
Vi Quick Reference
Entering/leaving vi
% vi name edit name at top
% vi + n name ... at line n
% vi + name ... at end
% vi −r list saved files
% vi −r name recover file name
% vi name1 name2 ... edit first; rest via :n
% view name read only mode

Vi states
Command Normal and initial state. Others return

here. ESC (escape) cancels partial
command.

Insert Entered by a i A I o O c C s S R.
Enter your arbitrary text then ter-
minates with ESC character.

The display
Last line Error messages, echoing input to : / ?

and !, feedback about i/o and large
changes.

@ lines On screen only, not in file.
˜ lines Lines past end of file.
ˆx Control characters, ˆ? is delete.

File manipulation
:w write out changes
:wq write and quit vi
ZZ exit from vi, saving changes
:w name write file name
:w! name overwrite file name
:q quit
:q! quit, discard ALL changes
:e name edit file name
:e! reedit, discard changes
:e # edit alternate file
:n edit next file in arglist
:sh run shell, type exit to return
:!cmd run cmd, then return
ˆG shows current filename and line

Insert and replace
a append after cursor
A append at end of line
i insert before
I insert before first non-space
o open line below
O open above
rx replace single char with x
R replace multiple characters

Corrections during inserting
ˆH erase last character
ˆW erases last word
ˆD backtab over autoindent
ˆVˆX puts control character ˆX in text
ESC ends insertion, back to command

Undo, redo, retrieve
u undo last change
U restore current line
. repeat last change
" d p retrieve d’th last delete

Counts before vi commands
Typing a number before a vi command will tell vi to "repeat"
the command that many times. More specifically:

line/column number z G |
scroll amount ˆD ˆU
replicate insert a i A I
repeat effect most rest

Operators (double to affect lines)
These operators act like a prefix, you type the operator ("d"
for example) then type a cursor movement command to
specify what the operator will affect (example: "dw" deletes a
word)

d delete
c change
y yank lines to buffer
< left shift
> right shift
! filter through UNIX command

Simple commands
dw delete a word
de ... leaving punctuation
dd delete a line
3dd ... 3 lines
i abc ESC insert text abc
cw new ESC change current word to new
xp transpose characters

Character positioning
ˆ first non blank
0 beginning of line
$ end of line
h or → forward
l or ← backwards
ˆH same as ←
space same as →
fx find character x forward
Fx ... backwards
tx up to character x forward
Tx ... backwards
; repeat last f F t or T
, opposite direction of ;
| to specified column
10 | to 10th column
% find matching ({) or }

Vi Quick Reference
Words, sentences, paragraphs
w word forward
W ... ignore punctuation
b word backwards
B ... ignore punctuation
e end of word
E ... ignore punctuation
) sentence forward
(sentence backwards
} paragraph forward
{ paragraph backward

Line positioning
H home window line
L last window line
M middle window line
+ next line, at first non-white
− previous line, at first non-white
↓ or j next line, same column
↑ or k previous line, same column

Marking and returning
`` previous place in file
´´ ... at first non-blank in line
mx mark position with letter x
`x to mark x
´x ... at first non-blank in line

Scanning pattern formation
/pattern next line matching "pattern"
?pattern ... find backwards
ˆ beginning of line
$ end of line
. any character
* any number of preceding
.* matches anything or nothing
\< beginning of word
\> end of word
[abc] a single char (a or b or c)
[ˆabc] ... any char except a or b or c
[x−y] ... between x and y

Positioning within file
ˆF forward one screenfull
ˆB backward one screenfull
ˆD scroll down half screen
ˆU scroll up half screen
ˆE scroll window down 1 line
ˆY scroll window up 1 line
G goto line (end default)
10G goto 10th line in file
/pattern next line matching pattern
?pattern prev line matching pattern
n repeat last / or ?
N reverse last / or ?
% find matching () { or }
]] next section/function
[[previous section/function

Adjusting the screen
ˆL clear and redraw messy screen
ˆR retype, eliminate @ lines
zCR redraw, current at window top
z− ... at bottom
z at center
zn . use n line window

Miscellaneous operations
C change rest of line
D delete rest of line
Y yank lines
s substitute chars
J join lines
x delete characters
X ... before cursor

Yank and put
p put back lines
P put before
" xy yank (copy) to buffer x
" xd delete into buffer x
" xp put from buffer x

NOTE: the yank and delete commands above are followed by
a cursor movement command to specify what will be yanked
or deleted. (see Operators section)

Initializing VI options
setoption enable option
set nooption disable option
setoption=value give value val
set all show all options
set show changed options

Useful options
autoindent ai supply indent
autowrite aw write before changing files
ignorecase ic in scanning
lisp () { } are s-exp’s
list print ˆI for tab, $ at end
magic . [* special in patterns
number nu number lines
paragraphs para macro names which start ...
redraw simulate smart terminal
scroll command mode lines
sections sect macro names ...
shiftwidth sw for < >, and input ˆD
showmatch sm to) and } as typed
window visual mode lines
wrapscan ws around end of buffer?
wrapmargin wm automatic line splitting

