hp calculators

HP 50g Symbolic integration of trigonometric functions

Methods used
The integration commands
The substitution commands
Practice solving symbolic integration problems involving trigonometric functions
Methods used

The HP50g provides large selection of methods for performing symbolic integration and for finding antiderivatives. Several methods for the symbolic integration of expressions involving trigonometric functions are considered here. This training aid only scratches the surface of what the 50g can do.

Integration commands

The provided integration commands are INT, INTVX, RISCH and \(\int \). Any of these commands can be used for symbolic integration in combination with substitution, expansion, and so on. The command INT is accessible using the built-in command catalogue of the HP50g. Press \(\text{[F1]} \text{calc} \) to open the catalogue. From the catalogue you can select and execute any of the existing commands. The catalogue is much like a menu of an application, where you can use the arrow keys to select menu items, or jump to the items typing the first few letters of them. While the catalogue is active, press \(\text{ALPHA} \text{ALPHA} \) \(\int \) \(\text{F1} \) to jump to the command INT. Pressing the key \(\text{ENTER} \) or the menu key \(\text{OK} \) will put the selected item on the command line (or execute the selected item if RPN mode is on). Pressing \(\text{QUIT} \) will quit the command catalogue without executing the selected item. The command INT needs three arguments: The expression to be integrated, the variable of integration, and the value of the variable of integration where the antiderivative will be evaluated.

The commands INTVX and RISCH are available in the menu "Derivatives and Integrals" This menu is accessed pressing \(\text{F2} \text{calc} \) to open the "Calculus" menu.

The first menu item is 1.DERIV & INTEG... and it is highlighted (selected). In this CHOOSE box selecting 1.DERIV & INTEG... and pressing \(\text{ENTER} \) or \(\text{OK} \) takes you to a new menu which contains differentiation and integration commands:

![Figure 1](image1.jpg)

The commands INTVX and RISCH are in the second page of the menu, so you must press \(\text{F1} \) to have the CHOOSE box scroll down and see them. The command INTVX is provided as a shorter way to perform integrations as it only needs one argument, the expression to be integrated, and uses automatically the current CAS variable VX (usually X) as the variable of integration. RISCH needs two arguments: the expression to be integrated, the variable of integration.

Finally, the command \(\int \) is accessible from the keyboard pressing \(\text{F6} \) \(\text{F6} \). It needs four arguments: the lower and upper limit of integration, the expression that must be integrated, and the variable of integration. In many cases, this will be the command that is the best choice for numeric integration.

The substitution commands

The commands for substitution are SUBST, \(\int \) (where), and PREVAL. The command PREVAL allows for the substitution and evaluation of the difference \(g(x_2)-g(x_1) \), where \(g(x) \) is the antiderivative of some function \(f(x) \) that we want to integrate between the limits \(x_1 \) and \(x_2 \). This command resides in the menu 1.DERIV & INTEG.... The command SUBST allows for the substitution of the variable of integration,
since it will take care of altered integration limits and other necessary substitutions in the integral. This command resides in (the second page) of the menu "Algebra" which you access by pressing \texttt{\textcopyright} \texttt{\textcopyright} \texttt{\textcopyright} \texttt{\textcopyright} \texttt{\textcopyright} \texttt{\textcopyright} \texttt{\textcopyright}.

Practice solving symbolic integration problems involving trigonometric functions

Example 1: Find the antiderivative of the function

\[
\sin(x) \cos\left(\frac{x}{2}\right)
\]

Solution: Assume algebraic exact mode and CHOOSE boxes.

\[
\text{RISCH}(\sin(x),\cos(x))
\]
Note that since the antiderivative of a function is only determined up to an additive constant, the above result is only one of the possible antiderivatives. The general result is:

$$-\cos\left(\frac{x}{2}\right) + \frac{A}{3}\cos\left(\frac{3x}{2}\right) + C$$

where C is the additive constant.

Example 2: Find the antiderivative of:

$$\frac{\sin(x) - \cos(x)}{\sin(x) + \cos(x)}$$

Solution: Assume RPN exact mode, CHOOSE boxes and X as current variable VX. Enter the expression,

$$\int \frac{\sin(x) - \cos(x)}{\sin(x) + \cos(x)} \, dx$$

Enter the expression and perform the integration.

Answer:
Example 3: Integrate symbolically

\[\int \tan\left(3x - \frac{\pi}{3}\right) \, dx \]

Solution: Assume RPN exact mode. Put the expression on stack level 1.

\[\text{Enter variable } X. \]

\[\int X \, dx \]

We use \(X \) as the value at which the antiderivative will be evaluated, so press \(\downarrow \) to duplicate the variable:

\[\text{Answer:} \]

Example 4: Until now we examined integration problems that the HP50g is able to solve without any user intervention. But there are also integration problems that need some manipulation by the user to allow the HP50g to solve them. Using the great variety of commands that the HP50g provides, we can rewrite some expression in such a way that the subsequent integration will be successful. For example:

Integrate symbolically: \(\sin(\ln(x)) \)

Solution: Assume RPN mode with CHOOSE boxes and \(X \) as the current variable VX. Enter the integral.

\[\text{Solution:} \]

\[\text{Assume RPN mode with CHOOSE boxes and } X \text{ as the current variable VX. Enter the integral.} \]
Attempt integration.

The HP50g returns the same integral unsolved with variable X substituted by Xtt:

But the integral is solvable on the HP 50g. Substitute LN(x)=y in the original integral.

(Perform the substitution)

Notice that the HP50g didn’t only replace the expression LN(x) by y. It also transformed the variable of integration X to e^y and changed the evaluation point of the integral to LN(e^y).
Example 5: Integrate symbolically e^{ACOS(X)}

Solution: Assume algebraic mode with CHOOSE boxes. Attempt integration.

Notice again that the HP50g replaced the expression arccos(Xt) by y and also performed all necessary transformations.
Example 6: Find the symbolic result for the integral:

$$\int \sin(x+y)^2 \, dx \, dy$$

Solution: Assume RPN mode and CHOOSE boxes.

```
RAD \text{XYZ BIN } R = 'X' \hspace{100pt} \text{ALG CHOME}3
\text{CHOME}3

\text{CH}\{\text{RISCH(}\sin(x+y)^2, x)\}, y \}

\text{EDIT CUBS BIG \text{-} EVAL FACTO SIMP}

\text{(expand and solve the integral)}
```

Answer:

```
\begin{align*}
\text{COS}(2X+2Y)+4\cdot YY+2\cdot Y^2 \\
\hline
\text{EXPANSIONS}
\end{align*}
```