Errata for *Fundamentals of Biomechanics* 3rd edition
by Nihat Özkaya, Margareta Nordin, David Goldsheyder, and Dawn Leger (Springer 2012)

Frederick J. Vetter
Department of Electrical, Computer and Biomedical Engineering
University of Rhode Island
Last updated January 18, 2018

1. page 15, Problem 2.3, answer (a): $F_{2x} = -7.1 \, N$

2. page 16, Problem 2.8: the mass of the block is $m = 81.6 \, kg$ (not 28.6 kg)

3. page 23, Example 3.1: the net moment M_{net} is 5880 N-m (not 880 N-m). Thanks to Colton Smaldone for catching this error!

4. page 30, Problem 3.1: the net moment M_O is 3979 N-cm (not N-m), so $l = 3.5 \, m$

5. page 30, Problem 3.2: the diving board has mass of 130 kg (not 170 kg)

6. page 32, Problem 3.8: the weight W_1 acts at $l_1 = 35 \, cm$ (the subscript is missing). Also, the units on the net moment M_{net} are N-m (not N).

7. page 48, last equation in left column: the angle α made by R_A is computed from

$$\alpha = \arctan \left(\frac{R_{Ay}}{R_{Ax}} \right)$$

8. page 51, Remarks for Example 4.6, two places:

 (a) wrong sign on last term in M_E (left column); the correct moment is:

 $$M_E = aW_2 \hat{i} + \frac{b}{2} W_2 \hat{k}$$

 (b) wrong signs on the last term of M_{Ax} and the first term of M_{Az} (top of right column); the correct reaction moment components are:

 $$M_{Ax} = -\frac{a}{2} W_1 - aW_2 - aP$$
 $$M_{Ay} = 0$$
 $$M_{Az} = -\frac{b}{2} W_2 - bP$$

9. page 56, Problem 4.1: ignore the parenthetical statement at the end of the first paragraph. While the statement is true, it doesn’t simplify the analysis.

10. page 57, Problem 4.6: $M_A = 182.6 \, N-m$ (ccw), not 182.3 N-m.

11. page 57, Problem 4.7: in the problem statement: the free end of the L-shaped beam is point C (not point B). Figure 4.55 is drawn correctly.
12. page 58, Problem 4.8: answers given for R_{Ay}, R_{Az}, M_{Ax} are incorrect. Correct answers are: $R_{Ay} = P_y (-y)$, $R_{Az} = 0$, $M_{Ax} = aP_y (+x)$. In M_{Ay} remove the semicolon between a and P_x.

13. page 58, answer for Problem 4.10: a sign is wrong in the denominator; the correct formula is:

$$P = \frac{\sin \theta + \mu \cos \theta}{\cos \theta - \mu \sin \theta} \ W$$

14. page 58, Problem 4.12: the reaction force is $R_A = 446 \text{ N}$ (not 729 N)

15. page 59, Problem 4.14: the reaction force is $R_A = 188 \text{ N}$ and the reaction moment is $M = 98.0 \text{ N-m}$

16. page 82, in Example 5.6: two places:
 (a) in the left column, the simplified equation for F_M should be:
 $$F_M = \frac{(bW_1 + cW_0) \cos \beta}{a \sin \theta}$$

(b) in the right column,
 i. the angle ϕ made by F_J is computed from
 $$\phi = \arctan \left(\frac{F_{Jy}}{F_{Jx}} \right)$$
 ii. correct values are $F_M = 1890 \text{ N}$, $F_J = 1678 \text{ N}$.

17. page 169, Figure 13.2: “GRID” should be “GRIP”.

18. page 172, last paragraph: in the fourth sentence of the paragraph, the definition of shear strain is confusing. This is better: Shear strain is defined as the change in the angle between two initially perpendicular lines. In Figure 13.10 the change is the angle gamma (γ). We are working with linear elasticity (small deformations), so shear strain is usually very small. Hence the angle can approximated by its tangent, which is the ratio of the lengths d and l. Equation 13.4 should read:

$$\gamma \approx \tan (\gamma) = d/l$$

This approximation yields a maximum error of 1% for shear strains below 0.122 radians (7 degrees).

19. page 179, Table 13.2: Shear modulus units should be GPa (not MPa).

20. page 181, deformed length of the steel rod is $l_2 = \ldots = 30(1 + 0.00032) = 30.0096 \text{ cm}$ (add a zero before 32 and 96).

21. page 184, line 2 after Eq. (ix): R_2 should be T_2 in “R_A, T_1, and R_2”.

22. page 187, answer to Problem 13.5: (e) $\epsilon = 0.02$, not 0.20.

23. page 187, Problem 13.6: to the problem statement add “The load W_2 is 400 N”. Also, units in the answer to part (b) should be MPa, not GPa.
24. page 205, caption to Fig. 14.42: “Torque” is misspelled
25. page 205, solution to Example 14.4: reference should be to Figure 14.42, not Figure 14.41
26. page 209: Eq. 14.30 is missing a negative sign. The correct equation is:
 \[V = -\frac{dM}{dx} \]
27. page 210, Eq. 14.31 is also missing a negative sign. The correct equation is:
 \[\sigma_x = -\frac{My}{I} \]
28. page 210, last row in Table 14.1: For the annulus (the last row) replace \(Q \) and \(\tau_{\text{max}} \) with:
 \[Q = \frac{2}{3} \left(r_o^3 - r_i^3 \right) \]
 \[\tau_{\text{max}} = \frac{4V}{3A} \left(1 + \frac{r_o r_i}{r_o^2 + r_i^2} \right) \]
29. page 211, right column, second sentence above \(\tau_{\text{max}} \) equation: reference should be to Eq. 14.33, not Eq. 14.19
30. page 215, solution to Example 14.8: incorrect values for \(Q \) and \(\tau_{\text{max}} \) are used (due to the errors in Table 14.1). The correct values are: \(Q = 1.32 \times 10^{-6} \text{ m}^3 \) and \(\tau_{\text{max}} = 2.2 \times 10^6 \text{ Pa} = 2.2 \text{ MPa} \).
31. pages 217-218, Problem 14.2: Two errors:
 - In the problem statement, the force \(F_y \) is also 4 MN, so the third sentence should contain “…such that \(F_x = F_y = 4 \times 10^6 \text{ N} \ldots \)”
 - In the answer to part (b), the \(z \) direction strain is \(\epsilon_z = -0.0270 \) (not -0.0027).
32. page 238, section A.3: reference should be to Figure A.6, not Figure A.4
33. page 240, Example A.2: reference should be to Figure A.8, not Figure A.9
34. page 240, Problem A.2: \(\alpha = 33.2^\circ \), not 32.2\(^\circ\)
35. page 240, Problem A.3: \(c = 22.7 \), not 27.7
36. page 240, Problem A.4: \(a = 10.04 \), not 10.4
37. page 243, Figure B.9: the resultant vector \(\mathbf{D} \) is wrong because the vector \(\mathbf{A} \) is drawn incorrectly (its magnitude is too large). The vector \(\mathbf{D} \) should appear as it does in Figures B.8, B.10, and B.11 since vector addition is commutative.
38. page 247, Examples B.1 and B.2: since the magnitude is A is stated as “5 U”, the units U must carry over to the components of A; hence, the solution should say “$A_x = A \cos \alpha = \ldots = 4 \, U$”, and “$A_y = \ldots = 3 \, U$”. The units must also be included on the vector: $\vec{A} = A_x \hat{i} + A_y \hat{j} = 4 \hat{i} + 3 \hat{j} \, U$

Similarly for Example B.2: the units U must be included on vector \vec{B} and its magnitude.

39. page 253, Problem B.7, answer (g): Since these are all magnitudes, remove the underbar:

$E = 3.57, \, F = 8.89, \, G = 2.12, \, H = 7.16$

40. page 253, Problem B.8 answers: since vectors \vec{A} and \vec{B} have units U, both vectors in answer (a) have units U, and the units in answer (b) and (c) should be U2