invent

hp calculators

HP 50g Using Taylor Series

The menu LIMITS AND SERIES

Practice using Taylor series

HP 50g
Graphing Calculator

TRFITE

$Y=$	WIN	GRAPH	2D/3D	TBLSET	TABLE
$F 1 A$	$F 2 B$	F3 C	F4 D	F5 E	F6

FILES BEGIN CUSTOM END

CMD UNDO PRG CHARS MIRW EQW MTH CAT DEL CIEAR
 USER ENIRY S.SIV NUM.SIV EXP\&IN TRIG FINANCE TIME []
ALPHA 7 8 9

4	4	5	6	-
	ARITH CMPIX	DEF LB	\# BASE	(1) <<>
$\stackrel{ }{ }$	1	2	3	+
Cont off	∞	1	π	ANS - NUM
ON	0	-	SPC	ENTER

The menu LIMITS AND SERIES

The menu LIMITS AND SERIES contains commands related to limits. To access it you press \leftrightarrows CALC. You are presented then the calculus menu as a CHOOSE box:

Figure 1
Its second menu item is 2.LIMITS AND SERIES... You can use such CHOOSE boxes much like menus of computer applications. You can move the selection using the arrow keys. You can also jump to a certain menu item by typing the first few letters of the command or the number at the left of the menu item. Pressing the ENTER key or the menu key

Figure 2
The command DIVPC needs two polynomials and an integer. It returns the increasing power quotient of the two polynomials up to an order indicated by the integer. The command lim takes an algebraic object and an equation of the form variable=expression. It returns the limit of the algebraic expression when the given variable approaches the expression at the right hand side of the equation. The command SERIES needs an algebraic expression, and equation of the form variable=expression, and an integer. It returns a list at stack level 2 and an equation at stack level 1. The list contains 4 items: The limit of the expression when the given variable approaches the expression at the right hand side of the equation. The equivalent value expression at that point. The power expansion at that point. And finally the order of the residual at that point. The equation on stack level 1 is of the form $\mathrm{h}=$ variable-expression, where variable and expression are the same as in the equation variable=expression that we provided as argument for the command. The command TAYLORO performs a Maclaurin series expansion of an expression in the default independent variable, VX (usually ' X '). The expansion uses a 4-th order relative power, i.e., the difference between the highest and lowest power in the expansion is 4. The command TAYLR needs an algebraic expression, a variable and an integer. It produces a Taylor series expansion of the expression for the given variable x about a point variable $=0$ for the order specified by the integer. Finally the menu item 6.CALCULUS.. takes you back to the calculus menu.

Practice using Taylor series

Example 1: \quad Expand the function $\operatorname{SIN}(X)$ to a Taylor series of order 5 around $X=0$.
Solution: Assume algebraic exact mode, radians angle mode, and CHOOSE boxes. Press \square CALC to get the calculus menu:

Figure 3
Press 2 Enter to get the menu LIMITS AND SERIES:

Figure 4
Build-up the command in the command line

Figure 5

Answer:
$\frac{1}{126} \times{ }^{5}+\frac{-1}{6} \cdot x^{3}+\times$
Example 2: \quad Expand the function $\operatorname{SIN}(X)$ to a Taylor series of order 5 around $X=$.
Solution: \quad Assume RPN mode and CHOOSE BOXES. Enter the function.
Γ EQW SIN X ENTER

Figure 6
Enter the point at which we expand, $X=$
\rightarrow EQW $X \gg$ $=4 \pi$ \qquad ENTER

Figure 7
Enter the order 5.ENTER

Figure 8
Perform series expansion.CALC 2 ENTER

RAD XYZ HEX $\mathrm{R}=$ ' X '
 DIVFC IIH SERIETAYLOTAYLEGALC

Figure 9
Substitute $h=X$ - in all expressions of the list on stack level 2, expand the list and drop the list element count.
Γ
. $\xrightarrow{A L G}$ 8 EN ER \leftarrow

Figure 10
The series expansion was performed around X - and the remainder is of order 7 . Press to drop the remainder. Delete the tag from the series.PRG 5 5 ENTER

Figure 11
The series is ordered in order of decreasing powers of X-. Order in decreasing powers of X.
$\square x(A L P H A$ ALPHA R (B (R (E) R ENTER

Answer:

Example 3: In special relativity the kinetic energy of a body with mass moving with speed v is given by the formula:

where c is the speed of light in vacuum. Expand this formula for the case $v \ll c$ (i.e. around $v=0$) to a series of order 6 . What can be said about the relativistic formula for the kinetic energy in this case?

Solution:
Assume RPN mode and CHOOSE boxes. Enter the formula.

Figure 13
Enter the variable.\rightarrow ALPPAA \rightarrow (ENTER

Enter the order of the series.
(6) ENTER

Figure 14
Perform series expansion.
(4) CALC 2 ENTER 5 ENTER

Figure 15
Answer:
The series:

HP 50g Using Taylor Series

shows that the relativistic kinetic energy of a body in the case of small speeds is essentially the same with its kinetic energy in Newtonian mechanics, since the members of the series starting at the 4th power of v are negligible (since they are divided by the value of the speed of light to the $2^{\text {nd }}$ and $4^{\text {th }}$ powers, etc.) compared to the member $\mathrm{mv}^{2} / 2$.

