hp calculators

HP 50g Solving differential equations
HP 50g
Graphing Calculator
EXIT
Y= WN GRAPH 2DIBD TBLSE TABE
FIA F2 B E3C F4D F5 : F6 :
The menu SYMBOLIC SOLVE

How differential equations can be displayed

The commands for symbolic solutions

The built-in form for numeric solutions

Practice solving differential equations

The menu SYMBOLIC SOLVE

The menu SYMBOLIC SOLVE menu is the WHITE shifted function of the 7 key. This menu contains commands for symbolically solving a great variety of problems. Two of these commands, DESOLVE and LDEC are for symbolically solving differential equations. To access the menu you press \rightarrow s.SLV .

Figure 1

How differential equations can be displayed

On the HP50g differential equations can be denoted in two different ways. The first is to use some of the built-in differentiation commands. For example the differential equation:

$$
\frac{\partial Y(X)}{\partial X}=Y(X)
$$

can be denoted as:

$$
\frac{\partial}{\Delta X}(Y(X)=Y(X)
$$

or

```
DERIU(Y(X), X)=Y(X)
```

or (if the current variable VX is X)

DERVX $Y(X)$) $=Y(X)$

The second way to denote differential equations is to use the formal derivatives of the HP50g. Formal derivatives are written starting with the letter " d ", then a number that indicates the position of the independent variable in the unknown formal function, then the unknown formal function followed by its arguments in parentheses. For example the above differential equation could be also written as:

$$
d 1 Y(X)=Y(X)
$$

where $\operatorname{d1Y}(X)$ means the derivative for the first variable (i.e. $X)$ of $Y(X)$. According to this rule of syntax the differential equation:

$$
\frac{\partial^{2} \gamma(X)}{\partial X^{2}}=\gamma(\infty)
$$

can be written as:

$$
\frac{\partial}{\partial X}\left[\frac{\partial}{\partial X}(\gamma(\infty)]=Y(\infty)\right.
$$

or
or (if the current variable VX is X)
or

```
|1g1Y(x)=Y(x)
```

All intermixed notions will be also accepted as valid arguments. For example one could also write:

$$
\frac{\partial}{\partial X}[\operatorname{dr} Y(x)]=Y(x)
$$

Notice that in all notions the unknown function is written as $Y(X)$ and not simply as Y. This allows for the use of any possible name for the unknown function and its independent variable.

The basic commands for symbolic solutions

The command DESOLVE takes two arguments: An ordinary differential equation of first or second order and a formal function for which the differential equation must be solved. The second argument of DESOLVE is the unknown function. The command returns the symbolic solutions for the unknown function. These solutions contain also the constants of integration, which are denoted as $\mathrm{cCO}, \mathrm{cC1}$, $\mathrm{cC2}$, and so on. The command DESOLVE accepts also a vector as its first argument, that contains the differential equation and the initial conditions of the problem. The solutions do not contain any constants of integration if a vector is used as input.

The command LDEC finds solutions of linear ordinary differential equations of any order with constant coefficients. It takes two arguments: the right hand side of the differential equation and the characteristic polynomial in the current variable VX (usually X) of the differential equation. It returns the symbolic solutions for the unknown function with constants of integration, denoted as $\mathrm{cCO}, \mathrm{cC} 1, \mathrm{cC2}$, and so on. The command can also solve systems of linear differential equations. In this case it needs a vector containing the right hand side of the differential equations, and a matrix containing the constant coefficients of the characteristic polynomials of the differential equations.

The built-in form for numeric solutions

Though the HP 50 g can solve many differential equations symbolically there will be many cases in which it can't deliver such a solution, or which don't have an closed analytic solution at all. Even in such cases the HP 50 g provides a great variety of ways to solve such equations numerically. The most convenient way to numerically solve a differential equation is the built-in numeric differential equation solver and its input form. This built-in application is accessed in several ways. For example you can press \rightarrow NUMSLV to get the CHOOSE box with all numeric solvers available in the system:

Figure 2
The first menu item is for solving equations numerically. The second is for solving differential equations numerically. The third provides numerical solutions for polynomials of any degree. The fourth solves systems of linear equations numerically. The fifth is for financial problems. The sixth is for numerical solutions of systems of arbitrary equations.

[^0]| | |
| :---: | :---: |
| SOLVE ${ }^{\prime}(\mathrm{C})=\mathrm{F}$ | |
| F: | |
| Indep: \times | Init:Q Final:E. 5 |
| Soln: Y | Init:0 Finat: |
| Tot: 000 | 1 Step:Dfit -Stiff |
| En | tion of InDEF |
| ESIT ${ }^{\text {chous }}$ | O InIT SOL |

Figure 3
The input field f : is where we enter the right hand side of the differential equation of the form $Y^{\prime}(t)=F(T, Y)$. The input field Indep: is for specifying the independent variable of the differential equation. In the same row, Init: takes the initial value and Final: the final value of the independent variable of differential equation. The field Soln: is for entering the dependent variable. Init: takes the initial value of the dependent variable. Final: is the field where the numeric solution is put when the HP50g solves the problem. The field Tol: is for specifying the maximum tolerance for the answer, Step: is for the maximum step size of the calculation. (The solution is calculated stepwise according to the Runge-Kutta-Fehlberg method.) The option_Stiff is for specifying that the problem is "stiff", which causes the
 selecting between several alternatives. TE T the solution for the differential equation.

The next few examples barely begin to explore differential equations on the 50 g .

Practice solving differential equations

Example 1: The differential equation of the concentration $c(t)$ of a chemical substance that undergoes decay in a first order reaction is given by:

$$
\frac{\partial}{\partial t}(c(t))=-k \cdot c(t)
$$

Find $c(t)$ if the initial concentration is $c(0)$.
Solution: Assume algebraic mode and CHOOSE boxes. Press \leftarrow s.SLV

Figure 4
Choose DESOLVE and enter the differential equation.

Figure 5
Notice that the variable VX was changed to t (upper edge of the screen). Extract the solution from the list.
\rightarrow PRG 6 ENTER ENTER 7 ENTER \rightarrow ANS ENTER

Figure 6
Substitute $\mathrm{t}=0$ in the above solution.

Figure 7
Solve for the integration constant cCO.
\rightarrow S.SLV 6 ENTER \rightarrow ANS \rightarrow, ALPPAA ALPHA \rightarrow (C) 0 ENTER

Figure 8
\rightarrow ALG 2 ENTER \rightarrow ANS ENTER (expand)

Figure 9
Substitute the constant cCO in the general solution. The general solution of the differential equation is the fourth most recent answer of the HP50g. Use ANS(4) to refer to it.ALG 8 ENTER 4 ANS (1) \qquad
\qquad , 4 ANS ENTER

Figure 10

If you don't like the exponential in the denominator linearize the expression.

Figure 11
Get information about the kind of the differential equation. (The calculator creates a variable in the current directory where it stores the type of the differential equation.)

DIETE ENTER

Figure 12
Answer: $\quad e(t)=c(0) \cdot e^{-k \cdot t}$
Example 2: A physical body moves under the influence of a constant force F in a viscous liquid. The differential equation of its motion is:

$$
\frac{\partial v(t)}{\Delta t}=\frac{F}{m}-\frac{k}{m} \cdot v(t)
$$

Find the velocity of the body at $t=1 \mathrm{~s}, \mathrm{t}=2 \mathrm{~s}, \mathrm{t}=5 \mathrm{~s}, \mathrm{t}=\infty$ if the initial velocity was 0 .
with $\mathrm{m}=0.8 \mathrm{Kg}, \mathrm{F}=3.5 \mathrm{~N}, \mathrm{k}=2.3 \mathrm{Kg} / \mathrm{s}$
Solution: Start the numeric differential equation solver.
\rightarrow NUMSLV 2 ENTER

Figure 13
Enter the right hand side of the differential equation.

Enter the independent variable.
(D) \square (ALPHA) \rightarrow T ENTER

Figure 15
Enter the final value of the independent variable.
(D \qquad ENTER


```
f: '3.5/.8-2.3/.8*v'
Indep:t Init:0 Finat:1
Soln: Y Init:O Fingl:
Tol:. 0001 Step:Dfit -Stiff
Enter solution yar naye
EDII Soly
```

Enter the dependent variable.
\qquad (ALPHA) \qquad (1) ENTER

Solve for the final value of the dependent variable.
(D) 5

f:
Indep:t Init:0 Finat:1
Soln: V Init:0 Final: 1.4...
Tol:. 0001 step:Df1t -Stiff
press solve for final soth vatue
EOIT ITITP SOLDE

View the solution

ㅂ․․․․․․


```
\{HOHE\}
f: \(13.5 / .8-2.3 / .8 * \nu\)
Indep: t. Init:0 Final:1
Soln: \(V\) Init:0 Final: 1,4...
Tot:.0001 Step:Dflt -Stiff
1.43589923731
IGAKCL 0 OR
```

Figure 19
TIIT to finish viewing. Use the final values as new initial values.

TIT:


```
Indep:t Init:1 Fingl:1
Soln: \(V\) Init:1.4... Finat: 1.4....
Tol:. 0001 step:Dfit -Stiff
Press SOLve for final soln watue
EDIT
```

Enter the new final value for t and solve again
(4) 2 ENTER (D) BIETE

<thones

$f: \quad 13.5 / .8-2.3 / .8 * v '$
Indep: t Init:1 Final? soln: v Init:1.4... Final (1,5m
Tol:. 0001 step: Df lt _stiff
press solve for fingl soth uatue EDIT D IIITP SOLDE

Repeat the process for $t=3 \mathrm{~s}$.
TET \qquad 3 ENTER STा

Figure 22
Repeat the process for $t=5 \mathrm{~s}$.


```
\(f: \quad 13.5 / .8-2.3 / .8 * v '\)
Indep: t Init:3 Find! 5
Soln: U Init:1.5... Final 1.5.1
Tol:.0001 step:Dflt _Stiff
Press solve for final soln value
EDIT \(\square\) TIIT + SOLNE
Figure 23
```

Obviously as the time passes by the velocity seems to approach a limit. Press Din 표I to calculate velocity after "infinite" time. The calculation takes a couple of seconds.


```
组OHET
\(\mathrm{f}: \quad 13.5 / .8-2.3 / .8 * 0 '\)
Indep: t Init:5 Find 100
Soln: U Init:1.5... Fina! 1.5...
Tot: 0001 step: Dflt _Stiff
press solve for final soln value
EDIT - EITIT EOLDE
```

Figure 24
 and solution values. If you press VAR you see that it also stored the equation in variable EQ, the last value of t in variable t, and the last calculated value for v in variable v :

It seems that v really approaches a limit. If this differential equation were to be solved symbolically, we would see that this limit is given by F/k. If we calculate this using the values that we used here, we find 3.5/2.3=1.52173913043 which agrees very well with our numeric calculation of v for growing values of t.

Answer: $\quad 1.43589923731 \mathrm{~m} / \mathrm{s}, 1.51690188958 \mathrm{~m} / \mathrm{s}, 1.52146763983 \mathrm{~m} / \mathrm{s}, 1.52173869336 \mathrm{~m} / \mathrm{s}, 1.52173886357 \mathrm{~m} / \mathrm{s}$

[^0]: Press 2 ENTER to start the built-in numeric differential equation solver.

