
Run-time Image and Video Resizing
Using CUDA-enabled GPUs

Ronald Duarte and Resit Sendag
Department of Electrical and Computer and Biomedical Engineering

University of Rhode Island, Kingston, RI
(rduarte, sendag)@ele.uri.edu

ABSTRACT

A recently proposed approach, called seam carving, has been widely used
for content-aware resizing of images and videos with little to no perceptible
distortion. Unfortunately, for high-resolution videos and large images it is
not computationally feasible to do the resizing in real-time using small-scale
CPU systems. In this paper, we exploit highly parallel computational
capabilities of CUDA-enabled Graphics Processing Units (GPUs) in a
heterogeneous computer system for accelerating the content-aware resizing
of videos and images. The performance results show that our
implementation of the seam carving algorithm achieves up to 235x and 30x
speed-ups on the computationally-intensive part of the algorithm compared
to the single-threaded and the multithreaded CPU implementations,
respectively, on the systems tested. The overall resizing operation is up to 7x
and 4x faster than the single-threaded and multithreaded CPU
implementations, respectively, which demonstrates the potential to resize
videos and large images in real-time.

1. INTRODUCTIONOne of the most popular uses of
diverse mobile devices today is for browsing images and playing
videos. However, different devices have different resolution
capabilities, so it is necessary to resize images and videos
efficiently and effectively to fit them into diverse displays (such as
cell phones, PDAs, desktop displays, etc), preferably without
distortion.

Cropping [1-5] has been one of the most popular approaches to
resize images. However, cropping may lose an unacceptable amount
of visual information when important structures lie at all edges of
an image. In addition, it can only remove information, but it cannot
add information to expand the image. Scaling methods, with or
without interpolation, tend to produce distorted images, especially
when an image is scaled in one direction.

Avidan and Shamir [6] recently provided a new approach to
image and video resizing, called seam carving. Seam carving
functions by establishing a number of seams (paths of least
importance) in a digital medium and automatically removes seams
to reduce its size or inserts seams to extend it. This content-aware
resizing method has been shown to effectively resize images and
videos with little to no perceptible distortion. Seam carving has a
two-part process: the energy function and the seam map, both of
which involve computationally-intensive operations. For high-
resolution images and videos, it may become impossible to perform
this resizing in real-time by using the CPUs in a desktop-scale
computer.

Parallelizing seam carving algorithm and running on servers with
many cores may facilitate real-time resizing. However, when many
images and videos may need to be resized, this may not be a viable
solution. For example, some web servers may need a content-aware
image resizing application to adjust the size of images embedded in
web pages when the pages need to be displayed at different
resolutions and/or aspect ratios. If the servers are providing
personalized page content that is dynamically generated, then
suitable resizing of images is even more important. Since the visitor
traffic of web pages can be huge, a least expensive and more
energy-efficient way of performing resizing is necessary.

The advent of commodity massively parallel architectures, such
as modern GPUs, is a compelling option for inexpensively
removing the computationally-intensive operations from the CPU.

In this paper, we exploit the data-parallel execution model of GPUs
for the implementation of content-aware image and video resizing.
This paper makes the following contributions:

1) We evaluate and characterize GPU-based seam carving
algorithm on two CUDA-enabled NVIDIA GPUs.

2) We compare single- and multi-threaded CPU versions of
the algorithm with the GPU versions.

3) We demonstrate that, GPUs facilitate low-cost and
energy-efficient real-time resizing of images and videos.

2. BACKGROUNDGraphics Processors
With convenient programming libraries, modern GPUs have

evolved into programmable and highly parallel computational
devices, containing hundreds of processing cores that can be used
for general purpose computing. The architecture of a modern
CUDA-enabled NVIDIA GPU consists of devices with several
streaming multiprocessors (SMs) each containing multiple
execution cores (streaming processors or SPs) operating on SIMD
(Single Instruction Multiple Data) programs. With their high
memory bandwidth (compared to favoring low latency as in CPUs),
GPUs are ideal for parallel applications with high-levels of fine-
grain data parallelism.

In the execution model of a GPU, a host program running on the
CPU instructs the GPU to launch the kernel (a C/C++ function that
executes on the GPU as many threads) after input data is transferred
from the host memory to GPU memory by the DMA controller. The
GPU, then, executes the threads in parallel. Finally, the DMA
controller transfers the results back to host memory from device
memory.

One of the major differences between the CPU and the GPU is its
memory system [8]. GPUs have a wide memory bus for
simultaneously loading large amounts of data in order to supply the
high demand imposed by the many executing threads. The CUDA
memory hierarchy consists of six different user-managed memories
and a hardware-managed L1 and L2 cache for the newer
architecture. A fast and heavily-banked shared memory (local to the
SMs) is managed explicitly by the programmer among thread
blocks and is often used for caching frequently used data from
global memory. global memory is similar to the main memory used
by CPUs, but has a large bandwidth, in the order of several
hundreds of GB/s. Registers are the faster memory on the GPU with
access time of one cycle. Each SM contains 8K-32K 32-bit registers
depending on the architecture, which are shared between every
thread block executing on an SM. local, constant and texture
memories are implemented with DRAM similar to the global
memory. local memory is used for register spill and arrays that are
local to the each thread. constant memory is cached for fast access.
texture memory is optimized for 2D spatial locality.

2.2 Seam Carving

Seam carving [6] transforms the size of images and videos by
carving-out pixels that form a path of low-energy. These low-
energy connected paths, called seams, go from top to bottom or left
to right depending on the resizing operation. For vertical resizing,
the algorithm computes the seams that start on the left side of the

image and end on the right. In the same manner, horizontal resizing
require the generation of seams to travel from top to bottom. The
seams are added to or removed from an image1 for increasing or
reducing its size with minimal observable distortion. Figure 1 shows
the steps of horizontally resizing an example image. Since the
majority of execution time is spent on the energy function
computations and the seam map generation, in this paper, we focus
on accelerating these two computationally intensive parts.

 (a) (b) (c) (d)
Figure 12: Seam Carving Steps. (a) The original image. (b) The energy of the
image using gradient magnitude method. (c) The low energy seams with
the energy function. (d) Resized image after the seams are removed.

2.2.1 Energy function
Seam Carving can utilize a variety of energy functions to

generate the seam map [6]. The gradient magnitude method uses
equation (1) to compute the energy of each pixel relative to its
surrounding pixels by quantifying the amount of change in color
from one pixel to the next.

y
I

x
IIe

∂
∂

+
∂
∂

=)((1)

The energy function computation exhibits vast data parallelism.
However, attention must be given to memory access patterns which
may have a huge implication on performance. The need for
accessing neighboring pixels to compute the energy function
strongly influences the way we access memory on the GPU.

2.2.2 Seam Map
After finding the energy of each pixel, lowest-energy paths, the

seams, must be found. In order to generate vertical or horizontal
seams, we compute their respective seam map. We focus on the
implementation of the seams required for horizontal resizing, i.e.
the vertical seams. The seam map is computed using the result of
the energy function. The first row of the seam map is directly
obtained from the first row of the energy function. Starting from the
second row of the image, we compute the minimum value of the
seam map for the three pixels directly above the current pixel of
interest, and add its energy value to the result. This operation is
performed for every pixel in the image. Finally, the result of the
above operation becomes the seam map value for each respective
pixel. The recurrence relation below illustrates the full operation:

() ⎭
⎬
⎫

⎩
⎨
⎧

+
=

=
+−−−− otherwiseSSSE

iifE
S

jijijiji

j
ji

1,1,11,1,

,0
, ,,min

0 (2)

In equation (2), S is the seam map table, E is the energy function
table, and i and j are the row and column indices of the tables. This
dynamic programming approach produces the optimal seam/s [6].
The seam map values in the final row of the image correspond to
the cumulative energy of the W most optimal seams, where W is the
width of the image. The most important point to note about equation
(2) is that the computation for each element is entirely dependent on
the result of three elements directly above it. Therefore, unlike the

1 For most of the paper, we only discuss images. However, a video is a set
of images or frames displayed at the video rate of 30 frames per seconds.
Seam carving is equally applicable to both images and videos.
2 Image taken from Wikimedia Commons.

energy function, the seam map computation is not 100% separable.
This makes parallelizing the seam map computation much more
difficult than the energy function.

3. HARDWARE RESOURCES
All of the implementations presented in this paper were executed

on two different heterogeneous computer systems. The First system
is a Mac Pro running the Mac OS X 10.6 operating system powered
by two 2.8GHz quad-core Intel Xeon E5462s CPUs, with 32KB of
L1 and 12MB of L2 cache. The second system is a newer machine
running the Ubuntu Linux 10.04 operating system, powered by a
3.4 GHz quad-core Intel Core i7 2600k CPU with 32KB, 256KB,
and 8MB of L1, L2, and L3 cache respectively. The Intel Core i7
supports simultaneous multithreading (SMT) while the Intel Xeon
does not support SMT [9, 10].

The Mac pro has an NVIDIA 8800GT GPU featuring the G80
architecture with 112 SPs or CUDA cores. This GPU has 512MB of
GDDR3 memory with 256-bits wide memory bus. The GPU on the
Linux machine is the NVIDIA GTX580 Featuring the Fermi
(GF100) architecture. The GTX580 has 16 SMs, 32 CUDA cores
per SM, for a total of 512 SPs. Features of the GTX580 memory
are: 64KB configurable L1 cache/shared memory (16KB/48KB),
768KB L2 cache, and 1.5GB of GDDR5 memory with 384-bits
wide bus. The device compute capability of the 8800GT and the
GTX580 are 1.0 and 2.0 respectively.

The threading model used is POSIX threads (pthread). Since the
Mac OS X does not support the pthread barrier API, we
implemented a custom barrier method using condition variables. All
CPU-only implementations were compiled with the gcc 4.2 on the
Mac Pro and the gcc 4.4 on the Linux machine. Both compilers
were configured with -O2 optimization level. Finally, the
heterogeneous implementations were compiled with the NVIDIA
nvcc compiler, which uses gcc of the respective systems to compile
the CPU code.

4. IMPLEMENTATION
4.1 CPU Implementation
4.1.1 Energy Function

The single threaded CPU implementation of the energy function
is straightforward; we divide the computation into two partial
derivative computation, and combine the result later by summing
the magnitude of the two results. The partial derivatives in both the
x and the y direction require two nested loops for images that are
stored in a 2D array of pixels and a single loop for images stored in
a 1D array.

The energy function can easily be parallelized because pixel
energies can be computed independent of each other. Therefore, we
are able to divide the computation into as many threads as the
operating system could support. Although the operating system
might be able to support a large amount of threads, the performance
is dictated by the hardware and the CPUs ability to execute threads
simultaneously. In the multithreaded version, we divide the input
image into tiles consisting of consecutive columns. The width of
each tile is computed based on the number of threads and the width
of the image. Figure 2 illustrates the decomposition of the input
image.

Figure 2: Division of work between threads in the CPU implementation.

4.1.2 Seam Map
Unlike the energy function, the seam map computation uses a

dynamic programming approach that is not parallelization friendly
(see section 2.2.2). Using this method, we are only able to
parallelize each row of the image one at the time. We perform the
row-by-row computation of the seam map by dividing each row into
fixed-width tiles and computing these tiles in parallel. Following
each row, each thread waits on a barrier for the rest of the row to
complete. This method does not yield any significant benefit over
the single-threaded version; in fact, with more than two threads, the
program spends more time synchronizing the threads than actually
performing the computations.

In an attempt to improve threaded performance, we used
semaphores to create local barriers in place of global barriers across
the rows. Instead of stalling threads until every thread finishes its
part, each thread is only concerned with the execution of its
neighboring threads. In addition, semaphores are more efficient than
pthread barriers and the communication among conditional
variables used on the Mac Pro. For this implementation, we use an
array of semaphores to allow each thread to manage the availability
of the seam map results of its first and last element on every row.
The size of the array is obtained by doubling the product of the
number of threads by the height of the image.

4.2 Energy Function on the GPU

Many computational steps that were described in Section 4.1 also
apply to the GPU. Hence, we only discuss the most significant parts
of the GPU implementations.

4.2.1 Naive Implementations
The first GPU implementation that we present in this paper is the

naive non-aligned implementation. In this implementation of the
energy function, the image was partitioned into 16x16 tiles
containing 256 pixels, as illustrated in Figure 3. In addition to
loading the corresponding data into shared memory, the kernel also
needs to load the pixels immediately adjacent to the tile. These
outer pixels are known as the tile apron, shown in yellow in Figure
4. Each tile utilizes one 2D block of 324 threads (18x18), thus
assigning one thread per pixel load. It is important to note that the
gradient value at the four corner pixels is set to zero. The rationale
is that there is not enough information to compute the partial
derivative with respect to x or y. From the previous statement, it is
obvious that those tiles at the edge of the image require fewer loads.

The series of steps taken by each thread are as follows: First, a
thread calculates the thread pixel index that it needs in order to load
a pixel from the global memory. Second, the thread calculates the
pixel index that it requires to write to shared memory. Third, the
thread loads the relevant global pixel value (or zero) into shared
memory. Fourth, the thread waits at a barrier for the remaining
threads in the block to load their pixel. Finally, if the thread index is
within the workable part of the tile, i.e. not an apron pixel, use the
adjacent pixel values in shared memory to compute the gradient and
store result.

Figure 3: Division of work between threads in the naive GPU
implementation. The gray area represents idle threads within the block.

Figure 4: Position of apron pixels (yellow) and writable pixels (blue).

At first, we used a three-byte data structure to store the RGB
components of each pixel since the alpha in the RGB color space is
not utilized. The problem with a three-byte data structure is that
memory access are not aligned, resulting in a reduction in
performance. We solved this problem by aligning pixels to word
length (4 bytes). By aligning pixels to a word, we waste 25% of the
memory (one extra byte per pixel). However, if the memory size is
sufficient, this is an excellent tradeoff. Moreover, there are times
when we are interested in maintaining the alpha component of the
pixel, this implementation guarantees that the pixel remains in its
original form. In addition, we allocate memory on device and copy
the image data to the GPU using the cudaMallocPitch and
cudaMemcpy2D [7]. Using the two-dimensional allocation and
copy functions, we guarantee that each row of the image starts on a
64 and 128-bytes boundary in global memory for devices with
compute capability1.x and 2.x, respectively.

4.2.2 Split-aligned Implementation
To achieve nearly full coalesced memory access, we decided to

separate the energy function calculation into two separate kernels, a
horizontal and a vertical gradient kernel, and combine the results of
the two. This allows us to rearrange the way we organize the thread
grid to suit the kind of memory accesses expected for each direction
of the derivatives. The purpose of the split method is to ensure that
when the pixel data is loaded from global memory, it incurs
minimal uncoalesced accesses. Note that both the apron pixels and
workable pixels in the vertical direction are always aligned to 16
pixels as shown in Figure 5, allowing coalesced accesses of 64
bytes at a time.

For the horizontal calculation, it is not possible with this
approach to avoid uncoalesced memory accesses because the apron
pixels lie outside the alignment boundary. However, this
implementation attempt to hide the wasted bandwidth of the
uncoalesced memory accesses per row by increasing the tile width
to 128 pixels, as shown in Figure 6. This improves the memory
efficiency allowing only two uncoalesced loads per every eight
coalesced loads, and thus increasing bandwidth usage.

Figure 5: Position of apron pixels (yellow) and writable pixels (blue) in
shared memory blocks for the vertical derivative

Figure 6: Position of apron pixels (yellow) and writable pixels (blue) in
shared memory blocks for the horizontal derivative

4.2.3 Locality-aware-split Implementation
The split-aligned method has the potential to reduce the number

of uncoalesced memory accesses by a significant amount, but it
does not make the best use of locality. Therefore, when migrating
the implementation to a newer heterogeneous system, we decided to
revise the split-aligned method in order to take advantage of locality
and the new capabilities provided by the Fermi architecture. The
GTX580 offers approximately 4.5X more SPs than the 8800GT. It
also supports memory access of up to 128-bytes on a single
coalesce load.

Apart from the two outermost pixels that surround the entire
image, all other pixels are utilized four times in the energy function
computation; twice for each of the partial derivatives. Even when
these pixels are cached in shared memory, which saves one global
load per derivative, the split-aligned method requires that each pixel
be loaded twice. Therefore, we decided to go back to implementing
the energy computation using a single kernel to compute both
partial derivatives.

The locality-aware-split method breaks the image into 2D blocks
of 256 threads. Each tile contains 64 columns and 8 rows. This
approach is similar to the naive-aligned method, the major
difference is that, here, we choose the block size to be a multiple of
the warp's size which benefits the SIMT programming model. With
a 64x8-block configuration, two warps are assigned per rows. All
32 threads in a warp are able to cache their corresponding pixel on a
single coalesce load of 128-bytes for 16 fully coalesce loads. The
top and bottom apron are also loaded using a fully coalesce access
per warp. The uncoalesce loads are introduced by the left and right
apron of the tile. By increasing the number of rows, we improve the
locality while adding more uncoalesce loads. In addition, by
increasing the block width by a multiple of the warp size, we
minimize the number of uncoalesce loads. This method exhibits
properties from both the naive-aligned and split-aligned methods.
Therefore, it is safe to say that the locality-aware-split method
merges the important features of the two; more coalesce loads and
better use of locality. After careful analysis and performance tests,
we found that eight rows produce the best performance.

4.3 Seam map on the GPU

The GPU implementation of the seam map computation is very
similar to the multithreaded CPU implementation, which is
described in Section 4.1.2. Each row of the image is broken into
horizontal tiles, whose width is carefully selected in order to
maximize the occupancy of the GPU. Given that blocks are not
scheduled deterministically and that there is no synchronization
among threads on different blocks, we must resort to calling the
kernel once per row and synchronize in between calls. For this
implementation, wider images should perform much better than
narrow images. Similar to the multithreaded CPU implementation, a
significant amount of the data is not separable. This limits the
amount of parallel execution per kernel launch.

4.4 Page-Locked Memory Optimization
Since a video is a series of images, all of the above methods are

applicable to videos. The only restriction is that all frames are
processed in 33 milliseconds or less to accomplish the full video
rate of 30 frames per second. We introduce a new approach that
exposes the true heterogeneity of these systems. The CUDA
runtime environment provides functionalities to allocate and use

page-locked memory in place of regular pageable host memory [7].
This method only differs in the way memory is used; any of the
kernels that are described above, may be used to compute the
energy function or the seam map.

5. PERFORMANCE EVALUATION

The overall time that it takes to remove a single seam of an image
depends highly on the size of the image. For an image of size
1200x900, it takes approximately 85.6 milliseconds on the Mac Pro
with the Intel Xeon CPUs. The energy function takes approximately
60% of the total execution time to remove one seam. The seam map
computation takes the second largest fraction of time,
approximately 24%. This implies that finding the removable seam
and resizing the image takes 16% of the total execution time. This
16% also includes any basic initial steps or computations that are
neither part of the initial program setup nor part of energy function
and the seam map computations. Therefore, in our performance
evaluation, we focus on improving the energy function and the
seam map computations. However, we also compare and discuss the
total execution times.

5.1 CPU Evaluation and Results
5.1.1 Energy Function

Figure 7 illustrates the performance gained by multithreading the
energy function computations and executing the implementation on
the Intel Core i7 (4-cores each with SMT) and Xeon CPUs (8-cores,
no SMT), respectively. The execution of the energy function single
threaded implementation takes 51.2 ms to complete on the Intel
Xeon CPU. The base system, in Figure 7, is the Intel Xeon single-
threaded execution time. Results show that the newer Intel Core i7
CPU outperforms the Intel Xeon processor for two or fewer threads.
With eight threads, however, the Intel Xeon exhibits better
scalability and produces the best CPU performance for the energy
function computation. Overall, energy function computation scales
well on multi-core CPUs. With eight cores, more than 7x
performance improvement is possible. As the number of threads
launched increase beyond the number of hardware threads in the
system the performance gain gets smaller due to the thread
switching overheads.

5.1.2 Seam Map
In section 4.1.2, we discussed the implementation of the seam

map on the CPU and the dependability among rows of pixels. We
emphasized how dependability due to the dynamic programming
approach serialized the execution of rows. However, the results
expose another problem that significantly affects the parallelization
of the seam map computation. Figure 8 depicts the performance
results of the seam map. The Figure illustrates that barriers impose a
considerable overhead and the best we can achieve is 8%
performance improvement. Beyond two threads, the performance is
worse than that of the single-threaded implementation.

As mentioned in section 4.1.2, a more efficient approach is to
synchronize locally instead of at the global level. This
implementation performs better because semaphores inflict less
overhead. We can see from Figure 8 that Intel core i7 shows more
than 3x performance improvement over the single-threaded
implementation for 8 threads. The implementation scales well for
the Intel core i7; it is not until we reach the maximum number of
hardware threads that the performance diminishes. Intel core i7
outperforms the Intel Xeon system significantly. The performance
improvement on the Intel Xeon system reaches to 1.5x times with 4
threads. However, with 8-threads, we see a large drop in
performance even if the system has 8 hardware threads. This
behavior needs further research and left as future work.

Figure 7: Improvement of the energy function over the single-threaded
executing of the the Intel Xeon

Figure 8: Performance of two different multi-threaded implementations
of the Seam Map.

5.2 GPU Performance Evaluation
5.2.1 Naive-non-aligned Energy Function

On the 8800GT, the naive-non-aligned GPU implementation of
the energy function yields a 13x and an 11x performance
improvement over the single-threaded CPU implementation
executing on the Intel Xeon and core i7, respectively, as shown in
Figure 9. This significant improvement is hard to achieve with
either of the CPUs and their respective amount of cores.
Nevertheless, the naive-non-aligned implementation does not take
advantage of the GPU's wide memory bus. Its memory access
patterns are not coalesced because the loads are not aligned. Since
the alpha in the RGB color space is not used in the energy function
computation, the naive implementation only stores three bytes for
the RGB. As a result, a warp will need to load 96 bytes while a half
of a warp will need to load 48 bytes. Another Problem with this
implementation is the block size, which is not a multiple of the
warp size. The naive-non-aligned method was initially designed
with the G80 architecture in mind. However, with a minimum
modification, this implementation yields 146x and 116x
performance improvement on the Fermi GTX580, over the single-
threaded implementation running on Intel Xeon and Intel Core i7,
respectively (see Figure 10).

Figure 9: Improvement of the energy function over the single threaded
CPUon the 8800GT

5.2.2 Naive-aligned Energy Function
The changes to transform the naive method from a non-aligned to

an aligned implementation (see Section 4.2.1) improve the
performance relative to the single-threaded version from 13x to 29x
and 11x to 23x on their respective systems as shown in Figure 9.
Utilizing the CUDA profiler, we were able to determine the
remaining source of our performance problems, uncoalesced
accesses. The first naive version incurred over 500,000 uncoalesced
loads and 300,000 uncoalesced stores for a 1200x900 image (≈ 1

megapixel); the improved alignment version incurred only 100,000
uncoalesced loads and 50,000 uncoalesced stores. This is still
significantly more than one would expect, as an image with this
amount of pixels should only need 16,875 loads assuming the GPU
can bring in 64 bytes per coalesced loads. The naive-aligned
method was also designed for the 8800GT. When executed on the
GTX580, This implementation shows a performance improvement
of 163x and 130x over the respective Intel Xeon and Core i7 single-
thread CPU implementation (see Figure 10).

5.2.3 Split-aligned Energy Function
The split-aligned method described in Section 4.2.2 achieves an

average of 850 megapixels per second throughput, a 39x and a 31x
improvement over the single-threaded CPU version on the Intel
Xeon and Core i7, respectively, as shown in Figure 9. As expected,
the CUDA profiler reveals that for a 1200x900 image, only
approximately 31,000 loads and 15,000 stores were needed (each
pixel must be loaded from global memory twice, once for each
directional kernel), reducing the total memory access latency by an
order of magnitude. On the GTX580, split-aligned achieves 176x
improvement over the Intel Xeon CPU and 140x over the Intel Core
i7 as shown in Figure 10.

Figure 10: Improvement of the energy function on the GTX580 (Fermi)
over the single threaded CPU

5.2.4 Results of Merging the Split-aligned
The locality-aware-split method described in section 4.2.3

achieves the highest performance improvement on both GPUs for
the energy function computation. By merging the two derivative
computation in a way that the number of coalesce loads remains the
same, and by further taking advantage of locality of accesses, we
manage to improve the performance of the energy function by 235x
and 187x over the single-threaded CPU version on the Intel Xeon
and core i7, respectively, as shown in Figure 10. In addition, when
executed on the 8800GT, this method shows a performance
improvement of 49x and 39x over the Xeon and Core i7 single -
threaded version (see Figure 9).

5.2.5 Seam Map

The seam map GPU implementation exhibits an 8x and a 4.8x
performance improvement over the single-threaded CPU
implementation on the Intel Xeon and Core i7, respectively (figure
not shown). This performance gain is relatively small in comparison
to the energy function speedup. The performance is heavily
impacted by the profound dependability among rows in the image.
This limits the amount of parallel computation by serializing the
execution of rows. Another significant performance impact is that
there is no optimal method for synchronizing threads among
different blocks. Launching the kernel the height of the image
minus one times (e.g. 899 for an image of height 900), imposes a
significant overhead. Approximately 57% of the seam map
execution time is due to kernel launch overhead. Minimizing the
kernel launch overhead could potentially improve the seam map
performance by a factor of two.

5.3 An Evaluation of Total Execution Time of Resizing
Operation on the GTX580

As previously stated, the energy function and seam map
computation account for 84% of the execution time that it takes to
remove one seam. Therefore, by improving these two parts, one
would normally achieve a high overall performance improvement.
However, there is a penalty when performing computation on the
GPU device. The data must be copied from the host memory to the
device memory. Once the computation is performed, we must copy
the results back to the host memory if we care to use the results on
the CPU side. Both of these operations introduce additional
overhead. For extensive GPU computation, the overhead is easily
hidden. However, this is not the case for seam carving given that the
computations are in the order of micro and milliseconds.

In order to use this GPU implementation of the seam carving in a
real word application, we need to utilize the operation described
above. Therefore, we need incorporate the total time that it takes to
copy the image from the host to the device, compute both the
energy function and the seam map, and copy the result back to the
host memory. Figure 11 illustrates the total time that the entire
operation takes on the Intel Core i7 and on the GTX580,
respectively. This heterogeneous system is selected because it
performs the best for both the CPU and the GPU. Figure 12 shows
the performance improvement for the entire operation.

Figure11: Total time to copy to and from the device, compute the
energy function and seam map on the GTX580 and Core i7

In the results illustrated by Figure 12, we introduce a forth image
of size 2740x1830 pixels. The point is to show how much better
than the CPU, the GPUs implementation perform when the size of
the image increases. Overall, Figure 12 shows that the total
execution time of the best resizing implementation on the GTX580
is about 7x faster than the single-threaded CPU implementation and
about 2.5x faster than the multithreaded CPU implementation.

Figure 12: Total time to copy to and from the device, compute the
energy function and seam map on the GTX580 and Core i7

Page-Locked Memory Results: The best implementation that
performs the entire operation is the locality-aware-split-page-lock
method. The reason is that the CUDA run-time environment can
optimize the memory host to device and device to host memory
copy if the CPU memory is allocated as non-pageable memory (see
[7]). We therefore modified our fastest implementation, locality-
aware-split, to take advantage of page-locked memory. The
resulting implementation yields the best overall performance as
shown in Figures 11 and 12. Figure 10 shows that the locality-
aware-split-page-lock method achieves 186x performance
improvement over the Intel Core i7 single-threaded implementation.

6. RELATED WORK

Resizing images and videos have been studied extensively in the
literature. One of the most popular approaches is to perform
cropping [1-5], which involves finding the best rectangular sub-
window in the image. However, cropping may lose an unacceptable
amount of visual information when important structures lie at all
edges of an image. Scaling methods, with or without interpolation,
tend to produce distorted images, especially when an image is
scaled in one direction.

Avidan and Shamir [6] recently provided a new approach to
image and video resizing, called seam carving. Seam carving is an
algorithm for content-aware resizing of images and videos with
little to no perceptible distortion. Seam carving is a
computationally-intensive method that could make it difficult to
perform on large images or videos at run-time.

To the best of our knowledge, this paper is the first to implement
run-time content-aware resizing method on the GPUs. Our
implementation works very well on computing energy function
(over 230x is possible), but the other computationally-intensive
part, seam map, is implemented using dynamic programming which
limits the amount of data parallelism that can be exploited (only
4.8x). A recent work [11] implemented a faster way to compute the
seam map by finding the optimal matches within a weighted
bipartite graph composed of the pixels in adjacent rows or columns.
In future work, we will adapt this method, which we believe, will
improve our results greatly for the seam map computation.

7. CONCLUSION

Seam carving is a powerful method for resizing of images and
videos. This content-aware resizing method has been shown to
effectively resize images and videos with little to no perceptible
distortion. However, seam carving algorithm is computationally-
intensive and for high-resolution images and videos, it may become
impossible to perform this resizing in real-time by using the CPUs
in a desktop scale computer.

In this paper, we exploit highly parallel computational
capabilities of CUDA-capable GPUs in a heterogeneous computer
system for accelerating the resizing of videos and images through
seam carving. Out of the four different GPU methods that we
implemented, our results show that the best is the locality-aware-
split-page-lock method, which achieved a performance
improvement of 186x over the best single-threaded execution time
and 31.5x over the best CPU multithreaded version for the energy
function on the Intel core i7. Overall, our results show that the
GPU-based implementation has a significant impact on the
performance of seam carving and has the potential to resize videos
and large images in real-time.

8. REFERENCES
[1] Itti L, Koch C, Niebur E. A model of saliency-based visual attention for rapid

scene analysis. IEEE Trans Patt Anal Mach Intell, 1998, 20(11): 1254–1259
[2] Sue B, Ling H, Bederson B, et al. Automatic thumbnail cropping and its

effectiveness. In: Proc. of User Interface Software and Tech., 2003. 95–104
[3] Chen L, Xie X, Fan X, et al. A visual attention model for adapting images on

small displays. Multimedia Syst, 2003, 9(4): 353–364
[4] Ciocca G, Cusano C, Gasparini F, et al. Self-adaptive image cropping for small

displays. IEEE Trans Consumer Electr, 2007, 53(4): 1622–1627
[5] Santella A, Agrawala M, DeCarlo D, et al. Gaze-based interaction for semi-

automatic photo cropping. Proc. of Human Factors in Comp. Sys, 2006. 771–780
[6] S. Avidan and A. Shamir, Seam Carving for Content-Aware Image Resizing, In

SIGGRAPH '07 ACM SIGGRAPH, 2007.
[7] NVIDIA, NVIDIA CUDA C Programming Best Practices Guide 4.0, May 2011,
[8] B. Jang, D. Schaa, P. Mistry, D. Kaeli, Exploiting Memory Access Patterns to

Improve Memory Performance in Data Parallel Architectures, IEEE TPDS, 2011.
[9] Intel, 2nd Generation Intel® Core™ Processor Family Desktop, Oct 2011.
[10] Intel, Intel Xeon Processor Series Datasheet.
[11] Real-time content-aware image resizing, Science in Chine Series F: Information

Sciences, 2009 Sci. in China Press.

