
Achieving Low Latency in Public Edges by Hiding
Workloads Mutual Interference

Weiwei Jia∗
The University of Rhode Island

Jiyuan Zhang
New Jersey Institute of Technology

Jianchen Shan
Hofstra University

Jing Li
New Jersey Institute of Technology

Xiaoning Ding
New Jersey Institute of Technology

Abstract
On multi-tenant platforms, such as public clouds and edges,
workloads interfere with each other through shared re-
sources. The performance degradation caused by such inter-
ference is a notoriously challenging problem. Though many
solutions have been proposed for clouds, they can hardly
help the application in edges, where workloads are mostly
latency-critical, highly dynamic, and more sensitive to in-
terference. Aggressive resource over-provisioning looks to
be the only practical solution, albeit it causes significant
resource waste.
The paper proposes dynamic asymmetric scheduling for

edge computing (DASEC) as a unique approach to achieve
low latency in public edges and improve resource utilization.
DASEC makes application performance less sensitive to the
interference between workloads by making the interference
affect mostly the tasks on non-critical paths and rarely the
tasks on critical paths.With DASEC, the interference is largely
hidden from being reflected on the end-to-end performance
observed by users.
The paper has investigated the techniques to implement

DASEC in the task schedulers for edge workloads and tested
its effectiveness in managing the interference caused by
sharing CPU cores. For different types of edges that sched-
ule tasks at different system levels, the paper implemented
DASEC prototypes based on Linux/KVM vCPU scheduler, the
completely fair scheduler (CFS) in Linux OS, and Google user-
level scheduling framework. Extensive experiments with di-
verse real-world applications show that DASEC can reduce
∗Most work done while the author was a Ph.D. student at NJIT

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SoCC ’22, November 7–11, 2022, San Francisco, CA, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9414-7/22/11. . . $15.00
https://doi.org/10.1145/3542929.3563459

the latencies of the workloads consolidated on the same edge
server by 32% ∼ 52%.

CCS Concepts
• Software and its engineering;

Keywords
Edge Computing, Virtualization, Scheduling
ACM Reference Format:
Weiwei Jia, Jiyuan Zhang, Jianchen Shan, Jing Li, and Xiaoning Ding.
2022. Achieving Low Latency in Public Edges by Hiding Workloads
Mutual Interference. In Symposium on Cloud Computing (SoCC ’22),
November 7–11, 2022, San Francisco, CA, USA. ACM, New York, NY,
USA, 16 pages. https://doi.org/10.1145/3542929.3563459

1 Introduction
By providing computing resources closer to end users, pub-
lic edge computing can benefit a wide range of applications,
such as autopilot, mobile or IoT services, online games, and
augmented reality/virtual reality (AR/VR). Typical work-
loads in the edge are expected to be resource-demanding
and latency-sensitive. These workloads can hardly run on
the resource-constrained end devices or run in centralized
clouds, because the network latencies are high between user
end devices and the clouds.
As a multi-tenant computing platform, in a public edge,

multiple workloads from different users can share the same
edge server. Due to the resource sharing and resource con-
tention, the execution of a workload interferes with the ex-
ecution of other workloads. Such interference inevitably
causes performance penalties to the workloads, which can
be significant and difficult to predict if not well controlled.
Currently, edge computing platforms rely mainly on re-

source over-provisioning tomitigate resource contention and
reduce performance degradation. To meet the strict quality
of service (QoS) requirements of edge workloads on laten-
cies and to deal with the workload fluctuation [1, 2], ag-
gressive resource over-provisioning is required in the edge,
causing significant resource waste. Studies have shown that
resource utilization is much lower in edges than in conven-
tional clouds. In particular, the mean CPU utilization is about
6x lower on edge servers than on cloud servers [2].

https://doi.org/10.1145/3542929.3563459
https://doi.org/10.1145/3542929.3563459

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Weiwei Jia, Jiyuan Zhang, Jianchen Shan, Jing Li, and Xiaoning Ding

There are approaches that can eliminate/reduce the inter-
ference between workloads with relatively high resource
efficiency. However, they are not applicable to edges. For ex-
ample, one approach avoids co-locating the workloads that
may interfere with each other; and another approach runs
low priority best-effort workloads to consume the resources
that are not being used by latency-critical workloads [3–7].
However, edges are dominated by latency-sensitive work-
loads and lack enough best-effort workloads. The resource
usage patterns of latency-sensitive workloads may change
dynamically, making it difficult to predict which workloads
may interfere with each other. At the same time, the limited
number of edge servers in the same site and the large num-
ber of workloads consolidated on each server make it very
challenging to effectively distribute and separate interfering
workloads across different servers.
Interference may also be mitigated by statically or dynam-

ically partitioning resources among workloads. Resource
partitioning essentially trades the capability of adapting re-
source allocation based on resource demand for the perfor-
mance isolation between workloads. It fits the workloads
with relatively stable resource demands and can barely help
edge workloads that have very dynamic resource usages, as
we will show in Section 6. Infrequent adjustment of resource
partitions provides better isolation (i.e., less interference), but
the resources may not be adapted to fit the resource demand
of workloads, causing either performance degradation when
a workload is short of resources or resource waste when
the demand is low. Adjusting resource partitions frequently
incurs high overhead and weakens the capability to reduce
interference.
This paper presents DASEC that can effectively reduce the

impact of the interference between edge workloads on their
performance, such that these workloads can achieve low la-
tency without aggressive resource over-provisioning. The
main idea is to move the interference off the tasks on the
critical paths of the workloads. The critical path in a work-
load is a set of tasks that must be finished as quickly as
possible to avoid delaying the progress of the workload. By
making interference affect mostly the tasks on non-critical
paths and rarely the tasks on critical paths, the interference is
largely hidden from being reflected on the latencies observed
by users; thus the end-to-end performance is less impacted.
Moving the interference off critical paths can be achieved by
forcing the tasks on non-critical paths to yield resources or
making them more willing to yield resources to the tasks on
critical paths.
While the general idea in DASEC can be applied to manage

the interference caused by many types of shared resources
(e.g., CPU cores, memory space, CPU caches), this paper
focuses on the interference caused by sharing CPU cores,
because CPU resources, as the most important resource type,

have the largest impact on performance. We leave the study
of using DASEC in the management of other interference
types as future work.
Through a shared CPU core, a task (in one workload) may

interfere with another task (in another workload) in three
ways: 1) It may delay the task, making it start late. 2) It may
interrupt the task in the middle and delay its unfinished
part. 3) The CPU share reserved for it reduces the CPU share
available to the task and slows down the slow progress of
the task. Thus, to remove the interference from the tasks on
critical paths, DASEC identifies these tasks, makes them start
early, allocates them with enough CPU share, and prevents
them from being interrupted.
DASEC targets the edge workloads colocated on the same

edge server. In each workload, tasks with dependencies
are distributed into multiple threads or processes, and exe-
cuted concurrently on multiple cores or virtual CPUs (vC-
PUs). DASEC aims to reduce the latency of each workload,
instead of improving the performance of an individual
thread/process. This makes it different from most of the
other priority-based scheduling mechanisms, which sched-
ule threads/processes as independent tasks.
Compared to various co-scheduling mechanisms designed

for throughput-oriented systems, DASEC aims to improve
performance on a platform dominated by latency-critical
workloads. Co-scheduling improves the performance of a
multi-threaded or multi-process workload by running col-
laborative tasks simultaneously. It boosts the priorities of
these tasks indiscriminately, no matter whether they are
on the critical-path or not. This design is a double-edge
sword. On the one hand, it makes co-scheduling particu-
larly effective; on the other hand, it causes notorious adverse
effects, such as high overhead and CPU fragmentation [8],
which can quickly negate the benefits of co-scheduling if
not well controlled. Thus, co-scheduling is usually used on
throughput-oriented systems, because it can be applied in-
frequently and/or applied discriminately only on a part of
the colocated workloads that are the most communication
intensive, in order to control the adverse effects. Compared
to co-scheduling, DASEC only boosts the tasks on the criti-
cal path, and incurs minimal overhead. This makes DASEC
fit the best public edges, where latency-critical workloads
dominate, and task scheduling must be frequently involved
to enable the fast response of all the workloads.
This paper makes the following major contributions. First,

it proposes DASEC as an innovative approach to hide the
inter-workload interference caused by resource sharing and
reduce the impact on latencies. Second, following this ap-
proach, the paper investigates the techniques that can effec-
tively hide the interference caused by sharing CPU cores.
Third, it evaluates DASEC on six real-world applications, in-
cluding two AI inference applications (Image-classify [9]

Achieving Low Latency in Public Edges by Hiding Workloads Mutual Interference SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

and Action-recognize [10, 11]) and four latency sensitive
applications (Masstree [12], Img-dnn [13], Silo [14], and
Memcached [15]). The experiments show that:

1. DASEC can effectively reduce latencies. Compared to
Linux/KVM, DASEC reduces mean latencies and 99th
tail latencies by 46% and 52%, respectively. Compared
to PARTIES [1] and BVT [4, 16], which are also de-
signed for latency-sensitive workloads, DASEC reduces
mean latencies and the 99th tail latencies by up to 44%
and 32%, respectively.

2. The effectiveness of DASEC increases with the consoli-
dation ratio (i.e., the number of workloads on the same
edge server).

3. DASEC is portable. The paper shows that DASEC can
be implemented and hide workload interference ef-
fectively at multiple system layers, including the hy-
pervisor layer (implemented as a vCPU scheduler
in Linux/KVM [17]) if conventional virtualization
is used, the OS layer (implemented in Linux CFS
thread/process scheduler) if containerization is used,
or even at the application layer (implemented in
Google user-level scheduling framework ghOSt [18]).

2 Background and Motivation
This section introduces the features of edge computing and
edge workloads. Then it describes the performance issues
caused by the interference between the latency-sensitive
workloads colocated on the same edge server and sharing
CPU cores. Finally, it explains the objectives of DASEC.
Edge clouds are tiny clouds deployed close to end users.

They can benefit many new application types (e.g., IoT,
AR/VR, gaming, and self-driving vehicles) that desire low
processing and response times (e.g., millisecond scales) [19].
Public edges, such as AWS local zones [20], Google edge
platforms [21], Azure edge zones [22], and Tencent edge
clouds [23], are emerging quickly as the major computing
platforms for the general public, individuals or businesses to
run their latency-sensitive applications in edge clouds.
The servers in a public edge must support dense multi-

tenancy. Given the huge number of geographically dis-
tributed public edges to serve end users locally, each public
edge is expected to have only very limited computing re-
sources, e.g., a small number of servers. These resources are
shared by all local users to improve utilization.
When the latency-sensitive applications from different

users are colocated on the same edge server, their executions
can interfere with each other through resource sharing and
contention. The interference may significantly increase the
latencies observed by end users. We use a few experiments to
demonstrate this problem. The experiments use two latency-
sensitive benchmarks, Masstree and Img-dnn. We run mul-
tiple instances of the same benchmark in virtual machines

Workloads Average CPU utilization
Linux/KVM DASEC

Masstree 30% 42%
Img-dnn 43% 56%

Memcached 31% 41%
Silo 21% 40%

Table 1: Average CPU utilization of Linux/KVM and DASEC when the
consolidation ratio is high. VMs run the same workload. Each VM
has 16 vCPUs and each workload has 16 threads.

(VMs). Each VM has 16 vCPUs and runs an instance with
16 threads. We increase the number of benchmark instances
colocated on a server and compare the performance with
Linux/KVM1 and our proposed solution DASEC. §6 details
the experimental setup, including server/VM configurations
and application descriptions.
The experiments focus on the contention for CPU cores.

We use consolidation ratio to measure the level of resource
contention, which is the ratio between the total number of
threads (vCPUs since we run 1 thread on each vCPU) and the
total number of physical cores in the system. For instance,
with 128 virtual CPUs (vCPUs) sharing a 80-core physical
server, the consolidation ratio is 1.6. To eliminate the con-
tention for other resource types, including memory and I/O
bandwidth, we control the experiment settings such that the
main memory is not over-committed, and the benchmarks
have minimal I/O operations.
Figure 1 (a) and (b) show the mean latencies and 99th

tail latencies of Masstree for different consolidation ratios
(0.4∼3.2). When the consolidation ratio is low (0.4 and 0.8),
each vCPU/thread can have a dedicated core, and there is
little interference between the workloads. Thus, the latencies
are low. However, as the consolidation ratio increases and the
cores are over-committed, the mean latencies and 99th tail
latencies increase quickly on vanilla Linux/KVM. Compared
to those at a consolidation ratio of 0.4, they are 19% and 22%
higher with the consolidation ratio increased to 1.6, and 70%
and 4x higher when the rate is increased to 3.2. Note that
the high latencies happen when the CPU utilization is still
very low (around 30%, as shown in Table 1).
The performance of Masstree with DASEC shows that

much of the latency increase can be avoided. With DASEC,
when the consolidation ratio is increased to 3.2 from 0.4,
the mean latencies are kept roughly stable, and the 99th tail
latencies are increased by only 97%, which are much lower
than those with vanilla Linux/KVM.
Similar observations can also be obtained from the per-

formance of Img-dnn shown in Figures 1 (c) and (d). When
the consolidation ratio is 1.6, with the vanilla Linux/KVM,

1We also use containers for experiments (see §6).

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Weiwei Jia, Jiyuan Zhang, Jianchen Shan, Jing Li, and Xiaoning Ding

 0
 40
 80

 120
 160

0.4 0.8 1.6 3.2

0.5ms

(a) Mean latency of MasstreeR
el

at
iv

e
to

 L
in

u
x
/K

V
M

w
h
en

 c
o
n
so

l.
 r

at
io

 i
s

0
.4

Consolidation ratio

Linux/KVM DASEC

 0
 100
 200
 300
 400

0.4 0.8 1.6 3.2

1ms

(b) 99th tail latency of Masstree
Consolidation ratio

 0
 60

 120
 180
 240
 300

0.4 0.8 1.6 3.2

1.4ms

(c) Mean latency of Img-dnn
Consolidation ratio

 0

 150

 300

 450

 600

0.4 0.8 1.6 3.2

2.5ms

(d) 99th tail latency of Img-dnn
Consolidation ratio

Figure 1: Mean latencies and 99th tail latencies of Masstree and Img-dnn with DASEC and vanilla Linux/KVM when the consolidation ratio
increases from 0.4 to 3.2. Consolidation ratio is the rate between the total number of vCPU and the total number of cores in the system.

 0

 10000

 20000

 30000

 40000

0.4 0.8 1.6 3.2

(a) Avg. serv. rate of Masstree

S
er

v
ic

e
ra

te
 (

re
q

/s
ec

)

Consolidation ratio

Linux/KVM DASEC

 0

 4000

 8000

 12000

0.4 0.8 1.6 3.2

(b) Avg. serv. rate of Img-dnn
Consolidation ratio

Figure 2: Service rates of Masstree and Img-dnn with DASEC and
vanilla Linux/KVM as the consolidation ratio increases. Relative to
vanilla Linux/KVM, DASEC greatly improves the service ratewhen the
consolidation ratio is bigger than 1. QPS of Masstree and Img-dnn is
1000 and 500, respectively.

the mean latency and the 99th tail latency are increased by
59% and 138%, respectively, relative to the latencies when the
consolidation ratio is 0.8; and, with DASEC, the mean latency
and the 99th tail latency are 15% and 19% lower, compared to
Linux/KVM. The latencies of Img-dnn increase more quickly
with the consolidation ratio than Masstree. The reason is
that Img-dnn has a much higher demand for CPU resources
(Table 1). Thus, when the consolidation ratio is high, the
interference between Img-dnn instances is more difficult to
reduce than that with Masstree.
Latencies increase with the consolidation ratio, because

the interference makes the benchmarks less capable in pro-
cessing requests quickly. To show this, we measure the ser-
vice rate, i.e., how many requests can be processed in each
second. Figure 2 shows how the service rates of Masstree
and Img-dnn change with the consolidation ratio. Gener-
ally, the service rates reduce with the consolidation ratio.
This trend is more visible with Linux/KVM. On average, with
Linux/KVM, the service rates of Masstree and Img-dnn are
lower by 18% and 15% than those with DASEC. When the
consolidation ratio is high, the interference becomes intense
and can affect the capability of the benchmarks by a larger
degree. Thus, we see the service rates with Linux/KVM are
lower than DASEC by larger percentages (e.g., 32% and 35% for
Masstree and Img-dnn, respectively with a consolidation
rate of 3.2).

To understand how the interference affects benchmark
executions, we sample the states of each VM, find the occa-
sions when the execution on the VM is blocked, and study
how the execution is blocked by the interference, i.e., the
contention for CPU cores. Specifically, we find the occasions
when a number of vCPUs in a VM are in the “ready” state
(i.e., blocked due to the lack of available CPU cores) and
other vCPUs are waiting for the “ready” vCPUs to make
progress. We select to study these occasions, because they
are the most discernible states that the benchmark execution
is blocked by the interference — The “ready” vCPUs are con-
sidered to be blocked directly by the interference, causing
a direct impact on performance, and the “waiting” vCPUs
are considered to be blocked indirectly by the interference,
causing indirect/extra impact on performance.
For each occasion, we count the number of “ready” vC-

PUs and the number of “waiting” vCPUs. The comparison of
these numbers indicates how seriously the interference on a
vCPU degrades performance. For example, compared to the
occasion with 15 “ready” vCPU and one “waiting” vCPUs, in
the occasion with one “ready” vCPU and 15 “waiting” vCPUs,
the interference that blocks each “ready” vCPU is consid-
ered to be causing more serious performance degradation,
because it blocks more vCPUs and causes more extensive
indirect/extra performance impact.
We show the distribution of the occasions with different

“waiting” vCPU counts for Masstree and Img-dnn using the
CDF curves in Figures 3 (a) and (b). Under Linux/KVM, a sub-
stantial proportion of the occasions have most vCPUs in the
“waiting” state (e.g., around 50% with more than 13 “waiting”
vCPUs for Masstree and 60% for Img-dnn), indicating that
the interference causes much extra performance degradation.
DASEC reduces such occasions. For example, only around 20%
(Masstree) and 40% (Img-dnn) of occasions have more than
13 “waiting” vCPUs under DASEC. Thus, with DASEC, the
interference causes less performance degradation.
The experiments above show that consolidating multiple

latency-sensitive workloads on the same serve may signifi-
cantly increase latencies. This problem happens even when
there are many idle resources. Thus, traditional methods,

Achieving Low Latency in Public Edges by Hiding Workloads Mutual Interference SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

 20

 40

 60

 80

 100

 9 10 11 12 13 14 15

(a) Masstree

C
D

F
 (

%
)

Number of waiting vCPUs

Linux/KVM DASEC

 20

 40

 60

 80

 100

 9 10 11 12 13 14 15

(b) Img-dnn
Number of waiting vCPUs

 20

 40

 60

 80

 100

 9 10 11 12 13 14 15

(c) Silo
Number of waiting vCPUs

 20

 40

 60

 80

 100

 9 10 11 12 13 14 15

(d) Memcached
Number of waiting vCPUs

Figure 3: Distribution of occasions when a few vCPUs are in the “ready” state, and other vCPUs in the VM are waiting for the “ready” vCPUs. We
collocate 8 VMs in the 80-core physical server; all VMs run the same workload. Each VM has 16 vCPUs and each workload in the VM has 16
threads.

such as resource over-provisioning [24–26] or collocating
latency-sensitive workloads with best effort workloads [3–7],
may not effectively solve this problem. At the same time, in
an edge cloud, the effectiveness of these methods cannot be
fully exploited, limited by the resource budget of the edge.
Given that this problem happens when there is a signifi-

cant amount of idle resources, our idea for mitigating this
problem is to make better utilization of the idle resource. Our
method can be explained with the experiments and the anal-
ysis above: by reducing the vCPU “waiting” (i.e., the extra
performance impact of the interference), idle CPU resources
can be better utilized to improve performance. Since most
workloads are now multi-threaded or multi-process and run
collaborative tasks with dependencies, reducing “waiting”
can be achieved by reducing the interference on the critical
paths, as we will explain in the next section.

3 Main Idea: Hiding Mutual Interference
This section identifies the key factor affecting how the in-
terference between workloads increases latencies. Then, tar-
geting this factor, this section explains the main idea for
reducing the performance impact caused by the interference.
• Key Factor: interference on the critical path. When mul-
tiple workloads are consolidated on the same server and
time-sharing the cores, contention for the cores is often un-
avoidable, causing interference to the workload executions.
If the interference happens to the tasks on critical paths, its
performance impact is directly reflected by increased laten-
cies. But, if the interference happens to the tasks that are not
on critical paths, its performance impact may be hidden, and
does not increase latencies.
We use Figure 4 to explain this factor. Figure 4 (a) shows

the execution of a 2-thread application (denoted by App).
The application processes the requests of a user. The user
sends a new request after the previous request is processed.
In App, Thread0 is the main thread. Upon each request, the
main thread communicates with a helper thread and assigns
task to it.

Time

App
(a) Each execution in App

Core0
Core1

T0 T8

(b) Tasks on App's critical path are interrupted

Time

Core0
Core1

T0 T6

(c) Interferences aware scheduling scheme

Interference

A unit of computation in App

T10

Interrupted

Thread0
Thread1Synchronization

T18

T14T10

Interrupted

(req. arrival)
(req. processed)

(req. arrival)
(req. processed)

(req. arrival)
(req. processed)

(req. arrival)
(req. processed)

Figure 4: An illustrative example: Tasks on App’s critical path are
interrupted, causing longer latency. A request arrives at T0; and the
processing of the request finishes at T8 in (b). App is waiting for a
new request for fixed 2 time units: from T8 to T10 in schedule (b) and
earlier at T6∼T8 in schedule (c) due to better scheduling by DASEC.

Figure 4 (b) illustrates the performance impact on App
caused by the interference on its critical execution path. The
interference is caused at time T2 and T12 by the execution of
another application that is sharing the same cores with App.
Since the tasks on the critical path are delayed, it takes App
8 units of time to finish processing each request. The latency
is increased by 2 units of time. If the interference is not on
the critical path, as shown in Figure 4 (c). The latency is not
increased.
• Main Idea: hiding interference
Our overall approach for reducing latency is to hide inter-

ference and make interference affect mostly the tasks that
are not on critical paths. While this sounds intuitive, how to
make it a viable approach is not. Our main idea is to prioritize
tasks in an asymmetric way. The intuition is that the tasks
with higher priorities are less likely to suffer from interfer-
ence, because the interference is caused by tasks contending
for CPU cores. With this intuition, the tasks on critical paths

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Weiwei Jia, Jiyuan Zhang, Jianchen Shan, Jing Li, and Xiaoning Ding

Time

Core0
Core1

T0 T8

(a) Tasks on App's critical path are delayed

Delayed

Time

Core0
Core1

T0 T18

(b) Tasks on App's critical path lack CPU share

Less CPU share

(req. arrival)
(req. processed)

(req. arrival)
(req. processed)

Thread0
timeslice
used up

Thread0
timeslice

reallocated

Figure 5: An illustration of possible scheduling problems: Tasks on
App’s critical path are delayed or lack CPU share to make progress,
causing longer latency.

should be prioritized to reduce the interference on critical
paths. We want to reduce latencies of all workloads. Thus,
we avoid prioritizing tasks indiscriminately and give the
tasks that are not on critical paths normal priority, since
the high-priority tasks in one workload would become the
interference of other workloads.
Only prioritizing tasks in an asymmetric way is not suf-

ficient. A task suffers from less interference only when its
priority is relatively higher than other tasks competing re-
sources with it. If tasks with high priorities are scheduled on
the same core, the interference reduction through prioriti-
zation diminishes. For a high-priority task, the interference
from another high-priority task may still affect the execu-
tion of the task in a few ways. For example, the execution
of the task may be interrupted in the middle, similar to the
example in Figure 4 (b), or may be scheduled late after the
task is ready to run, as illustrated in In Figure 5 (a). Collo-
cating high-priority tasks on the same core also reduce their
time-shares if CPU time is shared based on priorities. Thus, a
high-priority task receives less time-share than it collocated
with low-priority tasks, and may cause extra pauses when
it runs out of its time-share, as illustrated in In Figure 5 (b).
Thus, another idea is to schedule high-priority tasks with
low-priority tasks, in order to ensure the effectiveness of
prioritization in reducing interference.

4 DASEC Design
We implemented the main ideas described in §3 into dynamic
asymmetric scheduling for edge computing (DASEC), which
is a task scheduler designed for edge clouds. This section
introduces the main challenges, overall design, and major
components of DASEC. DASEC’s design is general and can be
directly used in scheduling multi-threaded applications in
multi-programming systems or containers. In our evalua-
tion, we realized and tested DASEC in VMs, containers, and
user-level scheduling (see §6). To facilitate our discussion,

we introduce DASEC’s design used in vCPU scheduling. We
choose vCPU scheduling for illustration also because 1) VMs
are prevalently used in edge clouds; 2) it is more challenging
to implement the ideas at the VMM layer than at other layers.

4.1 Overall Design and Challenges

DASEC implements the main idea introduced in §3. Thus, the
problem it targets is essentially how to prioritize vCPUs in
each VM in an asymmetric and unaggressive way, so as to 1)
make the workload in the VM achieve the best performance
with the CPU time assigned to the VM and 2) keep adverse
effects low at the same time. DASEC faces two challenges:
how to effectively control the priorities of vCPUs, and how
to achieve the above two goals?
To address the challenge with effective control of vCPU

priorities, we identify/create a few system parameters that
have the most influence on the relative progress of vCPUs,
since the progress of vCPUs is the most important factor
determining whether the vCPUs may spend much time on
waiting for each other. Note that the priority used in DASEC
mechanism is different from the system priority of the vC-
PUs (e.g., the “nice” values in Linux systems), and we choose
not to use the system priorities in DASECmechanism for two
reasons: 1) they are used by the system for other purposes,
which we do not want to interfere with; and 2) they cannot
provide the fine-grained control over the relative progress of
vCPUs. In our design, we choose the following parameters:
1) rescheduling latency to control the time that the compu-
tation starts. In system designs, rescheduling latency is the
parameter determining when a vCPU can be scheduled after
it becomes “ready”. In some systems (e.g., Linux), there is
a system-wide rescheduling latency for all the vCPUs; we
need to modify the system to create a private rescheduling
latency for each vCPU. 2) time slice of a vCPU to control
how much progress a vCPU can make after it is scheduled
to run. In some rare cases, when the scheduler finds that
these two parameters cannot effectively control the priority
of a vCPU, it also checks whether the execution of the vCPU
may be interrupted by other vCPUs and takes this factor into
account.
To address the second challenge, we use a step-by-step

iterative method to adjust the parameters above for the two
goals, i.e., high performance and low adverse effects. Specifi-
cally, for the first goal, it is not possible to directly measure
the end-to-end performance of theworkload in a VM. Instead,
we use the CPU time consumed by the VM as an indicator of
the amount of progress made by the workload. This indicator
is reliable because the CPU time consumed by effective com-
putation is roughly proportional to the amount of finished
computation, idling does not consume CPU time, and vCPUs
that perform excessive busy waiting are preempted promptly
and consume little CPU time. For the adverse effects, it is

Achieving Low Latency in Public Edges by Hiding Workloads Mutual Interference SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Task
Monitor

... ...Time Slice
Allocator

Rescheduling
Latency Adjuster

allocate
time-slice

adjust
resched.
latency

task info.

monitor

task info.

Core 0

Resource
Conflict Resolver

...

Core 1
task info.

migrate

System
component

Task w/ more
time slice

control &
management data

task info.

Task w/ longer
resched. latency

Figure 6: DASEC system architecture. Key components are in orange.

not realistic either to measure it in practice. Thus, instead
of measuring it, we lower the priorities of the vCPUs under
the condition that lowering the priorities will not reduce
workload performance.
There are two challenging issues with adjusting the pa-

rameters to achieve the goals. One is whether the priority
of the vCPU should be higher or lower, and the other one is
which parameter should be adjusted. There are a few design
choices for adjusting the parameters. For instance, the pa-
rameters can be adjusted based on the CPU utilization of the
workload. If CPU utilization has been maximized within the
CPU share of the VM, we adjust the parameters to lower the
priorities; otherwise, we adjust the parameters to improve
CPU utilization. However, this design has a scalability issue
in maintaining a global CPU utilization for each VM, which
might be high if each VM has a large number of vCPUs.
We choose to use a more scalable way, which adjusts the

parameters of each vCPU based on the status of the vCPU:
if increasing the priority of the vCPU helps improve perfor-
mance, we increase the priority; otherwise, we reduce the
priority to reduce adverse effects. We check the status of
the vCPUs at the beginning of each period when the virtual
machine monitor (VMM) is about to allocate new time-slices
to the vCPUs of a VM, and based on the status adjust its pa-
rameters gradually. For example, if a vCPU has fully utilized
its time-slice in the previous period and the vCPU is in a
“ready” state, meaning that it could have made more progress
if there were more CPU time, we will allocate more CPU time
in the coming period to improve performance. We introduce
the detailed design and the components for adjusting the
parameters below.
4.2 Design Details

DASEC includes four key components as shown in Figure 6.
(1) A time-slice allocator (TSA) component for dynamically
adjusting the time-slice distribution between the vCPUs of
each VM. (2) A rescheduling latency adjuster component for
dynamically adjusting rescheduling latency. (3) A resource

conflict resolver (RCR) component. (4) A task monitor com-
ponent for collecting each vCPU’s runtime information. The
first two components reduce conflicts and the RCR compo-
nent detects and resolves the conflicts that cannot be reduced
by the first two components. For the first two components,
we focus on introducing how the adjustment decisions are
made, since enforcing the decisions is straightforward and
system-dependent.
• The time-slice allocation component checks the amount of
time-slice consumed by each vCPU periodically and uses the
amount of time-slice consumed by the vCPUs in the previous
period to adjust the amount of time-slice to be allocated
to the vCPUs in the upcoming period2. Specifically, for a
vCPU that has been preempted earlier due to the depletion
of time slice, the component increases its time-slice. For other
vCPUs, since they still have unused time-slice at the end of
the period, there is no need to further increase their time-
slice. The component assigns a weight to each vCPU. To
increase the time-slice of a vCPU, the component increases
the weight by 10%. The component keeps the total weight
of the vCPUs in a VM fixed. Thus, it reduces the weight of
other vCPUs accordingly based on their original weights.
• The rescheduling latency adjustment component looks at
whether the vCPU has consumed its time-slice and whether
the vCPU can still make progress at the end of each period.
For a vCPU that is in a “ready” or “running” state at the end
of the previous period, the vCPU cannot consume its time-
slice quickly. This may be caused by the rescheduling delay.
Thus, the component decreases the rescheduling latency of
the vCPU by 10%. For the vCPUs that have consumed their
time-slice and become idle at the end of the previous period,
the component increases their rescheduling latencies.
There are scenarios, in which a vCPUwith a low reschedul-

ing latency has tasks depending on the completion of the
tasks on other vCPUs with high rescheduling latencies. Since
the tasks on the vCPUs with high rescheduling latencies
complete late, the task on the vCPU with a low rescheduling
latency cannot start early. Thus, it is possible that the vCPU
with a low rescheduling latency still cannot consume its
time-slice, no matter how its rescheduling latency is reduced.
To detect such scenarios, when the rescheduling latency of
a vCPU has been reduced to a minimal value allowed by
the system, if a vCPU still cannot consume its time slice,
the component assumes that the vCPU may be delayed by
other vCPUs with high rescheduling latencies. To pin-point
these vCPUs, the component uses wake-up inter-processor
interrupts (IPIs) sent to the vCPU as indicators to find out
the source vCPUs sending out the IPIs. Then it reduces the
rescheduling latencies of these source vCPUs.

2The vCPU runtime information is provided by the TM component.

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Weiwei Jia, Jiyuan Zhang, Jianchen Shan, Jing Li, and Xiaoning Ding

• Resource Conflict Resolver. The adjustment of time-slice
distribution and rescheduling latencies of vCPUs effectively
make the vCPUs have asymmetric and low priorities. They
significantly reduce conflicts. However, conflicts cannot be
completely avoided by these two components. The last com-
ponent detects and tries to resolve such conflicts by migrat-
ing vCPUs between cores. For DASEC mechanism, conflicts
arise when the total amount of time-slice allocated to the vC-
PUs scheduled on the same core exceeds the core’s capacity.
For example, a conflict arises when, in a time period of 80ms,
each of two vCPUs scheduled on the same core is allocated
with a 50ms time-slice. The vCPUs with low rescheduling
latencies may also have conflicts. A conflict arises when a
core is running a vCPU with low rescheduling latency and
another vCPU with low rescheduling latency becomes ready
to run. If the former vCPU is preempted promptly, its task is
essentially delayed since the task cannot be finished quickly.
If the former vCPU is not preempted promptly, the latter
vCPU cannot be rescheduled quickly.
RCR tries to resolve conflicts by adjusting the layout of vC-

PUs on physical cores. Since adjusting vCPU layout is costly,
RCR performs the adjustment in a conservative way. Specifi-
cally, to detect and resolve conflicts caused by high demands
for CPU time, after the time-slice allocation component has
adjusted the amounts of time-slice to be allocated to each
vCPU, for each core, RCR calculates an aggregated amount
of time-slice for the vCPUs scheduled on the core. Then, RCR
finds out the core with the largest aggregated amount and
the core with the smallest aggregated amount. If the largest
aggregated amount is greater than the smallest aggregated
amount by 10%, RCR tries to balance the aggregated amounts
by swapping some of the vCPUs on the two cores.
To detect and resolve conflicts caused by the vCPUs with

low rescheduling latencies, after the rescheduling latency ad-
justment component has adjusted the rescheduling latency
of each vCPU, RCR categorizes the vCPUs into two groups
based on their rescheduling latencies — vCPUs with low
rescheduling latencies and vCPUs with high rescheduling
latencies. In each period, RCR monitors the execution of the
vCPUs with low rescheduling latencies. It counts the number
of times that these vCPUs are preempted and the number of
times that these vCPUs are not scheduled after they become
ready and have waited a long time exceeding their reschedul-
ing latencies. After the period, it uses the total number as
the number of conflicts on the core caused by the vCPUs
with low rescheduling latencies. Then, RCR finds out the
core with the most conflicts and the core with the fewest
conflicts. If the difference between the numbers of conflicts
exceeds a threshold (2x in implementation), RCR selects half
of the vCPUs with low rescheduling latencies on the core
with the most conflicts and half of the vCPUs with high
rescheduling latencies on the cores with the fewest conflicts,

App. Workload description

Image-classify Image classification on ImageNet [9].
Action-recognizeVideo action recognition [10, 11].

Img-dnn Handwriting recognition based on OpenCV [13].
Masstree In memory K/V store with 50% GET and 50% PUT [12].

Silo In-memory transactional database with TPCC [14].
Memcached Serve requests (random keys,50% SET,50% GET) [15].

Table 2: Programs and workloads used to test DASEC.

and then swaps the vCPUs. Low thresholds increase vCPU
migration overhead. High thresholds “cripple” the conflict
resolver. Thus, we measured how vCPU migrations reduce
with increased thresholds, and selected the threshold values
at knee points to make trade-off.

5 Implementation Details
DASEC incorporates four main components: Task Monitor
(TM), Time Slice Allocator (TSA), Rescheduling Latency Ad-
juster (RLA), and Resource Conflict Resolver (RCR) as shown
in Figure 6. TM periodically monitors the state and events
of each task, such as remaining time slice, inter-process-
interrupts (IPI), number of context switches, and state transi-
tions. TSA assigns a time slice to each task for the upcoming
time period. To implement TM and TSA, we change the Linux
completely fair scheduler (CFS [27]) and leverage the Linux
Proc file system interface [28]. Specifically, we collect each
task’s on-core execution time recorded in Linux CFS, obtain
the task running state by checking the Linux run-queue and
wait-queue, and read IPI/context-switch numbers by adding
new IPI/context-switches parameters in the Proc file sys-
tem. We adjust the weights in Linux CFS to give the tasks
on critical paths higher weights. Linux CFS only provides
a process-level interface. We add a thread-level interface to
allow DASEC to adjust the weight of a thread and to collect
thread-level statistics.
RLA adjusts thread rescheduling latencies. To

implement RLA, we adjust the wakeup latency
(sched_wakeup_granularity_ns [29]) of each task in
Linux. Linux CFS only has a system-wide wakeup latency
parameter. We extend the implementation in CFS to create
a per-task wakeup latency parameter. RCR resolves time
slice conflicts and rescheduling latency conflicts. It is
implemented by setting the core affinities of the tasks.

6 Evaluation
We evaluated DASEC by answering the following ques-
tions.
§6.1 and §6.2: What is DASEC’s performance?
§6.3: Howmuch performance improvement can be achieved

with DASEC, compared with related systems?
§6.4: How effective is each technique in DASEC?
§6.5: What is DASEC’s applicability and overhead?

Achieving Low Latency in Public Edges by Hiding Workloads Mutual Interference SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

 0

 100

 200

 300

 400

0.4 0.8 1.6 3.2

2.9ms

(a) Mean latency of MemcachedR
el

at
iv

e
to

 L
in

u
x
/K

V
M

w
h
en

 c
o
n
so

l.
 r

at
io

 i
s

0
.4

Consolidation ratio

Linux/KVM DASEC

 0

 100

 200

 300

 400

0.4 0.8 1.6 3.2

5.7ms

(b) 99th tail latency of Memcached
Consolidation ratio

 0

 1500

 3000

 4500

 6000

0.4 0.8 1.6 3.2

1.9ms

(c) Mean latency of Silo
Consolidation ratio

 0

 1500

 3000

 4500

 6000

0.4 0.8 1.6 3.2

11.2ms

(d) 99th tail latency of Silo
Consolidation ratio

Figure 7: Latency of DASEC compared to vanilla Linux/KVM as consolidation ratio increases. “Consolidation ratio” means the ratio between the
total number of vCPU and the total number of pCPU in the system. For instance, consolidation ratio of “1.6” means there are 128 vCPUs (8
VMs) sharing the 80-core physical server; and each VM has 16 vCPUs, and each workload in the VM has 16 threads.

 0

 400000

 800000

 1.2x10
6

0.4 0.8 1.6 3.2

(a) Avg. serv. rate of Memcached

S
er

v
ic

e
ra

te
 (

re
q

/s
ec

)

Consolidation ratio

Linux/KVM DASEC

 0

 10000

 20000

 30000

 40000

0.4 0.8 1.6 3.2

(b) Avg. serv. rate of Silo
Consolidation ratio

Figure 8: Service rate of DASEC compared to vanilla Linux/KVM as
consolidation ratio increases. Relative to vanilla Linux/KVM, DASEC
greatly improves the service rate when the consolidation ratio is
bigger than 1. QPS of Memcached and Silo is 10000 and 2000, respec-
tively.

Experimental setup. We conducted experiments on a
HPE (Hewlett Packard Enterprise) ProLiant DL580 Gen10
server with four Intel Xeon Gold 6138 processors, 256GB
memory, and two 2TB SSDs. Each processor has 20 cores.
We created multiple VMs using Linux KVM [17] or mul-
tiple containers using docker [30]. Each VM has 16 vC-
PUs and 16GB memory. Each VM/container encapsulates
one workload with 16 threads. Both host OS and guest
OS are Ubuntu Linux 18.04 with the same Linux 5.3 ker-
nel and software configuration, unless otherwise indicated.
We implemented DASEC in the host OS and evaluated it
with six real-world latency-sensitive workloads, includ-
ing two AI inference workloads (Image-classify and
Action-recognize) from GluonCV [31], three latency-
sensitive workloads from TailBench [32], as well as
Memcached workload, as summarized in Table 2.
Our experiments were conducted under two main set-

tings: 1) homogeneous setting where VMs/containers ran
the same workload; and 2) heterogeneous setting where
VMs/containers ran different workloads. We chose these two
settings as latency-sensitive workloads may be collocated
with similar or different workloads in the edge server.
We compared DASEC with PARTIES [1] and BVT [4, 16].

PARTIES is the only system that coschedules multiple
latency-sensitive workloads with best effort workloads on a
physical server in data centers. For BVT, previous works [4,

33, 34] show that it can reduce the latency of one latency-
sensitive workload when it is collocated with best effort
workloads.
To show DASEC’s applicability, we ported DASEC into

Google’s user-level scheduler, ghOSt, and tested DASEC’s
performance compared to vanilla ghOSt (see §6.5). In ad-
dition, we also tested DASEC when a container is used and
compared DASEC’s performance to vanilla docker.

6.1 Same Workload in VMs

Figure 7 shows latencies of Memcached and Silo when
Linux/KVM and DASEC are tested as the consolidation ra-
tio increases under the homogeneous setting. Compared to
Linux/KVM, DASEC reduces the mean latency and the 99th
tail latency by 17% and 19% on average, respectively. As the
consolidation ratio increases from 0.4 to 3.2, the performance
advantage of DASEC also increases compared to Linux/KVM.
When the consolidation ratio is low (e.g., 0.4), the physical
core may not be shared by multiple vCPUs/threads, such
that there is little chance for DASEC to improve performance.
When the consolidation ratio is high (e.g., 3.2), DASEC offers
35% lower mean latency and 42% lower 99th tail latency on
average, relative to the performance improvement of DASEC
when the consolidation ratio is 0.4. This shows DASEC’s capa-
bility of reducing workloads’ latencies when many latency-
sensitive workloads are collocated in the edge server.
To understand how DASEC shows better performance com-

pared to Linux/KVM, we collect service rates of Linux/KVM
and DASEC, respectively, as the consolidation ratio increases.
We show the results in Figure 8. On average, DASEC outper-
forms Linux/KVM by 42% in service rate. When the consol-
idation ratio is 0.4, Linux/KVM achieves almost the same
service ratio as DASEC (3% higher on average). This explains
how DASEC’s latency is almost the same as Linux/KVM’s
latency when the consolidation ratio is low. As the consoli-
dation ratio increases, DASEC improves the service rate by up
to 204% compared to Linux/KVM. This explains why DASEC
can further reduce latencies when the consolidation rate
increases.

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Weiwei Jia, Jiyuan Zhang, Jianchen Shan, Jing Li, and Xiaoning Ding

 0
 20
 40
 60
 80

 100
 120

Im
ag

e-classify
M

asstree

Im
ag

e-classify
Im

g
-d

n
n

Im
ag

e-classify
M

em
cach

ed
Im

ag
e-classify

S
ilo

A
ctio

n
-reco

g
n
ize

M
asstree

A
ctio

n
-reco

g
n
ize

Im
g
-d

n
n

A
ctio

n
-reco

g
n
ize

M
em

cach
ed

A
ctio

n
-reco

g
n
ize

S
ilo

N
o

rm
al

iz
ed

 m
ea

n
 l

at
en

cy
 (

%
)

(r
el

at
iv

e
to

 L
in

u
x

/K
V

M
) Linux/KVM DASEC

Figure 9: Mean latency of DASEC compared to vanilla Linux/KVM
when heterogeneous workloads are collocated. Relative to vanilla
Linux/KVM, DASEC greatly improves the service rate when the con-
solidation ratio is 1.6.

 0

 50

 100

 150

 200

 250

 300

Im
ag

e-classify
M

asstree

Im
ag

e-classify
Im

g
-d

n
n

Im
ag

e-classify
M

em
cach

ed
Im

ag
e-classify

S
ilo

A
ctio

n
-reco

g
n
ize

M
asstree

A
ctio

n
-reco

g
n
ize

Im
g
-d

n
n

A
ctio

n
-reco

g
n
ize

M
em

cach
ed

A
ctio

n
-reco

g
n
ize

S
ilo

N
o

rm
al

iz
ed

 s
er

v
ic

e
ra

te
 (

%
)

(r
el

at
iv

e
to

 L
in

u
x
/K

V
M

) Linux/KVM DASEC

Figure 10: Service rate of DASEC compared to vanilla Linux/KVM
when heterogeneous workloads are collocated. Relative to vanilla
Linux/KVM, DASEC greatly improves the service rate when the con-
solidation ratio is 1.6.

To facilitate our understanding, we also collect the distribu-
tion when a few threads/vCPUs are in the ready state and all
other threads of the workload are waiting for these threads.
The distribution indicates how severe the critical path of
the workload is delayed. We show the distribution in Fig-
ure 3. Figure 3 (c) and (d) show that the percentage of Silo
and Memcached’s cumulative distribution in Linux/KVM is
higher than it of DASEC. This indicates Linux/KVM suffers
higher critical path delay and worse performance compared
to DASEC. Figure 3 (c) also shows Silo suffers a 20% delay
when there is one thread in the ready state. When there are
two threads in the ready state, the percentage increases to
around 60%. The big increase explains why the latency is sig-
nificantly increased when the consolidation ratio increases
from 0.8 to 1.6 as shown in Figures 7 (c) and (d), respectively.

6.2 Different Workloads in VMs

Figure 9 shows the mean latency of Linux/KVM and DASEC
when the consolidation ratio is 1.6 under the heterogeneous

1
2
3
4

16 32 16 32
 Mean Tail(99th)

(a) Mean and tail latencies

L
at

en
cy

 i
n

 l
o

g
 s

ca
le

Num. of containers

PARTIES DASEC

100k
200k
300k
400k

16 32

(b) Service rate

S
er

v
ic

e
ra

te
 (

re
q

/s
ec

)

Num. of containers

Figure 11: DASEC’s performance compared to PARTIES. All containers
run the same Masstree workload.

setting. Under this setting, one VM executes the AI in-
ference workload, while the other VMs execute the same
latency-sensitive workload. We want to evaluate whether
Linux/KVM may degrade the performance of the AI infer-
ence workload compared to DASEC. As shown in Figure 9,
DASEC provides up to 56% (40% on average) lower mean la-
tency compared to Linux/KVM on AI inference workload.
For other latency-sensitive workloads, DASEC decreases the
mean latency by 39% on average relative to Linux/KVM. On
average, DASEC offers 23% lower mean latency under the het-
erogeneous setting compared to it under the homogeneous
setting. This is because CPU contention is more severe under
the heterogeneous setting, such that DASEC has more chance
to improve performance. DASEC outperforms Linux/KVM in
a similar trend when the consolidation ratio is 3.2. We only
show the results when the consolidation ratio is 1.6. Since
AI inference workloads do not report tail latencies, we only
show the mean latencies under the heterogeneous setting.
To pinpoint why DASEC performs better than Linux/KVM

on AI inference workloads under heterogeneous setting, we
profile the GPU utilization during the execution of these
workloads. We find that DASEC increases the GPU utilization
by 25% on average compared to Linux/KVM. AI inference
workloads usually preprocess some data set on CPUs before
offloading tasks to GPUs. Once the preprocessing is delayed
on CPUs due to CPU contention, the GPU utilization may be
reduced. Since DASEC speedups preprocessing for AI infer-
ence workloads relative to Linux/KVM, it indirectly improves
GPU utilization and AI inference workload performance.
This is also reflected in Figure 10, which shows the service
rates of AI inference workloads and other latency-sensitive
workloads. On average, DASEC improves service rates of AI
inference workloads and other latency-sensitive workloads
by 86% and 60%, respectively, compared to Linux/KVM. In
comparison to Linux/KVM, DASEC’s service rate improve-
ment on latency-sensitive workloads other than AI inference
workloads also explains why DASEC shows lower mean la-
tency on these workloads as shown in Figure 9.

Achieving Low Latency in Public Edges by Hiding Workloads Mutual Interference SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

1

2

3

16 32 16 32
 Mean Tail(99th)

(a) Mean and tail latencies

L
at

en
cy

 i
n

 l
o

g
 s

ca
le

Num. of containers

BVT DASEC

100k

200k

300k

16 32

(b) Service rate

S
er

v
ic

e
ra

te
 (

re
q

/s
ec

)

Num. of containers

Figure 12: DASEC’s performance compared to BVT. All containers run
the same Masstree workload.

6.3 Comparison with Related Systems

Figure 11 shows the performance comparison results be-
tween PARTIES [1] and DASEC, as the number of contain-
ers collocated in the physical server increases. Relative to
PARTIES, DASEC decreases the mean latency and the 99th
tail latency by 44% and 31% on average, respectively. As
the consolidation ratio increases, DASEC offers more perfor-
mance improvement compared to PARTIES, up to 69% lower
mean latency, 45% lower 99th tail latency, as well as 95%
more service rate; and the service rate improvement trend
explains the latency decrease trend. To pinpoint why DASEC
shows more performance improvement as the consolidation
ratio increases, we profile the context switches and CPU
utilization per core during the execution of Masstree while
running PARTIES and DASEC, respectively. As the number
of containers increases from 16 to 32, PARTIES increases
the context switches and CPU utilization per core by 30%
and 26% on average; and DASEC achieves 59% lower context
switches per core and 37% more CPU utilization per core
compared to PARTIES.
Figure 12 shows DASEC’s performance compared to BVT

when the number of collocated containers in the server in-
creases from 16 to 32. In comparison to DASEC, BVT increases
the mean latency and the 99th tail latency by up to 27% and
32%, respectively. DASEC improves service rate by up to 30%
compared to BVT. DASEC outperforms BVT for two main rea-
sons. First, BVT cannot resolve interferences and causes long
latencies when the consolidation ratio is high. This is also
corroborated by the previous work [4]. Specifically, when
multiple threads with very low rescheduling latencies (or
very high time slice demands) are on the same core, BVT
has no mechanisms to resolve the interferences. Second, BVT
only provides interfaces to prioritize the thread with the
earliest effective virtual time and borrow virtual time from
its future CPU allocation, as well as weighted fair sharing
and context switch allowance. However, it does not offer
mechanisms to reduce interferences in the critical path like
DASEC. This makes BVT less effective compared to DASEC,
when multiple latency-sensitive workloads are collocated in
the edge server.

 0

 20

 40

 60

 80

 100

 120

Im
g-dnn

M
asstree

M
em

cached

SiloN
o

rm
al

iz
ed

 s
er

v
ic

e
ra

te
 (

%
)

TSA and RLA
RCR

Figure 13: Performance breakdown of DASEC. Service rate of each part
is normalized to the total service rate of DASEC.

6.4 Effectiveness of DASEC’s Each Technique

Figure 13 shows the performance breakdown of DASEC un-
der the homogeneous setting when the consolidation ratio is
1.6. DASEC’s TSA (Time Slice Allocator) and RLA (Reschedul-
ing Latency Adjuster) components contribute to the whole
performance of DASEC by 40% on average. The remaining per-
formance of DASEC is contributed by the RCR component. For
some workloads (e.g., Memcached and Silo), TSA and RLA
contribute more performance to DASEC’s whole performance.
This is because Memcached and Silo are quite vulnerable
to the scheduling wait time. When using Linux/KVM Com-
pletely Fair Scheduler (CFS), these workloads suffer excep-
tionally long scheduling wait times as many Memcached or
Siloworkloads are collocated on the same edge server. This
is also well corroborated by the previous work [4]. TSA and
RLA can efficiently reduce the scheduling wait time and allo-
cate more time slice for those workloads, such that these two
components contribute more performance on those work-
loads. For other workloads (e.g., Masstree and Img-dnn),
RCR contributes more performance to DASEC’s whole perfor-
mance. The reason is that when multiple Masstree work-
loads collocated in the same server, the main bottleneck
comes from load imbalance, which may be caused by check-
points run in parallel with request processing in each core as
well as some limited resources contentions such as DRAM
or interconnect bandwidth. RCR can help resolve such load
imbalance among different cores and thus contributes more
performance on those workloads.

6.5 Applicability and Overhead

Figure 14 shows the performance of docker and DASEC, re-
spectively, as the number of containers collocated in the
physical server increases. When the consolidation ratio is
low (e.g., 16 containers), DASEC reduces the mean latency
and the 99th tail latency by 39% and 38%, respectively, com-
pared to docker. This is aligned with the service rate im-
provement, 35% compared to docker. As the consolidation

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Weiwei Jia, Jiyuan Zhang, Jianchen Shan, Jing Li, and Xiaoning Ding

2

4

6

16 32 16 32
 Mean Tail(99th)

(a) Mean and tail latencies

L
at

en
cy

 i
n

 l
o

g
 s

ca
le

Num. of containers

Docker DASEC

100k

300k

500k

16 32

(b) Service rate

S
er

v
ic

e
ra

te
 (

re
q

/s
ec

)

Num. of containers

Figure 14: DASEC’s performance compared to docker. We test the per-
formance of docker and DASEC, respectively, when Masstree bench-
mark is running in each container.

 0

 20

 40

 60

 80

 100

 120

Mean latency 99th tail latency Service rate

N
o
rm

al
iz

ed
 p

er
fo

rm
an

ce
 (

%
)

(r
el

at
iv

e
to

 g
h
O

S
t)

ghOSt DASEC

Figure 15: DASEC’s performance compared to ghOSt.We test the per-
formance of ghOSt and DASEC, respectively, when the consolidation
ratio is 1.6. Eight containers are collocated in the physical server. In
each container, we run Masstree benchmark with 16 threads.

ratio increases, DASEC provides 48% lower mean latency, 41%
lower 99th tail latency, and 51% more service rate compared
to docker. This indicates that DASEC can decrease latencies
when many latency-sensitive applications in containers are
consolidated on the physical server in the edge clouds.
Figure 15 shows the performance of ghOSt and DASEC, re-

spectively, when the consolidation ratio is 1.6. In comparison
to ghOSt, DASEC offers 36% lower mean latency, 87% lower
99th tail latency, and 20% more service rate. ghOSt is a user-
level scheduling, which only supports very simple scheduling
mechanisms. We port DASEC’s policies into ghOSt to make it
dynamically allocate time slices, adjust rescheduling latency,
as well as resolve conflicts, when multiple latency-sensitive
applications are collocated on the same server in edge clouds.
Figure 16 shows the performance of DASEC compared to

Linux/KVM, when the latency-sensitive workload is collo-
cated with the background workload on the edge server.
We run four Masstree instances; and in each instance, we
run the Masstree workload in a 32-vCPU VM. We run
MatrixMul [35] as the background workload. Compared
to Linux/KVM, DASEC provides 13% more throughput for
the background workload and 26% lower mean latency for
the latency-sensitive workload. DASEC offers performance
improvement for both the background workload and the

 0

 20

 40

 60

 80

 100

 120

 140

Mean latency 99th tail latency Service rate Throughput

N
o
rm

al
iz

ed
 p

er
fo

rm
an

ce
 (

%
)

(r
el

at
iv

e
to

 L
in

u
x
/K

V
M

)

 Masstree MatrixMul

Linux/KVM DASEC

Figure 16: DASEC’s performance compared to Linux/KVMwhen latency-
sensitive workload (Masstree) is collocatedwith backgroundworkload
(MatrixMul) on the edge server.We test the performance of Linux/KVM
and DASEC, respectively, when the consolidation ratio is 1.6.

latency-sensitive workload because they both perform com-
munications in their executions. For Masstree, it is a lock
intensive workload [12]. For MatrixMul, in each iteration of
its execution, the main thread distributes computation tasks
to other threads, which could not make progress if the main
thread is delayed.
Figure 1, Figure 2, Figure 7, and Figure 8 show DASEC does

not introduce much performance overhead (2% on average).
When the consolidation ratio is low (e.g., 0.4), there is no
space for DASEC to improve application performance as vC-
PUs/threads have dedicated cores. In these cases, DASEC’s
performance drops by up to 6%, compared to Linux/KVM.
This shows DASEC introduces negligible overhead.

7 Related Work
Workload collocation. Workload collocation in public
clouds and data centers has been extensively studied [1, 3,
4, 36–38]. Most of them at most coschedule one latency-
sensitive workload with one or more best-effort workloads
in a physical server. For instance, Leverich et al. [4] im-
proves QoS of one latency-sensitive workload when it is
collocated with best-effort workloads for high resource uti-
lization in warehouse-scale data centers. Specifically, it iden-
tifies queuing delay, scheduling delay, and load imbalance
as three key issues that can cause QoS degradation of the
latency-sensitive workload. It adopts interference-aware pro-
visioning to mitigate queuing delay, borrowed virtual time
scheduling (BVT) [16] to minimize scheduling delay, and
thread-pinning to solve threads load imbalance. Heracles [3]
leverages hardware and software isolation mechanisms (e.g.,
resource partitioning) to improve server resource utilization
by collocating one latency-sensitive workload with one or
more best-effort workloads. It tries to guarantee the latency-
sensitive workload’ QoS and let the best-effort workloads
utilize the idle resources.
Among all these related works, only PARTIES [1] al-

lows multiple latency-sensitive workloads collocated with

Achieving Low Latency in Public Edges by Hiding Workloads Mutual Interference SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

best-effort workloads on a physical server in data centers.
PARTIES tries to improve server utilization without violat-
ing QoS of latency-sensitive workloads. Specifically, it de-
tects and boosts allocation of one or more resources for the
latency-sensitive workload whose latency suffers the most. It
uses both OS and hardware level resource partitioning mech-
anisms available in modern platforms to allocate resources,
such as thread pinning, cache partitioning, memory capacity
partitioning, frequency scaling, and disk/network bandwidth
partitioning. Once all latency-sensitive workloads meet their
QoS targets, PARTIES reclaims excess resources from each
sensitive workload and allocates to the background work-
loads to improve server resource utilization.
User-level scheduling. Many user-level scheduling mecha-
nisms [18, 39–46] have been proposed to schedule latency-
sensitive workloads in public clouds and/or data centers.
Most of them allocate dedicated cores to one latency-
sensitive workload collocated with one or more best-effort
workloads in data centers and/or public clouds. Such resource
partitioning approaches may lead to severe resource under-
utilization in edge clouds [47], where resources are highly
constrained. Moreover, in edge clouds, multiple latency-
sensitive workloads may be consolidated in the edge server
without collocating with best-effort workloads. DASEC tar-
gets how to collocate many latency-sensitive workloads
on per edge server and reduces latencies of these work-
loads. Therefore, DASEC is orthogonal to user-level schedul-
ing approaches. Meanwhile, DASEC’s idea is general and can
also work with user-level scheduling approaches. To prove
this, we ported DASEC into Google’s user-level scheduling
(ghOSt [18]) and further improved its performance on sched-
uling multiple latency-sensitive workloads in edge clouds
(see §6).
Co-scheduling. Co-scheduling [34, 48–52] is a widely-
used approach for reducing the performance vulnerabil-
ity of multi-threaded applications. Various coscheduling
schemes [49, 51–53] have been designed for OSs and virtual
machine monitors (VMMs). Coscheduling aims to reduce
the execution delay of multi-threaded applications at their
synchronization/communication points, which is the main
cause of their performance vulnerability. The main idea is to
maximize the co-running of collaborating threads; i.e., when
a thread is scheduled to run, its collaborating threads should
be scheduled as quickly as possible so as to run in parallel
with the thread. To maximize the co-running of collaborating
threads, most co-scheduling schemes temporarily prioritize
these threads, such that they can preempt the execution of
other threads to get the cores to co-run and are less likely to
be preempted by other threads during the co-running.
Unfortunately, the effectiveness of existing coscheduling

approaches is seriously limited when used in multi-tenant
edge clouds due to the following three reasons. First, when

a system has two or more multi-threaded applications, the
effectiveness of the existing coscheduling approaches is lim-
ited, because there are conflicting demands for prioritizing
different applications on the same set of hardware. Existing
approaches focus mainly on one multi-threaded application
and lack a mechanism to resolve the conflicts from multiple
multi-threaded applications. Even worse, existing coschedul-
ing approaches indiscriminately prioritize the threads to be
co-scheduled in each application, significantly increasing the
likelihood of conflicts.
Second, existing coscheduling schemes cannot address

well the trade-off between improving the effectiveness and
reducing the notorious adverse effects of coscheduling. They
may unnecessarily sacrifice effectiveness when trying to
reduce the adverse effects. For example, relaxed coschedul-
ing [51] reduces CPU fragmentation by coscheduling fewer
threads; this is at the cost of lower application performance.
Third, the performance vulnerability problem becomes

even more pronounced when applications have dynamic
changing workloads (e.g., the workload variation caused by
changing parallelism). The scheduler usually provisions time
slices periodically at a fixed rate, and does not allow unused
time slices in the periods with the light workload to be accu-
mulated and used later when the workload is heavy. Thus,
such workload changes are penalized. Existing coscheduling
approaches lack a mechanism to deal with such a perfor-
mance penalty.
Other works. Other works on improving workload QoS
in public clouds and/or data centers include resource provi-
sioning [25, 36, 54–62] and VM placement [63–69]. Resource
provisioning and VM placement approaches mainly con-
sider QoS in a coarse-grained manner. For instance, XEN and
Co. [70] presents workloads performance degradation caused
by rescheduling delay in XEN hyppervisor (e.g., Domain0 is
not scheduled on time to process send-out or received pack-
ets), and it develops a communication-aware CPU scheduler,
expecting to schedule delayed domains timely and fairly to
mitigate such delay and improve performance. These ap-
proaches are orthogonal to DASEC.
DASEC’s novelty. Since resources are highly constrained in
edge clouds [2, 47, 71, 72], multiple latency-sensitive work-
loads may be collocated on each edge server to improve re-
source utilization (e.g., time sharing the CPU resources [47]).
To improve each workload’s performance in edge clouds,
DASEC proposes dynamic asymmetric CPU scheduling to al-
locate CPU resources to collocated edge workloads. Existing
works mainly target how to collocate one sensitive work-
load with one or more best-effort workloads in public clouds
and/or data centers. Only PARTIES targets how to collo-
cate multiple latency-sensitive workloads with one or more
best-effort workloads in data centers. However, PARTIES
allocates dedicated hardware resources to each workload

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Weiwei Jia, Jiyuan Zhang, Jianchen Shan, Jing Li, and Xiaoning Ding

without allowing workloads time sharing CPU resources.
This can significantly reduce CPU resource utilization in
edge clouds [47]. This can also greatly reduce workload per-
formance when the consolidation rate is high (confirmed in
§6.3).

8 Conclusion
The interference caused by resource sharing and the perfor-
mance issues caused by such interference is a long-standing
problem. The emerging edge computing poses new chal-
lenges to this problem. Edges are expected to be dominated
by resource-hungry and latency-critical workloads. This calls
for new solutions which can effectively control the inter-
ference between latency-critical workloads, not the inter-
ference between latency-critical workloads and best-effort
workloads as that in clouds. The resources in an edge site are
very limited compared to those in a cloud data center. Thus,
the solutions must increase resource efficiency. We have in-
vestigated many solutions designed for non-edge scenarios
and have not seen such solutions that can satisfy these needs
for edges.
DASEC provides a unique approach to this problem.

Though the paper only explored the techniques and vali-
dated the effectiveness for hiding the interference caused
by sharing CPU cores, the exploration has demonstrated
that it is a promising direction and has a good potential to
manage the interference caused by sharing many other re-
sources, such as sharing CPU caches, memory bandwidth,
and I/O bandwidth. As future work, we plan to design new
techniques that can be used to control such interference and
integrate themwith the task scheduler techniques introduced
in the paper.

9 Acknowledgments
We thank the anonymous reviewers and the shepherd Brian
Kroth for the constructive suggestions to improve the paper.
This research was supported, in part, by the National Sci-

ence Foundation (USA) under Grant Numbers CNS–1948457
and CCF–1617749.

References
[1] Shuang Chen, Christina Delimitrou, and José F Martínez. Par-

ties: Qos-aware resource partitioning for multiple interactive
services. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, pages 107–120, 2019.

[2] Mengwei Xu, Zhe Fu, Xiao Ma, Li Zhang, Yanan Li, Feng
Qian, Shangguang Wang, Ke Li, Jingyu Yang, and Xuanzhe
Liu. From cloud to edge: a first look at public edge platforms. In
Proceedings of the 21st ACM Internet Measurement Conference,
pages 37–53, 2021.

[3] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy
Ranganathan, and Christos Kozyrakis. Heracles: Improving

resource efficiency at scale. In ACM SIGARCH Computer Ar-
chitecture News, volume 43, pages 450–462. ACM, 2015.

[4] Jacob Leverich and Christos Kozyrakis. Reconciling high
server utilization and sub-millisecond quality-of-service. In
Proceedings of the Ninth European Conference on Computer
Systems, page 4. ACM, 2014.

[5] Christina Delimitrou and Christos Kozyrakis. Bolt: I know
what you did last summer... in the cloud. ACM SIGARCH
Computer Architecture News, 45(1):599–613, 2017.

[6] Harshad Kasture, Davide B Bartolini, Nathan Beckmann, and
Daniel Sanchez. Rubik: Fast analytical power management
for latency-critical systems. In 2015 48th Annual IEEE/ACM
International Symposium on Microarchitecture (MICRO), pages
598–610. IEEE, 2015.

[7] Daniel Sanchez and Christos Kozyrakis. Vantage: Scalable and
efficient fine-grain cache partitioning. In Proceedings of the
38th annual international symposium on Computer architecture,
pages 57–68, 2011.

[8] Orathai Sukwong and Hyong S Kim. Is co-scheduling too
expensive for smp vms? In Proceedings of the sixth European
conference on computer systems, pages 257–272. ACM, 2011.

[9] Image classification on ImageNet. https://github.com/dmlc/
gluon-cv/tree/master/scripts/classification/imagenet.

[10] Yi Zhu, Xinyu Li, Chunhui Liu, Mohammadreza Zolfaghari,
Yuanjun Xiong, Chongruo Wu, Zhi Zhang, Joseph Tighe,
RManmatha, andMu Li. A comprehensive study of deep video
action recognition. arXiv preprint arXiv:2012.06567, 2020.

[11] Video action recognition. https://github.com/dmlc/gluon-cv/
tree/master/scripts/action-recognition.

[12] YandongMao, Eddie Kohler, and Robert Tappan Morris. Cache
craftiness for fast multicore key-value storage. In Proceedings
of the 7th ACM european conference on Computer Systems, pages
183–196, 2012.

[13] A deep network handwriting classifier. https://github.com/
xingdi-eric-yuan/multi-layer-convnet.

[14] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov,
and Samuel Madden. Speedy transactions in multicore in-
memory databases. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles, pages 18–32, 2013.

[15] Memcached Key-Value Store. https://memcached.org.
[16] Kenneth J Duda and David R Cheriton. Borrowed-virtual-time

(bvt) scheduling: supporting latency-sensitive threads in a
general-purpose scheduler. ACM SIGOPS Operating Systems
Review, 33(5):261–276, 1999.

[17] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony
Liguori. KVM: the Linux virtual machine monitor. In Proceed-
ings of the Linux Symposium, pages 225–230, 2007.

[18] Jack Tigar Humphries, Neel Natu, Ashwin Chaugule, Ofir
Weisse, Barret Rhoden, Josh Don, Luigi Rizzo, Oleg Rombakh,
Paul Turner, and Christos Kozyrakis. ghost: Fast & flexible
user-space delegation of linux scheduling. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles,
pages 588–604, 2021.

[19] Qiangyu Pei, Shutong Chen, Qixia Zhang, Xinhui Zhu,
Fangming Liu, Ziyang Jia, Yishuo Wang, and Yongjie Yuan.

https://github.com/dmlc/gluon-cv/tree/master/scripts/classification/imagenet
https://github.com/dmlc/gluon-cv/tree/master/scripts/classification/imagenet
https://github.com/dmlc/gluon-cv/tree/master/scripts/action-recognition
https://github.com/dmlc/gluon-cv/tree/master/scripts/action-recognition
https://github.com/xingdi-eric-yuan/multi-layer-convnet
https://github.com/xingdi-eric-yuan/multi-layer-convnet
https://memcached.org

Achieving Low Latency in Public Edges by Hiding Workloads Mutual Interference SoCC ’22, November 7–11, 2022, San Francisco, CA, USA

Cooledge: hotspot-relievable warm water cooling for energy-
efficient edge datacenters. In Proceedings of the 27th ACM
International Conference on Architectural Support for Program-
ming Languages and Operating Systems, pages 814–829, 2022.

[20] AWS local zones. https://aws.amazon.com/about-aws/global-
infrastructure/localzones/.

[21] Google edge cloud platform. https://cloud.google.com/blog/
topics/hybrid-cloud/announcing-google-distributed-cloud-
edge-and-hosted.

[22] Azure edge zones. https://www.datacenterdynamics.com/
en/news/microsoft-and-att-launch-azure-edge-zone-in-
atlanta/.

[23] Tencent edge computing center. https://cntechpost.com/
2020/10/15/tencent-cloud-enables-first-5g-edge-computing-
center/.

[24] David Lo, Liqun Cheng, Rama Govindaraju, Luiz André Bar-
roso, and Christos Kozyrakis. Towards energy proportionality
for large-scale latency-critical workloads. In 2014 ACM/IEEE
41st International Symposium on Computer Architecture (ISCA),
pages 301–312. IEEE, 2014.

[25] Malte Schwarzkopf, Andy Konwinski, Michael Abd-El-Malek,
and JohnWilkes. Omega: flexible, scalable schedulers for large
compute clusters. In Eurosys 2013, 2013.

[26] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David
Oppenheimer, Eric Tune, and John Wilkes. Large-scale cluster
management at google with borg. In Proceedings of the Tenth
European Conference on Computer Systems, EuroSys ’15, pages
18:1–18:17, 2015.

[27] Chandandeep Singh Pabla. Completely fair scheduler. Linux
J., 2009(184), August 2009.

[28] Linux Proc file system. https://www.kernel.org/doc/html/
latest/filesystems/proc.html.

[29] Linux kernel scheduler parameters. https://access.redhat.com/
solutions/177953.

[30] Docker container. https://www.docker.com/.
[31] Jian Guo, He He, Tong He, Leonard Lausen, Mu Li, Haibin Lin,

Xingjian Shi, Chenguang Wang, Junyuan Xie, Sheng Zha, et al.
Gluoncv and gluonnlp: deep learning in computer vision and
natural language processing. J. Mach. Learn. Res., 21(23):1–7,
2020.

[32] Harshad Kasture and Daniel Sanchez. Tailbench: a benchmark
suite and evaluation methodology for latency-critical appli-
cations. In 2016 IEEE International Symposium on Workload
Characterization (IISWC), pages 1–10. IEEE, 2016.

[33] Ludmila Cherkasova, Diwaker Gupta, and Amin Vahdat. Com-
parison of the three cpu schedulers in xen. SIGMETRICS Per-
form. Eval. Rev., 35(2):42–51, September 2007.

[34] Chuliang Weng, Zhigang Wang, Minglu Li, and Xinda Lu. The
hybrid scheduling framework for virtual machine systems. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS international
conference on Virtual execution environments, pages 111–120.
ACM, 2009.

[35] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary
Bradski, and Christos Kozyrakis. Evaluating mapreduce for
multi-core and multiprocessor systems. In Proceedings of the
2007 IEEE 13th International Symposium on High Performance

Computer Architecture (HPCA ’07), pages 13–24, 2007.
[36] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo

Gokhale, and John Wilkes. Cpi2: Cpu performance isolation
for shared compute clusters. In EuroSys 2013, pages 379–391.
ACM, 2013.

[37] Haishan Zhu and Mattan Erez. Dirigent: Enforcing qos for
latency-critical tasks on shared multicore systems. In Pro-
ceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating
Systems, ASPLOS ’16, pages 33–47, 2016.

[38] Xi Yang, Stephen M Blackburn, and Kathryn S McKinley. Elfen
scheduling: Fine-grain principled borrowing from latency-
critical workloads using simultaneous multithreading. In
USENIX Annual Technical Conference, pages 309–322, 2016.

[39] T.E. Anderson, B.N. Bershad, E.D. Lazowska, and H.M. Levy.
Scheduler activations: Effective kernel support for the user-
level management of parallelism. In Proceedings of the 13th
ACM Symposium on Operating Systems Principles (SOSP ’91),
pages 95–109, October 1991.

[40] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John
Ousterhout. Arachne:{Core-Aware} thread management. In
13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 18), pages 145–160, 2018.

[41] Kostis Kaffes, Jack Tigar Humphries, David Mazières, and
Christos Kozyrakis. Syrup: User-defined scheduling across
the stack. In Proceedings of the ACM SIGOPS 28th Symposium
on Operating Systems Principles, pages 605–620, 2021.

[42] Henri Maxime Demoulin, Joshua Fried, Isaac Pedisich, Marios
Kogias, Boon Thau Loo, Linh Thi Xuan Phan, and Irene Zhang.
When idling is ideal: Optimizing tail-latency for heavy-tailed
datacenter workloads with perséphone. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles,
pages 621–637, 2021.

[43] Sarah McClure, Amy Ousterhout, Scott Shenker, and Sylvia
Ratnasamy. Efficient scheduling policies for {Microsecond-
Scale} tasks. In 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), pages 1–18, 2022.

[44] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam
Belay, David Mazières, and Christos Kozyrakis. Shinjuku:
Preemptive scheduling for {𝜇second-scale} tail latency. In
16th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 19), pages 345–360, 2019.

[45] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Be-
lay, and Hari Balakrishnan. Shenango: Achieving high {CPU}
efficiency for latency-sensitive datacenter workloads. In 16th
USENIX Symposium on Networked Systems Design and Imple-
mentation (NSDI 19), pages 361–378, 2019.

[46] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam
Belay. Caladan: Mitigating interference at microsecond
timescales. In 14th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 20), pages 281–297, 2020.

[47] Junjue Wang, Ziqiang Feng, Shilpa George, Roger Iyengar,
Padmanabhan Pillai, and Mahadev Satyanarayanan. Towards
scalable edge-native applications. In Proceedings of the 4th
ACM/IEEE Symposium on Edge Computing, pages 152–165,
2019.

https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://aws.amazon.com/about-aws/global-infrastructure/localzones/
https://cloud.google.com/blog/topics/hybrid-cloud/announcing-google-distributed-cloud-edge-and-hosted
https://cloud.google.com/blog/topics/hybrid-cloud/announcing-google-distributed-cloud-edge-and-hosted
https://cloud.google.com/blog/topics/hybrid-cloud/announcing-google-distributed-cloud-edge-and-hosted
https://www.datacenterdynamics.com/en/news/microsoft-and-att-launch-azure-edge-zone-in-atlanta/
https://www.datacenterdynamics.com/en/news/microsoft-and-att-launch-azure-edge-zone-in-atlanta/
https://www.datacenterdynamics.com/en/news/microsoft-and-att-launch-azure-edge-zone-in-atlanta/
https://cntechpost.com/2020/10/15/tencent-cloud-enables-first-5g-edge-computing-center/
https://cntechpost.com/2020/10/15/tencent-cloud-enables-first-5g-edge-computing-center/
https://cntechpost.com/2020/10/15/tencent-cloud-enables-first-5g-edge-computing-center/
https://www.kernel.org/doc/html/latest/filesystems/proc.html
https://www.kernel.org/doc/html/latest/filesystems/proc.html
https://access.redhat.com/solutions/177953
https://access.redhat.com/solutions/177953
https://www.docker.com/

SoCC ’22, November 7–11, 2022, San Francisco, CA, USA Weiwei Jia, Jiyuan Zhang, Jianchen Shan, Jing Li, and Xiaoning Ding

[48] John K Ousterhout et al. Scheduling techniques for concurrebt
systems. In ICDCS, volume 82, pages 22–30, 1982.

[49] Hwanju Kim, Sangwook Kim, Jinkyu Jeong, Joonwon Lee, and
Seungryoul Maeng. Demand-based coordinated scheduling
for SMP VMs. In ACM ASPLOS 2013, pages 369–380, 2013.

[50] Orathai Sukwong and Hyong S Kim. Is co-scheduling too
expensive for SMP VMs? In EuroSys 2011, pages 257–272.
ACM, 2011.

[51] Scott Drummonds. Co-scheduling SMP VMs in VMware
ESX server, 2008. http://communities.vmware.com/docs/DOC-
4960.

[52] Eitan Frachtenberg, Dror G Feitelson, Fabrizio Petrini, and
Juan Fernandez. Flexible coscheduling: Mitigating load imbal-
ance and improving utilization of heterogeneous resources. In
Parallel and Distributed Processing Symposium, 2003. Proceed-
ings. International, pages 10–pp. IEEE, 2003.

[53] Andrea C. Dusseau, Remzi H. Arpaci, and David E. Culler.
Effective distributed scheduling of parallel workloads. SIG-
METRICS Perform. Eval. Rev., 24(1):25–36, May 1996.

[54] Pradeep Padala, Kang G Shin, Xiaoyun Zhu, Mustafa Uysal,
Zhikui Wang, Sharad Singhal, Arif Merchant, and Kenneth
Salem. Adaptive control of virtualized resources in utility
computing environments. In ACM SIGOPS Operating Systems
Review, volume 41, pages 289–302. ACM, 2007.

[55] Pradeep Padala, Kai-Yuan Hou, Kang G Shin, Xiaoyun Zhu,
Mustafa Uysal, Zhikui Wang, Sharad Singhal, and Arif Mer-
chant. Automated control of multiple virtualized resources. In
Proceedings of the 4th ACM European conference on Computer
systems, pages 13–26. ACM, 2009.

[56] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. Q-
clouds: managing performance interference effects for qos-
aware clouds. In Proceedings of the 5th European conference on
Computer systems, pages 237–250. ACM, 2010.

[57] Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Gh-
odsi, Anthony D Joseph, Randy H Katz, Scott Shenker, and Ion
Stoica. Mesos: A platform for fine-grained resource sharing
in the data center. In NSDI, volume 11, pages 22–22, 2011.

[58] Christina Delimitrou and Christos Kozyrakis. Quasar:
resource-efficient and qos-aware cluster management. ACM
SIGPLAN Notices, 49(4):127–144, 2014.

[59] Christina Delimitrou and Christos Kozyrakis. HCloud:
Resource-Efficient Provisioning in Shared Cloud Systems. In
Proceedings of the Twenty First International Conference on Ar-
chitectural Support for Programming Languages and Operating
Systems (ASPLOS), April 2016.

[60] Bhuvan Urgaonkar, Prashant Shenoy, and Timothy Roscoe. Re-
source overbooking and application profiling in shared hosting
platforms. ACM SIGOPS Operating Systems Review, 36(SI):239–
254, 2002.

[61] Zhiming Shen, Sethuraman Subbiah, Xiaohui Gu, and John
Wilkes. Cloudscale: elastic resource scaling for multi-tenant
cloud systems. In Proceedings of the 2nd ACM Symposium on
Cloud Computing, page 5. ACM, 2011.

[62] Nedeljko Vasić, Dejan Novaković, Svetozar Miucin, Dejan
Kostić, and Ricardo Bianchini. Dejavu: accelerating resource
allocation in virtualized environments. In ACM SIGARCH

computer architecture news, volume 40, pages 423–436. ACM,
2012.

[63] Dejan Novakovic, Nedeljko Vasic, Stanko Novakovic, Dejan
Kostic, and Ricardo Bianchini. Deepdive: Transparently iden-
tifying and managing performance interference in virtual-
ized environments. In Proceedings of the 2013 USENIX Annual
Technical Conference, number EPFL-CONF-185984 in USENIX
ATC’13, 2013.

[64] Christina Delimitrou and Christos Kozyrakis. Paragon: Qos-
aware scheduling for heterogeneous datacenters. In ACM
SIGPLAN Notices, volume 48, pages 77–88. ACM, 2013.

[65] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and
Mary Lou Soffa. Bubble-up: Increasing utilization in modern
warehouse scale computers via sensible co-locations. In Pro-
ceedings of the 44th annual IEEE/ACM International Symposium
on Microarchitecture, pages 248–259. ACM, 2011.

[66] Ron C Chiang and H Howie Huang. TRACON: Interference-
aware scheduling for data-intensive applications in virtualized
environments. In Proceedings of 2011 International Confer-
ence for High Performance Computing, Networking, Storage and
Analysis, page 47. ACM, 2011.

[67] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael
Bailey. Bobtail: Avoiding long tails in the cloud. In Presented
as part of the 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13), pages 329–341, Lombard,
IL, 2013. USENIX.

[68] Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich,
Marcus Fontoura, and Ricardo Bianchini. Resource central: Un-
derstanding and predicting workloads for improved resource
management in large cloud platforms. In Proceedings of the
26th Symposium on Operating Systems Principles, pages 153–
167. ACM, 2017.

[69] Christina Delimitrou, Daniel Sanchez, and Christos Kozyrakis.
Tarcil: reconciling scheduling speed and quality in large shared
clusters. In Proceedings of the Sixth ACM Symposium on Cloud
Computing, pages 97–110. ACM, 2015.

[70] Sriram Govindan, Arjun R Nath, Amitayu Das, Bhuvan
Urgaonkar, and Anand Sivasubramaniam. Xen and co.:
communication-aware cpu scheduling for consolidated xen-
based hosting platforms. In Proceedings of the 3rd international
conference on Virtual execution environments, pages 126–136.
ACM, 2007.

[71] Yuxin Ren, Guyue Liu, Vlad Nitu, Wenyuan Shao, Riley
Kennedy, Gabriel Parmer, Timothy Wood, and Alain Tchana.
{Fine-Grained} isolation for scalable, dynamic, multi-tenant
edge clouds. In 2020 USENIX Annual Technical Conference
(USENIX ATC 20), pages 927–942, 2020.

[72] Antonio Barbalace, Mohamed L Karaoui, Wei Wang, Tong
Xing, Pierre Olivier, and Binoy Ravindran. Edge computing:
the case for heterogeneous-isa container migration. In Proceed-
ings of the 16th ACM SIGPLAN/SIGOPS International Conference
on Virtual Execution Environments, pages 73–87, 2020.

http://communities.vmware.com/docs/DOC-4960
http://communities.vmware.com/docs/DOC-4960

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Main Idea: Hiding Mutual Interference
	4 DASEC Design
	4.1 Overall Design and Challenges
	4.2 Design Details

	5 Implementation Details
	6 Evaluation
	6.1 Same Workload in VMs
	6.2 Different Workloads in VMs
	6.3 Comparison with Related Systems
	6.4 Effectiveness of DASEC's Each Technique
	6.5 Applicability and Overhead

	7 Related Work
	8 Conclusion
	9 Acknowledgments
	References

