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ABSTRACT 

A recently proposed approach, called seam carving, has been widely used 
for content-aware resizing of images and videos with little to no perceptible 
distortion. Unfortunately, for high-resolution videos and large images it is 
not computationally feasible to do the resizing in real-time using small-scale 
CPU systems. In this paper, we exploit highly parallel computational 
capabilities of CUDA-enabled Graphics Processing Units (GPUs) in a 
heterogeneous computer system for accelerating the content-aware resizing 
of videos and images. The performance results show that our 
implementation of the seam carving algorithm achieves up to 235x and 30x 
speed-ups on the computationally-intensive part of the algorithm compared 
to the single-threaded and the multithreaded CPU implementations, 
respectively, on the systems tested. The overall resizing operation is up to 7x 
and 4x faster than the single-threaded and multithreaded CPU 
implementations, respectively, which demonstrates the potential to resize 
videos and large images in real-time. 

1. INTRODUCTIONOne of the most popular uses of 
diverse mobile devices today is for browsing images and playing 
videos. However, different devices have different resolution 
capabilities, so it is necessary to resize images and videos 
efficiently and effectively to fit them into diverse displays (such as 
cell phones, PDAs, desktop displays, etc), preferably without 
distortion. 

Cropping [1-5] has been one of the most popular approaches to 
resize images. However, cropping may lose an unacceptable amount 
of visual information when important structures lie at all edges of 
an image. In addition, it can only remove information, but it cannot 
add information to expand the image. Scaling methods, with or 
without interpolation, tend to produce distorted images, especially 
when an image is scaled in one direction.  

Avidan and Shamir [6] recently provided a new approach to 
image and video resizing, called seam carving. Seam carving 
functions by establishing a number of seams (paths of least 
importance) in a digital medium and automatically removes seams 
to reduce its size or inserts seams to extend it. This content-aware 
resizing method has been shown to effectively resize images and 
videos with little to no perceptible distortion. Seam carving has a 
two-part process: the energy function and the seam map, both of 
which involve computationally-intensive operations.  For high-
resolution images and videos, it may become impossible to perform 
this resizing in real-time by using the CPUs in a desktop-scale 
computer. 

Parallelizing seam carving algorithm and running on servers with 
many cores may facilitate real-time resizing. However, when many 
images and videos may need to be resized, this may not be a viable 
solution. For example, some web servers may need a content-aware 
image resizing application to adjust the size of images embedded in 
web pages when the pages need to be displayed at different 
resolutions and/or aspect ratios. If the servers are providing 
personalized page content that is dynamically generated, then 
suitable resizing of images is even more important. Since the visitor 
traffic of web pages can be huge, a least expensive and more 
energy-efficient way of performing resizing is necessary.  

The advent of commodity massively parallel architectures, such 
as modern GPUs, is a compelling option for inexpensively 
removing the computationally-intensive operations from the CPU. 

In this paper, we exploit the data-parallel execution model of GPUs 
for the implementation of content-aware image and video resizing. 
This paper makes the following contributions: 

1) We evaluate and characterize GPU-based seam carving 
algorithm on two CUDA-enabled NVIDIA GPUs. 

2) We compare single- and multi-threaded CPU versions of 
the algorithm with the GPU versions. 

3) We demonstrate that, GPUs facilitate low-cost and 
energy-efficient real-time resizing of images and videos. 

2. BACKGROUNDGraphics Processors 
With convenient programming libraries, modern GPUs have 

evolved into programmable and highly parallel computational 
devices, containing hundreds of processing cores that can be used 
for general purpose computing. The architecture of a modern 
CUDA-enabled NVIDIA GPU consists of devices with several 
streaming multiprocessors (SMs) each containing multiple 
execution cores (streaming processors or SPs) operating on SIMD 
(Single Instruction Multiple Data) programs. With their high 
memory bandwidth (compared to favoring low latency as in CPUs), 
GPUs are ideal for parallel applications with high-levels of fine-
grain data parallelism.  

In the execution model of a GPU, a host program running on the 
CPU instructs the GPU to launch the kernel (a C/C++ function that 
executes on the GPU as many threads) after input data is transferred 
from the host memory to GPU memory by the DMA controller. The 
GPU, then, executes the threads in parallel. Finally, the DMA 
controller transfers the results back to host memory from device 
memory. 

One of the major differences between the CPU and the GPU is its 
memory system [8]. GPUs have a wide memory bus for 
simultaneously loading large amounts of data in order to supply the 
high demand imposed by the many executing threads. The CUDA 
memory hierarchy consists of six different user-managed memories 
and a hardware-managed L1 and L2 cache for the newer 
architecture. A fast and heavily-banked shared memory (local to the 
SMs) is managed explicitly by the programmer among thread 
blocks and is often used for caching frequently used data from 
global memory. global memory is similar to the main memory used 
by CPUs, but has a large bandwidth, in the order of several 
hundreds of GB/s. Registers are the faster memory on the GPU with 
access time of one cycle. Each SM contains 8K-32K 32-bit registers 
depending on the architecture, which are shared between every 
thread block executing on an SM. local, constant and texture 
memories are implemented with DRAM similar to the global 
memory. local memory is used for register spill and arrays that are 
local to the each thread. constant memory is cached for fast access. 
texture memory is optimized for 2D spatial locality. 

 
2.2 Seam Carving 

Seam carving [6] transforms the size of images and videos by 
carving-out pixels that form a path of low-energy. These low-
energy connected paths, called seams, go from top to bottom or left 
to right depending on the resizing operation. For vertical resizing, 
the algorithm computes the seams that start on the left side of the 



image and end on the right. In the same manner, horizontal resizing 
require the generation of seams to travel from top to bottom. The 
seams are added to or removed from an image1 for increasing or 
reducing its size with minimal observable distortion. Figure 1 shows 
the steps of horizontally resizing an example image. Since the 
majority of execution time is spent on the energy function 
computations and the seam map generation, in this paper, we focus 
on accelerating these two computationally intensive parts.  

 
                    (a)                                (b)                              (c)                       (d) 
Figure 12: Seam Carving Steps. (a) The original image. (b) The energy of the 
image using  gradient magnitude method.  (c)  The  low  energy  seams with 
the energy function. (d) Resized image after the seams are removed. 

2.2.1 Energy function  
Seam Carving can utilize a variety of energy functions to 

generate the seam map [6]. The gradient magnitude method uses 
equation (1) to compute the energy of each pixel relative to its 
surrounding pixels by quantifying the amount of change in color 
from one pixel to the next. 
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The energy function computation exhibits vast data parallelism. 
However, attention must be given to memory access patterns which 
may have a huge implication on performance. The need for 
accessing neighboring pixels to compute the energy function 
strongly influences the way we access memory on the GPU. 

2.2.2 Seam Map 
After finding the energy of each pixel, lowest-energy paths, the 

seams, must be found. In order to generate vertical or horizontal 
seams, we compute their respective seam map. We focus on the 
implementation of the seams required for horizontal resizing, i.e. 
the vertical seams. The seam map is computed using the result of 
the energy function. The first row of the seam map is directly 
obtained from the first row of the energy function. Starting from the 
second row of the image, we compute the minimum value of the 
seam map for the three pixels directly above the current pixel of 
interest, and add its energy value to the result. This operation is 
performed for every pixel in the image. Finally, the result of the 
above operation becomes the seam map value for each respective 
pixel. The recurrence relation below illustrates the full operation: 
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In equation (2), S is the seam map table, E is the energy function 
table, and i and j are the row and column indices of the tables. This 
dynamic programming approach produces the optimal seam/s [6]. 
The seam map values in the final row of the image correspond to 
the cumulative energy of the W most optimal seams, where W is the 
width of the image. The most important point to note about equation 
(2) is that the computation for each element is entirely dependent on 
the result of three elements directly above it. Therefore, unlike the 

                                                            
1 For most of the paper, we only discuss images.  However, a video is a set 
of images or frames displayed at the video rate of 30 frames per seconds. 
Seam carving is equally applicable to both images and videos. 
2 Image taken from Wikimedia Commons.  

energy function, the seam map computation is not 100% separable. 
This makes parallelizing the seam map computation much more 
difficult than the energy function. 

3. HARDWARE RESOURCES 
All of the implementations presented in this paper were executed 

on two different heterogeneous computer systems. The First system 
is a Mac Pro running the Mac OS X 10.6 operating system powered 
by two 2.8GHz quad-core Intel Xeon E5462s CPUs, with 32KB of 
L1 and 12MB of L2 cache. The second system is a newer machine 
running the Ubuntu Linux 10.04 operating system, powered by a 
3.4 GHz quad-core Intel Core i7 2600k CPU with 32KB, 256KB, 
and 8MB of L1, L2, and L3 cache respectively. The Intel Core i7 
supports simultaneous multithreading (SMT) while the Intel Xeon 
does not support SMT [9, 10]. 

The Mac pro has an NVIDIA 8800GT GPU featuring the G80 
architecture with 112 SPs or CUDA cores. This GPU has 512MB of 
GDDR3 memory with 256-bits wide memory bus. The GPU on the 
Linux machine is the NVIDIA GTX580 Featuring the Fermi 
(GF100) architecture. The GTX580 has 16 SMs, 32 CUDA cores 
per SM, for a total of 512 SPs. Features of the GTX580 memory 
are: 64KB configurable L1 cache/shared memory (16KB/48KB), 
768KB L2 cache, and 1.5GB of GDDR5 memory with 384-bits 
wide bus. The device compute capability of the 8800GT and the 
GTX580 are 1.0 and 2.0 respectively. 

The threading model used is POSIX threads (pthread). Since the 
Mac OS X does not support the pthread barrier API, we 
implemented a custom barrier method using condition variables. All 
CPU-only implementations were compiled with the gcc 4.2 on the 
Mac Pro and the gcc 4.4 on the Linux machine. Both compilers 
were configured with -O2 optimization level. Finally, the 
heterogeneous implementations were compiled with the NVIDIA 
nvcc compiler, which uses gcc of the respective systems to compile 
the CPU code. 

 
4. IMPLEMENTATION 
4.1 CPU Implementation  
4.1.1 Energy Function  

The single threaded CPU implementation of the energy function 
is straightforward; we divide the computation into two partial 
derivative computation, and combine the result later by summing 
the magnitude of the two results. The partial derivatives in both the 
x and the y direction require two nested loops for images that are 
stored in a 2D array of pixels and a single loop for images stored in 
a 1D array.  

The energy function can easily be parallelized because pixel 
energies can be computed independent of each other. Therefore, we 
are able to divide the computation into as many threads as the 
operating system could support. Although the operating system 
might be able to support a large amount of threads, the performance 
is dictated by the hardware and the CPUs ability to execute threads 
simultaneously. In the multithreaded version, we divide the input 
image into tiles consisting of consecutive columns. The width of 
each tile is computed based on the number of threads and the width 
of the image. Figure 2 illustrates the decomposition of the input 
image. 

 
Figure 2: Division of work between threads in the CPU implementation. 



4.1.2 Seam Map  
Unlike the energy function, the seam map computation uses a 

dynamic programming approach that is not parallelization friendly 
(see section 2.2.2). Using this method, we are only able to 
parallelize each row of the image one at the time. We perform the 
row-by-row computation of the seam map by dividing each row into 
fixed-width tiles and computing these tiles in parallel. Following 
each row, each thread waits on a barrier for the rest of the row to 
complete. This method does not yield any significant benefit over 
the single-threaded version; in fact, with more than two threads, the 
program spends more time synchronizing the threads than actually 
performing the computations.  

In an attempt to improve threaded performance, we used 
semaphores to create local barriers in place of global barriers across 
the rows. Instead of stalling threads until every thread finishes its 
part, each thread is only concerned with the execution of its 
neighboring threads. In addition, semaphores are more efficient than 
pthread barriers and the communication among conditional 
variables used on the Mac Pro. For this implementation, we use an 
array of semaphores to allow each thread to manage the availability 
of the seam map results of its first and last element on every row. 
The size of the array is obtained by doubling the product of the 
number of threads by the height of the image.  

 
4.2 Energy Function on the GPU  

Many computational steps that were described in Section 4.1 also 
apply to the GPU. Hence, we only discuss the most significant parts 
of the GPU implementations.   

4.2.1 Naive Implementations 
The first GPU implementation that we present in this paper is the 

naive non-aligned implementation. In this implementation of the 
energy function, the image was partitioned into 16x16 tiles 
containing 256 pixels, as illustrated in Figure 3. In addition to 
loading the corresponding data into shared memory, the kernel also 
needs to load the pixels immediately adjacent to the tile. These 
outer pixels are known as the tile apron, shown in yellow in Figure 
4. Each tile utilizes one 2D block of 324 threads (18x18), thus 
assigning one thread per pixel load. It is important to note that the 
gradient value at the four corner pixels is set to zero. The rationale 
is that there is not enough information to compute the partial 
derivative with respect to x or y. From the previous statement, it is 
obvious that those tiles at the edge of the image require fewer loads. 

The series of steps taken by each thread are as follows: First, a 
thread calculates the thread pixel index that it needs in order to load 
a pixel from the global memory. Second, the thread calculates the 
pixel index that it requires to write to shared memory. Third, the 
thread loads the relevant global pixel value (or zero) into shared 
memory. Fourth, the thread waits at a barrier for the remaining 
threads in the block to load their pixel. Finally, if the thread index is 
within the workable part of the tile, i.e. not an apron pixel, use the 
adjacent pixel values in shared memory to compute the gradient and 
store result.  

 

Figure 3: Division of work between threads in the naive GPU 
implementation. The gray area represents idle threads within the block. 

 
Figure 4: Position of apron pixels (yellow) and writable pixels (blue). 

At first, we used a three-byte data structure to store the RGB 
components of each pixel since the alpha in the RGB color space is 
not utilized. The problem with a three-byte data structure is that 
memory access are not aligned, resulting in a reduction in 
performance.  We solved this problem by aligning pixels to word 
length (4 bytes). By aligning pixels to a word, we waste 25% of the 
memory (one extra byte per pixel). However, if the memory size is 
sufficient, this is an excellent tradeoff. Moreover, there are times 
when we are interested in maintaining the alpha component of the 
pixel, this implementation guarantees that the pixel remains in its 
original form. In addition, we allocate memory on device and copy 
the image data to the GPU using the cudaMallocPitch and 
cudaMemcpy2D [7]. Using the two-dimensional allocation and 
copy functions, we guarantee that each row of the image starts on a 
64 and 128-bytes boundary in global memory for devices with 
compute capability1.x and 2.x, respectively.  

4.2.2 Split-aligned Implementation 
To achieve nearly full coalesced memory access, we decided to 

separate the energy function calculation into two separate kernels, a 
horizontal and a vertical gradient kernel, and combine the results of 
the two. This allows us to rearrange the way we organize the thread 
grid to suit the kind of memory accesses expected for each direction 
of the derivatives. The purpose of the split method is to ensure that 
when the pixel data is loaded from global memory, it incurs 
minimal uncoalesced accesses. Note that both the apron pixels and 
workable pixels in the vertical direction are always aligned to 16 
pixels as shown in Figure 5, allowing coalesced accesses of 64 
bytes at a time. 

For the horizontal calculation, it is not possible with this 
approach to avoid uncoalesced memory accesses because the apron 
pixels lie outside the alignment boundary. However, this 
implementation attempt to hide the wasted bandwidth of the 
uncoalesced memory accesses per row by increasing the tile width 
to 128 pixels, as shown in Figure 6. This improves the memory 
efficiency allowing only two uncoalesced loads per every eight 
coalesced loads, and thus increasing bandwidth usage.  

 
Figure 5: Position of apron pixels (yellow) and writable pixels (blue) in 
shared memory blocks for the vertical derivative 



 
Figure 6: Position of apron pixels (yellow) and writable pixels (blue) in 
shared memory blocks for the horizontal derivative 

4.2.3 Locality-aware-split Implementation  
The split-aligned method has the potential to reduce the number 

of uncoalesced memory accesses by a significant amount, but it 
does not make the best use of locality. Therefore, when migrating 
the implementation to a newer heterogeneous system, we decided to 
revise the split-aligned method in order to take advantage of locality 
and the new capabilities provided by the Fermi architecture. The 
GTX580 offers approximately 4.5X more SPs than the 8800GT. It 
also supports memory access of up to 128-bytes on a single 
coalesce load.  

Apart from the two outermost pixels that surround the entire 
image, all other pixels are utilized four times in the energy function 
computation; twice for each of the partial derivatives. Even when 
these pixels are cached in shared memory, which saves one global 
load per derivative, the split-aligned method requires that each pixel 
be loaded twice. Therefore, we decided to go back to implementing 
the energy computation using a single kernel to compute both 
partial derivatives.  

The locality-aware-split method breaks the image into 2D blocks 
of 256 threads. Each tile contains 64 columns and 8 rows. This 
approach is similar to the naive-aligned method, the major 
difference is that, here, we choose the block size to be a multiple of 
the warp's size which benefits the SIMT programming model. With 
a 64x8-block configuration, two warps are assigned per rows. All 
32 threads in a warp are able to cache their corresponding pixel on a 
single coalesce load of 128-bytes for 16 fully coalesce loads. The 
top and bottom apron are also loaded using a fully coalesce access 
per warp. The uncoalesce loads are introduced by the left and right 
apron of the tile. By increasing the number of rows, we improve the 
locality while adding more uncoalesce loads. In addition, by 
increasing the block width by a multiple of the warp size, we 
minimize the number of uncoalesce loads. This method exhibits 
properties from both the naive-aligned and split-aligned methods. 
Therefore, it is safe to say that the locality-aware-split method 
merges the important features of the two; more coalesce loads and 
better use of locality. After careful analysis and performance tests, 
we found that eight rows produce the best performance.  

 
4.3 Seam map on the GPU  

The GPU implementation of the seam map computation is very 
similar to the multithreaded CPU implementation, which is 
described in Section 4.1.2. Each row of the image is broken into 
horizontal tiles, whose width is carefully selected in order to 
maximize the occupancy of the GPU. Given that blocks are not 
scheduled deterministically and that there is no synchronization 
among threads on different blocks, we must resort to calling the 
kernel once per row and synchronize in between calls. For this 
implementation, wider images should perform much better than 
narrow images. Similar to the multithreaded CPU implementation, a 
significant amount of the data is not separable. This limits the 
amount of parallel execution per kernel launch. 

4.4 Page-Locked Memory Optimization  
Since a video is a series of images, all of the above methods are 

applicable to videos. The only restriction is that all frames are 
processed in 33 milliseconds or less to accomplish the full video 
rate of 30 frames per second. We introduce a new approach that 
exposes the true heterogeneity of these systems. The CUDA 
runtime environment provides functionalities to allocate and use 

page-locked memory in place of regular pageable host memory [7]. 
This method only differs in the way memory is used; any of the 
kernels that are described above, may be used to compute the 
energy function or the seam map.  

 
5. PERFORMANCE EVALUATION  

The overall time that it takes to remove a single seam of an image 
depends highly on the size of the image. For an image of size 
1200x900, it takes approximately 85.6 milliseconds on the Mac Pro 
with the Intel Xeon CPUs. The energy function takes approximately 
60% of the total execution time to remove one seam. The seam map 
computation takes the second largest fraction of time, 
approximately 24%. This implies that finding the removable seam 
and resizing the image takes 16% of the total execution time. This 
16% also includes any basic initial steps or computations that are 
neither part of the initial program setup nor part of energy function 
and the seam map computations. Therefore, in our performance 
evaluation, we focus on improving the energy function and the 
seam map computations. However, we also compare and discuss the 
total execution times. 

5.1 CPU Evaluation and Results 
5.1.1 Energy Function  

Figure 7 illustrates the performance gained by multithreading the 
energy function computations and executing the implementation on 
the Intel Core i7 (4-cores each with SMT) and Xeon CPUs (8-cores, 
no SMT), respectively. The execution of the energy function single 
threaded implementation takes 51.2 ms to complete on the Intel 
Xeon CPU. The base system, in Figure 7, is the Intel Xeon single-
threaded execution time. Results show that the newer Intel Core i7 
CPU outperforms the Intel Xeon processor for two or fewer threads. 
With eight threads, however, the Intel Xeon exhibits better 
scalability and produces the best CPU performance for the energy 
function computation. Overall, energy function computation scales 
well on multi-core CPUs. With eight cores, more than 7x 
performance improvement is possible. As the number of threads 
launched increase beyond the number of hardware threads in the 
system the performance gain gets smaller due to the thread 
switching overheads. 

5.1.2 Seam Map  
In section 4.1.2, we discussed the implementation of the seam 

map on the CPU and the dependability among rows of pixels. We 
emphasized how dependability due to the dynamic programming 
approach serialized the execution of rows. However, the results 
expose another problem that significantly affects the parallelization 
of the seam map computation. Figure 8 depicts the performance 
results of the seam map. The Figure illustrates that barriers impose a 
considerable overhead and the best we can achieve is 8% 
performance improvement. Beyond two threads, the performance is 
worse than that of the single-threaded implementation.  

As mentioned in section 4.1.2, a more efficient approach is to 
synchronize locally instead of at the global level. This 
implementation performs better because semaphores inflict less 
overhead. We can see from Figure 8 that Intel core i7 shows more 
than 3x performance improvement over the single-threaded 
implementation for 8 threads. The implementation scales well for 
the Intel core i7; it is not until we reach the maximum number of 
hardware threads that the performance diminishes. Intel core i7 
outperforms the Intel Xeon system significantly. The performance 
improvement on the Intel Xeon system reaches to 1.5x times with 4 
threads. However, with 8-threads, we see a large drop in 
performance even if the system has 8 hardware threads. This 
behavior needs further research and left as future work. 

 



 
Figure 7: Improvement of the energy function over the single-threaded 
executing of the the Intel Xeon 

 

 
Figure 8: Performance of two different multi-threaded implementations 
of the Seam Map. 

5.2 GPU Performance Evaluation 
5.2.1 Naive-non-aligned Energy Function 

On the 8800GT, the naive-non-aligned GPU implementation of 
the energy function yields a 13x and an 11x performance 
improvement over the single-threaded CPU implementation 
executing on the Intel Xeon and core i7, respectively, as shown in 
Figure 9. This significant improvement is hard to achieve with 
either of the CPUs and their respective amount of cores. 
Nevertheless, the naive-non-aligned implementation does not take 
advantage of the GPU's wide memory bus. Its memory access 
patterns are not coalesced because the loads are not aligned. Since 
the alpha in the RGB color space is not used in the energy function 
computation, the naive implementation only stores three bytes for 
the RGB. As a result, a warp will need to load 96 bytes while a half 
of a warp will need to load 48 bytes. Another Problem with this 
implementation is the block size, which is not a multiple of the 
warp size. The naive-non-aligned method was initially designed 
with the G80 architecture in mind. However, with a minimum 
modification, this implementation yields 146x and 116x 
performance improvement on the Fermi GTX580, over the single-
threaded implementation running on Intel Xeon and Intel Core i7, 
respectively (see Figure 10).  

  
Figure 9: Improvement of the energy function over the single threaded 
CPUon the 8800GT  

5.2.2 Naive-aligned Energy Function 
The changes to transform the naive method from a non-aligned to 

an aligned implementation (see Section 4.2.1) improve the 
performance relative to the single-threaded version from 13x to 29x 
and 11x to 23x on their respective systems as shown in Figure 9. 
Utilizing the CUDA profiler, we were able to determine the 
remaining source of our performance problems, uncoalesced 
accesses. The first naive version incurred over 500,000 uncoalesced 
loads and 300,000 uncoalesced stores for a 1200x900 image (≈ 1 

megapixel); the improved alignment version incurred only 100,000 
uncoalesced loads and 50,000 uncoalesced stores. This is still 
significantly more than one would expect, as an image with this 
amount of pixels should only need 16,875 loads assuming the GPU 
can bring in 64 bytes per coalesced loads. The naive-aligned 
method was also designed for the 8800GT. When executed on the 
GTX580, This implementation shows a performance improvement 
of 163x and 130x over the respective Intel Xeon and Core i7 single-
thread CPU implementation (see Figure 10).  

5.2.3 Split-aligned Energy Function 
The split-aligned method described in Section 4.2.2 achieves an 

average of 850 megapixels per second throughput, a 39x and a 31x 
improvement over the single-threaded CPU version on the Intel 
Xeon and Core i7, respectively, as shown in Figure 9. As expected, 
the CUDA profiler reveals that for a 1200x900 image, only 
approximately 31,000 loads and 15,000 stores were needed (each 
pixel must be loaded from global memory twice, once for each 
directional kernel), reducing the total memory access latency by an 
order of magnitude. On the GTX580, split-aligned achieves 176x 
improvement over the Intel Xeon CPU and 140x over the Intel Core 
i7 as shown in Figure 10.  

 
Figure 10: Improvement of the energy function on the GTX580 (Fermi) 
over the single threaded CPU 

5.2.4 Results of Merging the Split-aligned   
The locality-aware-split method described in section 4.2.3 

achieves the highest performance improvement on both GPUs for 
the energy function computation. By merging the two derivative 
computation in a way that the number of coalesce loads remains the 
same, and by further taking advantage of locality of accesses, we 
manage to improve the performance of the energy function by 235x 
and 187x over the single-threaded CPU version on the Intel Xeon 
and core i7, respectively, as shown in Figure 10. In addition, when 
executed on the 8800GT, this method shows a performance 
improvement of 49x and 39x over the Xeon and Core i7 single -
threaded version (see Figure 9).  

 
5.2.5 Seam Map 

The seam map GPU implementation exhibits an 8x and a 4.8x 
performance improvement over the single-threaded CPU 
implementation on the Intel Xeon and Core i7, respectively (figure 
not shown). This performance gain is relatively small in comparison 
to the energy function speedup. The performance is heavily 
impacted by the profound dependability among rows in the image. 
This limits the amount of parallel computation by serializing the 
execution of rows. Another significant performance impact is that 
there is no optimal method for synchronizing threads among 
different blocks. Launching the kernel the height of the image 
minus one times (e.g. 899 for an image of height 900), imposes a 
significant overhead. Approximately 57% of the seam map 
execution time is due to kernel launch overhead. Minimizing the 
kernel launch overhead could potentially improve the seam map 
performance by a factor of two.  



5.3 An Evaluation of Total Execution Time of Resizing 
Operation on the GTX580 

As previously stated, the energy function and seam map 
computation account for 84% of the execution time that it takes to 
remove one seam. Therefore, by improving these two parts, one 
would normally achieve a high overall performance improvement. 
However, there is a penalty when performing computation on the 
GPU device. The data must be copied from the host memory to the 
device memory. Once the computation is performed, we must copy 
the results back to the host memory if we care to use the results on 
the CPU side. Both of these operations introduce additional 
overhead. For extensive GPU computation, the overhead is easily 
hidden. However, this is not the case for seam carving given that the 
computations are in the order of micro and milliseconds. 

In order to use this GPU implementation of the seam carving in a 
real word application, we need to utilize the operation described 
above. Therefore, we need incorporate the total time that it takes to 
copy the image from the host to the device, compute both the 
energy function and the seam map, and copy the result back to the 
host memory. Figure 11 illustrates the total time that the entire 
operation takes on the Intel Core i7 and on the GTX580, 
respectively. This heterogeneous system is selected because it 
performs the best for both the CPU and the GPU. Figure 12 shows 
the performance improvement for the entire operation.  

 

 
Figure11: Total time to copy to and from the device, compute the 
energy function and seam map on the GTX580 and Core i7 

In the results illustrated by Figure 12, we introduce a forth image 
of size 2740x1830 pixels. The point is to show how much better 
than the CPU, the GPUs implementation perform when the size of 
the image increases. Overall, Figure 12 shows that the total 
execution time of the best resizing implementation on the GTX580 
is about 7x faster than the single-threaded CPU implementation and 
about 2.5x faster than the multithreaded CPU implementation. 

 

 
Figure 12: Total time to copy to and from the device, compute the 
energy function and seam map on the GTX580 and Core i7 

Page-Locked Memory Results: The best implementation that 
performs the entire operation is the locality-aware-split-page-lock 
method. The reason is that the CUDA run-time environment can 
optimize the memory host to device and device to host memory 
copy if the CPU memory is allocated as non-pageable memory (see 
[7]). We therefore modified our fastest implementation, locality-
aware-split, to take advantage of page-locked memory. The 
resulting implementation yields the best overall performance as 
shown in Figures 11 and 12. Figure 10 shows that the locality-
aware-split-page-lock method achieves 186x performance 
improvement over the Intel Core i7 single-threaded implementation.  

 
6. RELATED WORK 

Resizing images and videos have been studied extensively in the 
literature. One of the most popular approaches is to perform 
cropping [1-5], which involves finding the best rectangular sub-
window in the image. However, cropping may lose an unacceptable 
amount of visual information when important structures lie at all 
edges of an image. Scaling methods, with or without interpolation, 
tend to produce distorted images, especially when an image is 
scaled in one direction.  

Avidan and Shamir [6] recently provided a new approach to 
image and video resizing, called seam carving. Seam carving is an 
algorithm for content-aware resizing of images and videos with 
little to no perceptible distortion. Seam carving is a 
computationally-intensive method that could make it difficult to 
perform on large images or videos at run-time.  

To the best of our knowledge, this paper is the first to implement 
run-time content-aware resizing method on the GPUs. Our 
implementation works very well on computing energy function 
(over 230x is possible), but the other computationally-intensive 
part, seam map, is implemented using dynamic programming which 
limits the amount of data parallelism that can be exploited (only 
4.8x). A recent work [11] implemented a faster way to compute the 
seam map by finding the optimal matches within a weighted 
bipartite graph composed of the pixels in adjacent rows or columns. 
In future work, we will adapt this method, which we believe, will 
improve our results greatly for the seam map computation. 
 
7. CONCLUSION 

Seam carving is a powerful method for resizing of images and 
videos. This content-aware resizing method has been shown to 
effectively resize images and videos with little to no perceptible 
distortion. However, seam carving algorithm is computationally-
intensive and for high-resolution images and videos, it may become 
impossible to perform this resizing in real-time by using the CPUs 
in a desktop scale computer.  

In this paper, we exploit highly parallel computational 
capabilities of CUDA-capable GPUs in a heterogeneous computer 
system for accelerating the resizing of videos and images through 
seam carving. Out of the four different GPU methods that we 
implemented, our results show that the best is the locality-aware-
split-page-lock method, which achieved a performance 
improvement of 186x over the best single-threaded execution time 
and 31.5x over the best CPU multithreaded version for the energy 
function on the Intel core i7. Overall, our results show that the 
GPU-based implementation has a significant impact on the 
performance of seam carving and has the potential to resize videos 
and large images in real-time.    
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