .., 11. (40)

That is, the bandwidth of a filter is in proportion to
its center frequency. All the filters in the filterbank
are 500-th order linear-phase FIR filters. The para-
meters of all the filters in the filterbank are displayed
in table 1. The magnitude responses of all the eleven
filters are shown in figure 21. The overall magnitude
response of the filterbank is essentially flat over the
entire frequency range of 155Hz to 4490Hz.
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Filter fc Hz fcl Hz fch Hz BW = (fch − fcl) Hz

1 247 155 339 184
2 431 339 523 184
3 615 523 707 184
4 799 707 891 184
5 1000 891 1123 232
6 1260 1123 1414 291
7 1587 1414 1782 368
8 2000 1782 2245 463
9 2520 2245 2828 583
10 3175 2828 3564 736
11 4000 3564 4490 926

Table 1: Center frequencies and bandwidths of the prefilters
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Fig. 21: Magnitude response of the eleven filters used in the simulation.

Let the output of the kth filter be called sk(t). We
use the methods described in sections 2 and 3 to rep-
resent each of the eleven signal components sk(t),
k = 1, 2, .., 11. For the frequency domain represen-
tation, i.e., representation of signals by discrete fre-
quency values, we follow essentially the same algo-
rithm described in section 2. We first window the
signal sk(t) by a Hanning window whose duration
γ is given in table 2. (Throughout this simulation
the delay parameter, τ , is γ/2.) The columns in the
table specify the center frequency of each filter, the

window length γ that is used to window the filter
output, and B, the spectral spread of the windowed
signal. Any other smooth window can be used in
place of the Hanning window. Then the Short Time
Fourier Transform (STFT) of this windowed signal
is computed. (This computation is shown in figure
16 using a filterbank implementation.) The STFT
values are then normalized such that their peak mag-
nitude is unity. Then the frequency locations (that
lie between f1 and f2) at which the real and imagi-
nary parts of the normalized STFT values cross the
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levels 0.5, 0.3, 0.1,−0.1,−0.3,−0.5 are noted. These
discrete frequency locations (along with the peak
magnitude of the STFT values) represent the win-
dowed signal. This process is repeated continually
by sliding the window (over the signal sk(t)) as indi-
cated in figure 22. The frequency range B=f2−f1 is
the range over which the STFT magnitude is above
a threshold level. B is some what larger than the
bandwidth of the corresponding filter because the
window tends to smear the spectrum of sk(t). Using
the discrete frequency locations and the peak mag-
nitude of the STFT, the signal is reconstructed via
eq.(19). Typically the number of real Fourier coef-
ficients (2⌊Bγ⌋, shown in table 2) is between 8 and
10.

1

 )(mst0

 )(tw

 γ

Fig. 22: Sliding windows.

The procedure for time domain representation i.e.,

representation of signals by discrete time locations,
is similar to the frequency domain representation de-
scribed above. The details of this method are de-
scribed in section 3. We first convert the speech
signal into a complex-valued analytic signal (with
spectrum on the positive side of the frequency axis)
by using the Hilbert transform. It is then pre-
filtered by the third-octave filterbank. Thus, sk(t)
are now complex-valued. Then, as before, sk(t)
is windowed by a γ-second long Hanning window
(same as in the frequency domain case). The win-
dowed signal is scaled such that its peak magni-
tude is unity. Then the time locations (that lie be-
tween τ and τ + γ) at which the real and imagi-
nary parts of the normalized sk(t) values cross the
levels 0.5, 0.3, 0.1,−0.1,−0.3,−0.5 are noted. The
parameter τ does not really serve any purpose in

time domain representation, but we still keep it to
maintain uniformity between time and frequency do-
main representations. The discrete time locations
(along with the peak magnitude of sk(t) values) rep-
resent the windowed signal. This process is repeated
continually by sliding the window (over the signal
sk(t)). For reconstruction we solve the eq.(35) and
obtain the correspoding Fourier coefficients. Figure
23 shows an example of a speech signal reconstructed
using the frequency domain representation. Figure
24 shows a small segment in more detail. We give
below more quantitative results.

The results of the algorithms are shown in table 3.
As mentioned before let sk(t), k = 1, 2....11 denote
the filterbank outputs. Let s(t) denote the sum of
these outputs. s(t) = s1(t)+s2(t)+...+s11(t). Since
the prefilters have passbands that are quite flat, s(t)
is essentially identical to the original speech signal.
Let the reconstructed signal in each band be de-
noted by s̃k(t). ek(t) denotes the reconstruction er-
ror in each band. That is, ek(t) = sk(t)− s̃k(t) k =
1, 2, ...11. The signal to noise ratio, ρk, for the kth

band is calculated as follows.

ρk = 10log10

∫

s2
k(t)dt

∫

e2
k(t)dt

k = 1, 2, ...11. (41)

Ofcourse, the actual computations use discrete sam-
ple values. Overall SNR, ρ, is calculated as

ρ = 10log10

∫

s2(t)dt
∫

e2(t)dt
(42)

where e(t) = e1(t) + e2(t) + ... + e11(t). The SNR
values for each band and for each method are given
in table 3. The overall SNR using the frequency do-
main reresentation for the two sentences sx245.wav
and sx12.wav were found to be 42.56dB and 42.60dB
respectively. The corresponding figures for the time
domain representation were 35.95dB and 38.10dB.

As mentioned before, a signal that is ǫ-bandlimited
to B Hz and time limited to γ seconds has a sig-
nal dimension of approximately 2Bγ. That is, 2Bγ
samples (using traditional sampling) or 2Bγ Fourier
coefficients (as in c vector) are needed to represent
the signal. If we assume that 2Bγ is a constant for
every filtered signal component sk(t), then clearly,
since the bandwidth of the signal component is in-
creasing with increasing center frequency, γ has to

AES 123rd Convention, New York, NY, 2007 October 5–8

Page 15 of 22



Kumaresan AND Panchal Encoding Bandpass Signals Using Level Crossings: A Model-based Approach

Filter fc (Hz) γ (ms) f0 = 1
γ (Hz) f1 (Hz) f2 (Hz) B = f2 − f1 (Hz) T0 = 1

B (ms) 2⌊Bγ⌋

1 247 7.500 133 0001 0600 599 1.669 08
2 431 5.625 178 0060 0790 730 1.370 08
3 615 5.625 178 0249 1045 796 1.256 08
4 799 5.625 178 0350 1202 852 1.174 10
5 1000 4.562 219 0500 1500 1000 1.000 08
6 1260 3.750 267 0700 2100 1400 0.714 10
7 1587 3.125 320 0800 2500 1700 0.588 10
8 2000 2.500 400 1100 3100 2000 0.500 10
9 2520 1.937 516 1400 3600 2200 0.455 08
10 3175 1.625 615 1900 4400 2500 0.400 08
11 4000 1.375 727 2500 5500 3000 0.333 08

Table 2: Parameters for Time and Frequency domain representations

decrease with increasing center frequency. This is
the case in table 2. Clearly, the number of zero/level
crossings has to equal or exceed 2⌊Bγ⌋ so that we
can determine all the Fourier coefficients given the
zero/level crossings. Therefore the raw representa-
tion (the number of zero/level crossings) that is used
here has a lot of redundancy and is clearly not as
parsimonius as traditional sampling. However, like
biological systems this may indeed be the advantage
of the representation that we have proposed. For
example, we can ignore some of the level crossing
locations and still be able to determine the Fourier
coefficients in c. The parameters that influence the
number of level crossings, that are under our control
are the time delay τ (for the frequency domain repre-
sentation), the frequency shift ∆f (for the time do-
main representation) and the number of levels used
in each domain.

5. RELATIONSHIPS TO PREVIOUS RESULTS
Zero crossing-based function representations have

a long history in mathematics (perhaps, starting
with representation of a sine function using infinite
products by Hadamard i.e., sinπt = πt

∏

∞

n=1(1 −
t2/n2)) and a relatively long history in signal
processing pioneered by Voelcker, Requicha and Lo-
gan and others and named as “product representa-
tion of signals”. Voelcker and others’ work relies on
the fundamentals of Entire Functions of exponential
type [17] that includes bandlimited signals. Voel-
cker and Requicha [18, 10] called a signal, Real-Zero
(RZ) signal, if it can be unambiguously recovered

(to within a scale factor) from its time-domain zero
crossings. They also posed the interesting question
as to when a band-pass signal x(t) might be recov-
ered from its zero crossings. Logan [8], following up
on their work, showed that x(t) can be represented
by its zero-crossings in two special cases which are
discussed below. Although his theoretical work is
more general, we will discuss here the case of peri-
odic signals only. The reason is as follows. In most
practical situations we are interested in representing
signals that are finite in duration, such as a segment
of a speech signal. Such finite duration signals can
always be regarded as periodic signals by considering
their periodic extensions.

5.1. Logan’s Case I: Signals with no free zeros
and less than an octave in bandwidth

Let us return to the periodic bandpass signal model
x(t) (or xd(t)) introduced in section 2. The period is
γ seconds (γ = 1/f0). x(t) is represented by a finite
Fourier series as follows.

x(t) =

N
∑

k=M

(ak cos(2πkf0t) + bk sin(2πkf0t)). (43)

Let tk, k = 1, 2, ...., P denote the time instants such
that

x(tk) = 0, k = 1, 2, ..., P, (44)

i.e., zero crossings of x(t). These P homogeneous
equations can be directly solved to determine the
2× (N −M + 1) unknown ak and bk, if certain con-
ditions are met. First, P has to be greater than or
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Filter Frequency Domain (dB) Time Domain (dB)

No.k ρk ‘SX245.WAV’ ρk ‘SX12.WAV’ ρk ‘SX245.WAV’ ρk ‘SX12.WAV’
1 34.32 36.85 36.39 35.28
2 42.57 42.24 34.36 36.10
3 42.74 42.55 41.53 41.06
4 43.67 44.26 40.88 41.54
5 43.70 43.01 37.76 37.59
6 47.80 46.90 34.67 39.38
7 48.14 48.00 39.40 37.29
8 50.10 46.27 34.49 37.17
9 41.60 38.11 35.03 33.78
10 43.18 36.91 29.29 28.07
11 47.34 47.45 23.16 24.76

Overall SNR ρ 42.56 42.60 35.95 38.10

Table 3: Accuracy of the Time and Frequency domain representations
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Fig. 23: Original speech signal s(t), reconstructed speech signal s̃(t) and error s(t)−s̃(t) for a whole sentence.
Frequency domain representation was used. The segments of the signal between the dashed vertical lines is
shown in figure 24 in more detail. Note that the y-axis for the bottom panel is 100 times expanded.
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Fig. 24: A close up view of a segment of the original speech s(t) and reconstructed speech s̃(t).

equal to 2 × (N − M + 1). Since the lowest fre-
quency component in x(t) has a frequency of Mf0

Hz, x(t) will have atleast 2 × M zero crossings in
one period, γ. Therefore, P should be such that
P ≥ 2 × M . Thus 2 × M ≥ 2 × (N − M + 1), i.e.,

(N+1)f0 ≤ 2Mf0. Therefore, the bandwidth of x(t)
can not exceed an octave if we want to reconstruct
x(t) from its zero crossings. Further, another con-
dition also must be met simultaneously. The signal
x(t) should not have any “free zeros”, i.e., x(t) and
x̂(t) should not have any common zeros other than
simple real zeros. To clarify the free-zeros condition,
let us rewrite x(t) in terms of complex exponentials.

x(t) =
N

∑

k=M

ck exp(−j2πkf0t)+
N

∑

k=M

c∗k exp(j2πkf0t)

(45)
where ck = (ak + jbk)/2 and c∗k = (ak − jbk)/2.
Therefore we may consider x(t) as a 2N -th degree

polynomial in the complex variable ζ = exp(j2πf0t).

x(t) =

N
∑

k=M

ckζ−k +

N
∑

k=M

c∗kζk

= C(ζ) + C∗(ζ−1) (46)

= cNζ−N
2N
∏

k=1

(1 − ζkζ). (47)

(Since x(t) can be written in product form as in
eq.(47) this representation is called the product rep-
resentation of signals.) Note that the coefficients of
C(ζ) are the flipped and conjugated version of the
coefficients of C∗(ζ−1). Thus, if C(ζ) has a zero on
the unit circle |ζ| = 1 (which corresponds to a zero
crossing of the time axis for x(t)), so does C∗(ζ−1).
However, this is not called a free zero. On the other
hand, if C(ζ) has a zero inside the unit circle at ζp

and also a zero at 1/ζ∗p , i.e., outside the unit cir-
cle, then C∗(ζ−1) has the same two zeros (just like
a linear-phase FIR filter). In that case, the factors
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corresponding to such zeros can be yanked from the
product in eq.(47) and x(t) can be rewritten as fol-
lows.

x(t) = cNζ−N (1 − ζ−1
p ζ)(1 − ζ∗pζ)

∏

k

(1 − ζkζ).

The product term in the above expression contains
2N − 2 remaining factors. It includes all the fac-
tors corresponding to unit magnitude roots. Thus
x(t) and x(t)/(1− ζ−1

p ζ)(1− ζ∗pζ) have identical real
zero crossings. Thus, in this case x(t) can not be
reconstructed uniquely from the real zero crossings,
even if the octave bandwidth condition is met. This
limits the utility of this method for signal represen-
tation. If we replace the zeros ζp by βp, βp 6= ζp

that is the factors (1 − ζ−1
p ζ)(1 − ζ∗pζ) in x(t) by

(1 − β−1
p ζ)(1 − β∗

pζ), neither the real zero crossings
of x(t) or the signal bandwidth are altered. Hence
the zeros that occur in reciprocal conjugate pairs but
dont lie on the unit circle are called “free” zeros, in
the sense that we are free to move them without
altering the bandwidth or real zero crossings of a
signal. As a concrete example, consider the peri-
odic signal x(t) = (a + b cos(2πf0t))(cos 2π10f0t),
with a > b. Its Hilbert transform is x̂(t) =
−(a + b cos(2πf0t))(sin 2π10f0t). Clearly x(t) and
x̂(t) have equally spaced, interlaced, real zero cross-
ings determined by their carrier frequency 10f0 Hz.
They have common complex zeros determined by
their envelope. Thus according to Logan the real
zero crossings have no ‘information’ regarding the
envelope of the signal in this case.

5.2. Logan’s Case II: Lower sideband signals
Logan’s second case occurs when x(t) is a full-carrier
lower side-band (LSB) signal i.e., a signal that has a
large carrier at its high frequency band-edge. Such a
signal does not have any bandwidth limitations, and
can be readily reconstructed from real zero cross-
ings (to within a scale factor). It is easy to visualize
this case. Because of the large carrier at the high
frequency edge of the spectrum, the details of the
signal are coded by the phase variations of this car-
rier and hence the information is contained in its real
zero crossings. More formally, this case occurs when
C(ζ) in eq.(47) has all its roots inside the unit cir-
cle. Then C∗(ζ−1) has all its roots outside the unit
circle and and it can then be shown the x(t) has all
its roots on the unit circle, i.e., the signal can be re-
covered from real zero crossings by solving eq.(44).

That is, this is a case of an RZ signal. This case is
closely related to what is known in speech analysis
as Line Spectrum Frequencies (LSF) [19, 20].

In summary, if a bandpass signal x(t) has no free
zeros and is less than an octave in bandwidth then
it can be represented by its zero crossings to within
a scale factor. On the other hand, if x(t) has a dom-
inant carrier at its high frequency edge then also it
can be represented by its zero crossings, even when
its bandwidth exceeds an octave.

There have been attempts to overcome the restric-
tions in case I. It has been argued that if one could
find an invertible mapping that converts an arbitrary
band-pass signal into an RZ signal, then one could
use the zero-crossings of the RZ signal to implicitly
represent the band-pass signal. This process was
dubbed ‘real-zero conversion’ (RZC) by Requicha
[10]. This approach was investigated by Voelcker
and his student, Haavik [11, 10] and Bar-David [9].
There are two transformations presented by Haavik
which are known to accomplish RZ conversion: 1)
successive differentiation of the band-pass signal x(t)
which enhances its high frequency content, and 2)
addition of a sinewave of known frequency equal to
or higher than the highest frequency present in the
signal and of sufficiently large amplitude, i.e., con-
version of x(t) into a full-carrier LSB signal. These
RZC methods are of limited practical use [10, 21].

Zeevi and colleagues in a series of insightful publi-
cations [22, 23] have expanded on the above ideas
and applied it to one and two dimensional signals.
Marvasti [24, 25] and Hurt [26] have compiled an ex-
tensive list of references related to zero-crossings in
one and two dimensions. Since a timelimited signal
is the dual of a bandpass signal, many of the above
results have counterparts in the frequency domain
in one and two dimensions [27, 28, 29, 30, 31]. This
duality is explored in [23] (see also the references in
[23]). In contrast to all the above approaches, we
find that the sum-of-sincs model for a bandpass sig-
nal in either domain, (along with the use of level
crossings,) that we have proposed here avoids the
free zero problem (since sincs are not finite degree
polynomials) and the bandwidth constraints.

The approach in this paper is also closely related to
the auditory models proposed by Seneff [32], Ghitza
[33] and Kim [34] and may indeed provide the under-
lying mathematical basis for signal representation by
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such models. Seneff [32] proposed an auditory pe-
riphery model where a filter bank models the basilar
membrane in the cochlea and the inner hair cells
mounted on top of the basilar membrane act like
envelope detectors. In her model the nerve fibers
innervating the hair cells convey the level of the en-
velope by their mean firing rate. On the other hand
Ghitza’s EIH (ensemble interval histogram) model
[33] and Kim’s ZCPA (zero crossing with peak am-
plitude) model [34] use zero or level crossing detec-
tors. The intervals between the zero/level crossing
locations are histogrammed to obtain precise (for-
mant) frequency information. The different level
crossing detectors represent the different nerve fibers
innervating a single inner hair cell. The hair cell
along with the basilar membrane are modeled by the
prefilters (à la third-octve filter bank in section 4) in
cascade with the filter bank in figure 16. The crucial
difference in our approach compared to the previ-
ously known approaches is that we can reconstruct
a signal given the level/zero crossing locations.

6. CONCLUSIONS
A new approach to representing signals by dis-

crete frequency values and time instants, instead of
the usual sample values, is proposed. The set of dis-
crete frequency values is the set of locations along
the frequency axis at which (real and/or imaginary
parts of) the Fourier transform of the signal x(t)
cross certain levels (including zero level). Whereas,
the set of discrete time instants corresponds to the
traditional zero/level crossings of the waveform x(t).
The proposed signal representation is based on a
simple bandpass signal model that exploits our prior
knowledge of the bandwidth/timewidth of the sig-
nal. Given the discrete fequency/time locations, the
signal reconstruction is achieved by solving a sim-
ple eigenvalue or a least squares problem. Using
this approach as the basis, we have developed an
analysis/synthesis algorithm to decompose and rep-
resent complex multicomponent signals like speech
over the entire time-frequency region. The proposed
signal representation is motivated by the auditory
system where the acoustic signal is filtered by the
auditory periphery and conveyed to higher centers
of processing by multiple neural spike trains.
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