
PLOVER: Fast, Multi-core Scalable Virtual Machine Fault-tolerance
Cheng Wang∗, Xusheng Chen∗, Weiwei Jia, Boxuan Li,

Haoran Qiu, Shixiong Zhao, and Heming Cui
The University of Hong Kong

Abstract
Cloud computing enables a vast deployment of online

services in virtualized infrastructures, making it crucial
to provide fast fault-tolerance for virtual machines (VM).
Unfortunately, despite much effort, achieving fast and
multi-core scalable VM fault-tolerance is still an open
problem. A main reason is that the dominant primary-
backup approach (e.g., REMUS) transfers an excessive
amount of memory pages, all of them, updated by a ser-
vice replicated on the primary VM and the backup VM.
This approach makes the two VMs identical but greatly
degrades the performance of services.

State machine replication (SMR) enforces the same to-
tal order of inputs for a service replicated across physical
hosts. This makes most updated memory pages across
hosts the same and they do not need to be transferred.
We present Virtualized SMR (VSMR), a new approach
to tackle this open problem. VSMR enforces the same
order of inputs for a VM replicated across hosts. It
uses commodity hardware to efficiently compute up-
dated page hashes and to compare them across repli-
cas. Therefore, VSMR can efficiently enforce identi-
cal VMs by transferring only divergent pages. An ex-
tensive evaluation on PLOVER, the first VSMR system,
shows that PLOVER’s throughput on multi-core is 2.2X
to 3.8X higher than three popular primary-backup sys-
tems. Meanwhile, PLOVER consumed 9.2X less net-
work bandwidth than both of them. PLOVER’s source
code and raw results are released on github.com/
hku-systems/plover.

1 Introduction
The cloud computing paradigm enables a pervasive de-
ployment of online services in virtualized infrastructures
(e.g., Xen [26]). Meanwhile, a virtual machine (VM)
is incorporating more and more virtual CPUs (vCPU)
on multi-core hardware because online services process
many requests concurrently. This rapid growth of cloud
computing components implies that hardware failures
become commonplace [18] rather than occasional. A fast
and multi-core scalable VM fault-tolerance approach is
highly desirable for online services.

Primary-backup (e.g., REMUS [36]), a dominant VM
fault-tolerance approach, works in a physical time slot
manner. In each slot, it runs a service in the primary VM

∗The first two authors contributed equally to this work.

to process client requests, tracks updated VM states (e.g.,
dirty memory pages), and buffers network outputs. When
a slot ends, a syncvm operation is invoked to transfer
dirty pages from the primary to backup. Once the transfer
succeeds, network outputs are sent to clients. By doing
so, primary-backup ensures external consistency [36]:
primary and backup have the same states and a primary
failure will not be observed by clients.

Unfortunately, despite much effort [13, 36, 42, 64,
82], achieving fast and multi-core scalable VM fault-
tolerance remains an open problem [5, 38, 42, 82] . A
main reason is that the primary-backup approach often
has to transfer an excessive amount of dirty memory
pages, which greatly degrades the performance of a ser-
vice and occupies prohibitive network bandwidth.

For instance, if a program updates 20K dirty memory
pages within a 100ms slot, transferring these pages con-
sumes a huge network bandwidth of 6.4 Gbps. Both our
evaluation (§6) and prior study [36, 40, 42, 60] show that
many programs access even more dirty pages on over
four CPU cores. vSphereFT-6.5 [17], a latest primary-
backup product, permits up to four vCPUs per VM and
only two of such VMs per physical host [5]. Therefore, to
enable fault-tolerance, people often sacrifice multi-vCPU
speedup and VM consolidation [34].

As a service includes multiple programs (e.g., a web-
site deployed in one VM can include an Nginx web
server, a Python interpreter, and MySQL), and a program
scales better on more CPU cores and accesses more
memory, this problem becomes even more challenging.

Another approach, state machine replication (SMR),
appears a promising solution for this open problem.
SMR [68] models a program as a deterministic state
machine and replicates it on different physical hosts
(or replicas). It uses a distributed consensus protocol
(typically, PAXOS [56]) to enforce the same total or-
der of program inputs across replicas, making them per-
form the same sequence of state transitions. SMR sys-
tems [35, 45, 50] often incur low performance overhead
with popular programs on 16 CPU cores.

However, to ensure external consistency, SMR re-
quires extra mechanisms to resolve divergent executions
(i.e., multithreading nondeterminism [60]) across repli-
cas. Extisting SMR systems provide two major mech-
anisms. First, EVE [50] requires program developers
to manually annotate variables shared by threads, and
it detects divergent variable states at runtime. Second,

github.com/hku-systems/plover
github.com/hku-systems/plover

REX [45] and CRANE [35] enforce the same order of
inter-thread synchronization (e.g., locks) across replicas.
If no data race occurs, determinism is ensured; otherwise,
developers’ diagnosis [51, 75] may be needed. There-
fore, neither of the two mechanisms is fully automatic.

Our key observation is that by enforcing the same total
order of inputs for a VM replicated across hosts, almost
all updated memory pages across the hosts are the same
and they do not need to be transferred. Intuitively, if a
VM containing a key-value service is replicated across
hosts and it receives the same order of requests, all these
hosts should contain roughly the same data in memory.
Empirically, we enforced the same total order of client
requests for 8 diverse services running on two VMs, and
72% to 97% of the services’ dirty pages were the same
after processing these requests.

This paper presents Virtualized SMR (VSMR), a new
SMR approach that can achieve fast, multi-core scalable
VM fault-tolerance. VSMR enforces same total order of
network inputs for a VM replicated across hosts. It then
periodically invokes a syncvm operation to efficiently
compute updated page hashes, to compare them across
the replicas, and to transfer only the divergent pages.

In a conceptual level, VSMR replicates an entire guest
VM as a state machine and achieves the strengths of both
SMR and primary-backup. By transferring only those
divergent pages, VSMR automatically and efficiently
ensures external consistency. Leveraging the powerful
fault-tolerance of PAXOS, VSMR tackles a notorious
“split-brain problem” (§2.2) in primary-backup systems.

We implemented PLOVER,1 the first VSMR system in
Linux. PLOVER uses APUS [92], a fast, RDMA-powered
PAXOS implementation. PLOVER intercepts inbound net-
work packets in the KVM QEMU hypervisor [80] and
replicates them to other VM hypervisors using PAXOS.
PLOVER’s syncvm operation (§4) is built on top of
PAXOS for robustness, and it uses RDMA to efficiently
compare page hashes across replicas. PLOVER does not
modify the underlying PAXOS protocol, so it is generic
to work with other fast consensus protocols [58, 78].

We evaluated PLOVER on 12 widely used programs,
including 8 servers (e.g., SSDB [85] and Tomcat [3])
and 4 dynamic language interpreters (e.g., PHP). We
group these programs into 8 practical services, includ-
ing DjCMS [7], a content management system (CMS)
that consists of Nginx [73], Python, and MySQL [22].
We compared PLOVER with three well-engineered
primary-backup systems QEMU-MicroCheckpoint [13]
(for short, MC) , COLO [38], and STR [63]. Evaluation
shows that:

1. On average, PLOVER’s throughput is 2.2X higher

1The Pacific golden plover is well known for her strong tolerance to
the extreme weather in Alaska.

than MC, STR, and COLO on 4-vCPU VMs, 3.8X
higher on 16-vCPU VMs. Compared to unrepli-
cated executions, PLOVER’s overhead on response
time is modest. PLOVER has reasonable CPU usage.

2. PLOVER consumes 9.2X less network bandwidth
than both MC, STR, and COLO on average. It en-
ables consolidating multiple fault-tolerant VMs on
one host.

3. PLOVER is robust to various failures.

Our major contribution is VSMR, a new SMR ap-
proach, which automatically achieves much faster and
more scalable VM fault-tolerance. Our other contribu-
tions include the PLOVER implementation and an exten-
sive evaluation on diverse, sophisticated online services.
Moreover, by efficiently enforcing the same VM across
hosts, PLOVER can be broadly applied to other research
areas. For instance, page-level false-sharing [28, 61] is
a notorious performance problem in multithreading re-
play [40, 54, 67]. PLOVER can be an effective template to
alleviate this problem, because most false-shared pages
across the record and replay hosts should have the same
contents and they do not need to be transferred.

The remaining of the paper is organized as follows. §2
introduces the background of RDMA, VM, and PAXOS.
§3 gives an overview on PLOVER’s architecture and
its advantages over the primary-backup approach. §4
presents PLOVER’s runtime system. §5 describes imple-
mentation details, §6 presents evaluation results, §7 in-
troduces related work, and §8 concludes.

2 Background
2.1 RDMA

RDMA (Remote Direct Memory Access) [2] can di-
rectly write from the userspace memory of a host to the
userspace memory of a remote host, bypassing the OS
and CPU on both hosts. RDMA architectures (e.g., In-
finiband [2] and RoCE [11]) are commonplace within a
datacenter due to their ultra low latency and decreasing
costs. RDMA’s ultra low latency comes from not only
its OS bypassing feature, but also its dedicated network
stack implemented in hardware. RDMA latency is sev-
eral times smaller than software-only OS bypassing tech-
niques (e.g., DPDK [6] and Arrakis [77]).

The advantage of RDMA latency is especially signif-
icant when transferring messages of small sizes. Bench-
marks [4, 10] show that, with the same network inter-
face card (NIC), transferring messages of less than 2KB
on RDMA is about 10X∼30X faster than on TCP. If the
message size becomes larger (e.g., over 8KB), RDMA
latency is merely about 30% faster than TCP because
network bandwidth becomes a bottleneck for both. This

suggests that RDMA is attractive for invoking consen-
sus on inputs and sending hashes of memory pages, and
it is less beneficial for transferring pages. PLOVER uses
RDMA for invoking PAXOS consensus, exchanging page
hashes across replicas, and transferring divergent pages.

2.2 Virtual Machine and Its Fault-tolerance

VMs [26, 52, 91] are widely used in clouds and dat-
acenters due to their low performance overhead [42],
platform independence, performance isolation [47], etc.
For instance, KVM [52] is an accelerator that uses the
hardware virtualization features of various CPUs, while
QEMU [80] emulates the hardware for VMs. PLOVER
uses KVM-QEMU for three main reasons. First, KVM-
QEMU incurs little performance overhead compared to
bare-metal. Second, QEMU works in userspace and is
suitable for RDMA-based PAXOS to intercept inputs
(RDMA currently only supports userspace memory).
PLOVER uses QEMU’s tap send() API to intercept
network inputs. Third, the QEMU virtual threads that act
as vCPUs are spawned from the QEMU main process,
which enables PLOVER to monitor programs running in
a guest VM non-intrusively [87] without modifying the
guest.

Moreover, VM platform independence enables consol-
idation [34]: people can migrate many VMs [32, 72] to a
small number of physical hosts to save energy and ease
management. However, consolidation also implies that
many VMs are prone to hardware failures. Therefore, a
fast, scalable, and network bandwidth friendly VM fault-
tolerance approach is highly desirable.

Existing VM fault-tolerance systems [13, 17, 36, 38,
63, 64, 82] are mainly based on the primary-backup ap-
proach. To maintain external consistency, the primary
must transfer the dirty memory modified by a program
within one time slot to the backup before releasing out-
puts, the so called “output commit problem” [86]. There-
fore, the major performance bottleneck of this approach
is the time taken to transfer dirty pages, because local
memory access speed can be 10X∼100X faster [14] than
network speed. As real-world programs become increas-
ingly scalable on multi-core and access more memory
per second, this bottleneck becomes even more signifi-
cant. An evaluation [42] shows that this transfer time can
be much bigger than a syncvm time slot, greatly degrad-
ing the performance of services.

Synchronization Traffic Reduction (STR) [63] is a
heuristic for reducing the number of transferred pages.
It runs both primary and secondary VMs in parallel to
process the same network inputs in the same order. STR
uses a 25ms syncvm interval and only transfers diver-
gent pages in each syncvm operation. However, both our
evaluation and STR’s show that this heuristic is ineffec-
tive because of the static syncvm interval (§6.2).

COLO is a primary-backup system deployed in
Huawei [20]. It runs the same service on both primary
and backup, compares per-connection network outputs,
and does a syncvm if there is any network output di-
vergence. COLO can safely skip the syncvm operation
if network outputs remain identical. Nevertheless, both
our evaluation and COLO’s show that its performance
severely degrades when the number of client connections
is large.

vSphereFT used to take a record-replay approach [29,
83] for uni-vCPU, but it switches to the REMUS approach
since vSphereFT 6.0 [9, 17]. If fault-tolerance is enabled,
vSphereFT permits at most four vCPUs per VM and only
two of such VMs per host [5]. This affects multi-vCPU
speedup and VM consolidation.

Since primary-backup has only two replicas, when net-
work partition occurs, neither the primary nor backup
can determine whether the other one fails forever or is
temporarily partitioned. Therefore, they both may serve
client requests, breaking external consistency. This is the
notorious “split-brain problem” [23, 24, 83].

2.3 PAXOS and SMR Systems

PAXOS [55, 56, 68] is a major protocol to enforce the
same, totally ordered inputs across replicas. For effi-
ciency, typical PAXOS implementations [68, 74] take the
Multi-Paxos approach [55]: it elects a dedicated leader in
each view to invoke consensus on new inputs, and other
replicas work as witnesses to agree on inputs. In PAXOS,
the value of each agreed input is flexible, and PLOVER
takes advantage of this flexibility. PAXOS can be used to
maintain different roles consistently for different repli-
cas [58, 71], and replicas with different roles can inter-
pret the same agreed input value differently according to
the (consistent) roles. E.g., the leader of NOPaxos [58]
executes inputs; its witnesses agree on inputs and inter-
pret inputs as no-operation (NOP).

To maintain roles for replicas consistently, PAXOS
replicas send periodical heartbeats [68, 74] to other repli-
cas and track the number of heartbeat failures with a
threshold. If a replica finds that its threshold is reached,
it suspects the replica on the other end failed and it in-
vokes a new consensus (e.g., leader election); otherwise,
a replica can safely intercept inputs or logical operations
on its own safely. During leader election, the node with
the most up-to-date state wins [74, 78].

Three recent SMR protocols, NOPaxos [58],
APUS [92], and DARE [78] incur a low consen-
sus latency of tens of µs. PLOVER uses APUS
for three main reasons: (1) it provides a flexible
paxos op(void *val) API to propose a consensus
request with val as the proposed value; (2) its consensus
protocol includes a durable storage (DARE works purely
in memory); and (3) it is open source.

3 Overview
3.1 Deployment Suggestion

PLOVER’s deployment follows typical SMR systems:
three replicas are connected with RDMA networks, and
each replica runs a PLOVER VM instance containing a
set of programs. We suggest each replica have 16+ CPU
cores. By running three replicas, PLOVER can tolerate
hardware failures or network partitions of one replica.
This fault-tolerance guarantee is sufficient because: (1) a
VM can already tolerate various failures in guest OS, and
(2) tolerating one failure is a common guarantee in VM
fault-tolerance systems [17, 36].

We suggest more CPU cores because PLOVER uses
spare cores to compute dirty page hashes. Our evalua-
tion used 24-core hosts and PLOVER performance was
already reasonable. In addition, RDMA becomes preva-
lent [69, 78]. RDMA is just a requirement for current
PLOVER implementation, not a requirement for VSMR.
One can implement VSMR using other fast PAXOS pro-
tocols (e.g., NOPaxos [58]) and using other OS bypass
techniques (e.g., Arrakis [77]) to send page hashes.

3.2 PLOVER Architecture

...

Leader Secondary Witness

VM syncvm

 PaxosOuput Guard

Qemuservice

Client 1

syncvm VM

serviceQemu

Paxos

RDMA

PaxosOuput Guard

RDMA

Client n....

log log log

page page

... ...

Figure 1: PLOVER Architecture. Key components are in
blue, inputs are in green, divergent dirty pages are in red.

We designed PLOVER to be simple and generic for var-
ious PAXOS implementations. To this end, PLOVER has
two unique features compared to regular SMR systems.

First, unlike regular SMR systems which maintain
two replica roles (leader and witness), PLOVER in-
vokes PAXOS to consistently maintain three replica roles:
leader, secondary, and witness. In PLOVER’s underlying
PAXOS level, both PLOVER’s secondary and witness are
“PAXOS witnesses” which simply agree on consensus re-
quests. The only difference is about interpreting syncvm

in the upper PLOVER system level: the PLOVER leader
and secondary involve the syncvm, and the PLOVER wit-
ness interprets syncvm as NOP. We made this design
choice because transferring divergent pages to only the
secondary is efficient.

Second, to minimize service downtime during the
leader’s failures, rather than letting the remaining nodes

compete to be the new leader, PLOVER elevates its sec-
ondary to be the leader because the secondary’s state
is more up-to-date than the witness’s. PLOVER has the
same safety guarantee as PAXOS by ensuring there is one
unique leader in each view and all the replicas are consis-
tent with their roles (§4.5). To preserve the fault tolerance
guarantee, the new leader will do a VM migration to the
witness, elevate the witness to be the secondary, and then
begin to serve client requests.

Figure 1 shows PLOVER’s architecture with four key
components: the PAXOS input coordinator (PAXOS), the
consensus log (log), the output buffering guard (guard),
and the syncvm component. The PAXOS coordinators re-
side in all three replicas to maintain a consensus log with
the same order of SMR operations, including input re-
quests, syncvm, and role changes (§4.2).

When PLOVER starts, PAXOS elects one replica as the
leader, which is dedicated to receive and make consen-
sus on client requests. When the leader receives a new
network input, it invokes PAXOS to replicate this input
on PLOVER’s replicas. §6.3 shows that, by enforcing the
same total order of realistic workload inputs for differ-
ent VM replicas for 8 services, 72% ∼97% of the pro-
grams’ memory are already the same and do not need to
be transferred.

The leader periodically invokes consensuses on
syncvm operations to synchronize the VM states of the
VMs. PLOVER uses an adaptive algorithm to determine
the intervals between two syncvm operations based on
current workloads, which effectively reduces transferred
states and improves performance (§4.3). On successful
consensus on a syncvm operation, the syncvm compo-
nents of the leader and secondary interpret it with three
steps: (1) they exchange dirty page bitmaps and compute
hashes of each dirty physical pages concurrently; (2) the
leader receives hashes from the secondary and compare
hashes; (3) the leader transfers only the divergent pages.
§4.4 describes our syncvm protocol in detail.

The guards on both leader and secondary buffer net-
work outputs since the last syncvm operation. When a
new syncvm succeeds, the leader’s guard releases out-
puts to clients, while the secondary discards outputs.

PLOVER ensures external consistency. Suppose the
leader fails in the nth slot (i.e., PLOVER has finished
n− 1 syncvm operations), the secondary becomes the
new leader, and the old leader and the new leader have
the same states in the last n− 1 slots. Since the old
leader’s output in the nth slot has not been released by
PLOVER, clients will not observe any inconsistency even
if the new leader’s state in the nth slot differs from the
old leader’s. Thus, the new leader can take over without
perturbing clients.

Primary-backup
Approach

Plover
Approach

phase 1

phase 1: copy dirty pages
phase 2: transfer dirty pages

phase a: compute dirty page hashes
phase b: compare hashes
phase c: transfer divergent pages

phase 2

phase a phase b phase c

pause/resume VM

release output

pause/resume VM

release output

time axis

time axis

Figure 2: Comparing syncvm operation in VSMR and MC.

3.3 Comparing PLOVER and primary-backup

We design PLOVER to gain the same fault-tolerance
strength as regular SMR. By using PAXOS to maintain
the roles of replicas, PLOVER can consistently maintain
a leader. By running three PAXOS replicas, PLOVER is
also able to consistently detect an outdated leader caused
by transient network partitions. In contrast, primary-
backup is known unable to handle network partition, the
so called “split-brain problem” (§2.2). Because hardware
failures may cause transient network partitions (e.g.,
NIC or network switch errors), PAXOS’s strong fault-
tolerance is increasingly useful.

To illustrate why PLOVER can be faster than a typi-
cal primary-backup approach, Figure 2 shows the leader
or primary’s workflow in PLOVER and in MC [13],
a recent REMUS-based implementation developed in
QEMU [80]. Within a primary-backup syncvm opera-
tion, the time taken in MC’s primary can be divided into
two major phases: (1) tcopy, time taken for copying dirty
pages to another memory region; and (2) ttrans f er, time
taken for transferring dirty pages. The primary resumes
its guest VM after phase (1), but it must release outputs
after phase (2) for external consistency. ttrans f er is of-
ten much longer than tcopy and becomes the bottleneck
(§6.2).

The time taken in a PLOVER leader’s syncvm opera-
tion can be divided into three major phases: (a) tcompute,
time taken to compute hashes for local dirty pages; (b)
tcompare, time taken to compare hashes between leader
and secondary; and (c) tdivergent , time taken to transfer
only divergent pages. PLOVER resumes its guest VM and
releases outputs after transferring the divergent pages.
PLOVER resumes the guest VM after the transfer because
it saves the page copy time by using RDMA to directly
write divergent pages to the secondary.

Compared to primary-backup, PLOVER’s phase (a) can
be fast by leveraging CPU cores, and phase (b) can be
fast by leveraging RDMA. Phase (c) can be fast if most
dirty pages between the PLOVER leader and secondary
are the same. Our evaluation shows that PLOVER’s
tdivergent is up to 12.8X faster than MC’s ttrans f er.

API Argument API Semantic
paxos second secondary ID Propose the secondary
paxos input input packets Propose client requests
paxos syncvm syncvm Propose a syncvm operation

Table 1: PLOVER’s consensus operations, all built on top of
APUS’s paxos op(void *val) API (§2.3) .

4 The PLOVER Runtime System
This section introduces PLOVER’s runtime System. Ta-
ble 1 shows all the three types of consensus operation
APIs that PLOVER’s leader invokes.

4.1 Terminology Setup

A PLOVER replica maintains a <role,vid,log, nerr >
tuple on its local QEMU hypervisor. role is a replica’s
role (leader, secondary, or witness) that has been agreed
by PAXOS; vid is the current PAXOS view ID [68]; log
is the current PAXOS consensus log (§3.2), and nerr is
the current number of communication failures recorded
in PAXOS (e.g., a PAXOS heartbeat failure will increment
nerr by 1). vid, log, and nerr are all exposed from the un-
derlying PAXOS implementation, and PLOVER only up-
dates nerr if a syncvm has an error. In short, PLOVER runs
on top of PAXOS without modifying its implementation.

4.2 SMR Operation Types

As an SMR system, all PLOVER operations run on top of
the underlying PAXOS protocol. PLOVER has three SMR
operations in total: paxos second, paxos input, and
paxos syncvm (Table 1).

The paxos second API is invoked by the PLOVER
leader to assign one replica as the secondary, ensuring
that the new secondary is consistently agreed among
PLOVER replicas. This API is invoked when a new
PLOVER leader is elected or the secondary is suspected
to fail. PLOVER’s leader randomly proposes a replica in
its current PAXOS group as the secondary. This opera-
tion complies with PAXOS safety guarantee even if the
proposed secondary fails, because the leader’s syncvm

operations can detect the new secondary’s failure by in-
crementing nerr (§4.4).

The paxos input operations are invoked by the
leader when inbound network packets arrive at local hy-
pervisor. Both PLOVER secondary and witness act as
“PAXOS witnesses” to agree on the proposed packet,
achieving a standard PAXOS consensus.

The paxos syncvm is used to invoke a syncvm oper-
ation in PLOVER. When the primary finds that the ser-
vice running in local VM has finished processing in-
puts and become idle (§4.3), it invokes a consensus on
syncvm by invoking a paxos syncvm operation. Invok-
ing a syncvm with consensus is beneficial: it makes the
leader and secondary receive exactly the same sequence
of client requests between every two consecutive syncvm

operations, greatly reducing memory divergence (§6.3).

4.3 Efficiently Determining Slot Boundary

Similar to primary-backup for ensuring external con-
sistency [86], PLOVER leader must buffer all outbound
packets before a syncvm succeeds, including client re-
sponses and TCP ACKs. Client programs will stop send-
ing new packets when their TCP congestion windows are
met, even server programs have finished processing re-
quests and become idle. This leads to unnecessary time
slots. In practical workloads with concurrent connec-
tions, arrival times of requests are often unpredictable,
thus a static syncvm time slot configuration (e.g., 25ms
in REMUS and 100ms in MC) can often cause an idle
service and unnecessary time slots.

To avoid unnecessary time slots, PLOVER develops an
adaptive-slot algorithm by inserting syncvm operations
when its leader determines idle status of programs run-
ning in guest VM. PLOVER leverages QEMU’s thread-
ing hierarchy to spawn an internal thread that checks the
CPU usage of the guest VM to determine whether it is
idle. §5.1 describes implementation details. This simple,
non-intrusive algorithm helps PLOVER quickly proceed
its slots, and our evaluation shows that this algorithm is
effective in improving PLOVER’s performance (§6.2).

4.4 Protocol for syncvm

PLOVER’s syncvm contains three phases (§3.3). The first
phase is compute. On executing the paxos syncvm op-
eration, the leader pauses its VM immediately, while the
secondary does the pause when its programs become idle
(§4.3). When both VMs are paused, leader and secondary
exchange their dirty page bitmap and compute a union
of the two bitmaps. Then, leader and secondary concur-
rently compute page hashes according to the union.

The second phase is compare. The secondary sends its
hash list to the leader, and the leader does a comparison
to identify all divergent pages.

The third phase is transfer. The leader uses RDMA
to transfer all divergent pages to secondary and append
a special EOF at the end. The secondary saves the pages
in a static buffer, sends an ACK to the leader, and applies
divergent pages to its guest VM in an atomic manner.
This is crucial for PLOVER’s correctness because if the
secondary starts applying pages while receiving, and the
leader fails in the middle, the secondary will end in a cor-
rupted state. On receiving the ACK, the leader releases
outputs since the last syncvm and resumes its guest VM.

All the three phases carry the sender’s vid and the re-
ceiver checks vid as a standard PAXOS way [35, 68].
If any communication error happens during a syncvm, a
local replica increments nerr by 1. If this replica is the
leader, it re-invokes a syncvm consensus (§4.2). PAXOS
will be involved once nerr reaches its re-election thresh-

old. Although updating nerr in both PLOVER and in the
underlying PAXOS may have data races, nerr is just a
statistic variable and there is no a correctness issue.

4.5 Handling Replica Failures

PLOVER automatically tolerates one replica failure. If the
secondary fails, the leader will invoke a standard VM mi-
gration to bring the witness’s states up-to-date and ele-
vate the witness to be the secondary. If the witness fails,
no PLOVER actions are needed because the leader can
continue to serve client requests and ensure fault toler-
ance.

If the leader is suspected to fail, a new leader will
be elected. Because the secondary’s state is more up-
to-date, PLOVER ensures if a secondary is working nor-
mally, it will always be the new leader. To do so, PLOVER
doesn’t let the witness become the leader in the leader
election. After the secondary becomes the leader, it will
do a VM migration from itself to the witness, elevate the
witness to be the secondary, and start to serve client re-
quests.

4.6 Correctness

PLOVER is designed to handle the same failure model as
regular SMR, where network messages may be lost but
will not be corrupted, network may be partitioned, and
hosts may fail. As an SMR system with three replicas,
PLOVER can tolerate the failure of one replica.

PLOVER guarantees external consistency: if a client re-
ceives a reply for its requests, the execution states gener-
ating this reply will not be lost. Prior work [36, 38] shows
that this guarantee is sufficient for VM fault-tolerance in
a client-server model.

We give a proof sketch of PLOVER’s external consis-
tency guarantee in three steps. First, all replies are sent
from PLOVER’s leader. PLOVER’s underlying PAXOS
protocol ensures one strongly consistent leader among
the replicas. Moreover, only the leader invokes syncvm
operations and network outputs will not be released until
a syncvm finishes.

Second, PLOVER does not affect the correctness of
its underlying PAXOS. We made only two modifications
to the underlying PAXOS protocol: always elevating the
secondary to be the new leader and increasing nerr on
a syncvm error (§4.1). These two modifications do not
hurt PAXOS’s correctness because it guarantees there is
one unique leader in each view, and nerr is just a counter
of observed communication errors on a local host.

Third, before sending out a reply, the leader has fin-
ished a syncvm and successfully replicated the states
that generate this reply to the secondary. No matter
which replica fails, the states will not be lost. Therefore,
PLOVER ensures external consistency.

We also carefully designed PLOVER for reasonable

liveness. If the leader is alive, its syncvm operation has
a timeout-and-retry mechanism and its program-idle de-
termination (§4.3) has a bounded waiting time.

5 Implementation Details
Much of PLOVER implementation code was inherited
from well-engineered VM systems [13, 38, 52], includ-
ing replicating file system [38]. Our implementation
found and fixed two new bugs that crashed MC [13]:
one bug was an integer overflow on the number of dirty
pages, the other was an inconsistent states between the
PCI device and bus on restarting replicas. QEMU devel-
opers confirmed both our bug reports.

5.1 Determining Server Program Idle Status

When clients connect with services running in a VM
fault-tolerance system (e.g., REMUS and PLOVER) using
TCP, the system buffers network outputs and causes the
clients’ TCP windows to become full and to stop sending
requests. This will result in an idle service and a wasted
time slot. Therefore, a mechanism is needed to determine
when the service is idle, so that a syncvm is invoked.

To efficiently find the idle status of a service, PLOVER
creates a simple, non-intrusive algorithm without modi-
fying guest OS. This algorithm uses the threading hier-
archy of QEMU: all QEMU virtual threads (threads that
emulate vCPUs) are spawned from the QEMU hypervi-
sor process (§2.2). PLOVER creates an internal thread in
the process to call clock(), which gets the total CPU
clock of a process and its children. If PLOVER finds that
the increment rate of this clock is as small as an vacant
VM for a threshold (100µs), it finds the service idle.

This eliminates wasted time slots in PLOVER and lets
services run almost in full speed. Moreover, because both
the PLOVER leader and secondary finish processing cur-
rent requests, their memory should be mostly the same.
This simple algorithm is already effective for reducing
page divergence (§6.3) and achieved reasonable perfor-
mance overhead (§6.2) in our evaluation, and it can be
further extended to handle straggler requests.

5.2 Computing Dirty Page Hashes Concurrently

We leveraged multi-core hardware and implemented a
multi-threaded dirty page hash computing mechanism.
The mechanism detects the number of CPU cores on
local host creates same number of threads to com-
pute hashes of dirty physical pages since the last
PLOVER syncvm operation. We used Google’s City-
Hash [43], because it is fast. Our evaluation shows that
computing hashes has reasonable CPU footprint (§6.4)
because it takes only about 6.3µs for each page.

5.3 Fast Consensus in Hypervisor

PLOVER uses APUS [92] to achieve consensus on net-
work inputs among replicas. A naive approach for imple-

menting this is to let APUS intercept network packets and
synchronously achieve consensus in QEMU’s inbound
network device (e.g., TAP device). However, this ap-
proach causes severe performance degradation. QEMU’s
network is implemented in an event driven model. On re-
ceiving a network packet, the event handler needs to ac-
quire a global lock and feed the packet into the VM. The
whole process takes less than 1µs. On the other hand,
APUS takes over 10µs to reach consensus. As a result,
this naive approach would hold the global lock for a long
period and block the handling of other events, causing
great performance degradation to the VM.

To address this problem, we implemented a non-
blocking consensus mechanism in QEMU. On receiv-
ing a network packet, rather than directly feed it into the
guest VM, the event handler only appends the packet to
a buffer. PLOVER asynchronously reads packets from the
buffer, invokes APUS to achieve consensus, and lever-
ages QEMU’s event driven loop to feed the packet into
the VM.

6 Evaluation
Our evaluation hosts were nine Dell R430 servers with
Linux 3.16.0, 2.6 GHz Intel Xeon CPU with 24 hyper-
threading cores, 64GB memory, and 1TB SSD. All NICs
are Mellanox ConnectX-3 Pro 40Gbps connected with
Infiniband [2]. To mitigate LAN/WAN network variance,
all client benchmarks and VMs were run in these hosts.
Running clients in WAN will further mask PLOVER over-
head compared to unreplicated executions.

We evaluated PLOVER on 12 widely used programs,
including 8 server programs (Redis [81], SSDB [85],
MediaTomb [21], Nginx [73], MySQL [22], Tomcat [3],
PgSql [79], and lighttpd [59]) and 4 dynamic lan-
guage interpreters (Node.js, PHP, Python, and JSP). To
be close to real-world deployments, we group these pro-
grams into 8 practical services, including DjCMS [7], a
large, sophisticated content management system (CMS)
consisting of Nginx, Python, and MySQL.

We used popular workloads that make these services
run at their peak throughputs and then collected results.
Prior study [76, 88] shows that hardware errors occur
more frequently when services have higher load, thus the
fault-tolerance of PLOVER is more crucial. Table 2 shows
our workloads. For each workload, we spawned different
number of clients to saturate the services and collected
the curve of throughputs for unreplicated executions.

For Redis and SSDB, each request contains a batch
of 1K operations of 50% SET and 50% GET; for the
other six services, each request contains one operation.
We found sending operations in batches for Redis and
SSDB made them reach peak throughput. For instance,
when each request for Redis contains only one SET or
GET operation, Redis’s throughput is only 43K oper-

ation/s for 64 connections; when each request is a 1K-
operation batch, its throughput reaches a peak value of
481K operation/s for 64 connections.

Service Workload
Redis 50% SET, 50% GET requests arriving in batches.
SSDB 50% SET, 50% GET requests arriving in batches.
MediaT Concurrent requests on transcoding a 50MB video.
DjCMS Concurrent requests on a dashboard page [8].
PgSql PgBench [79] with TPC-B benchmark.
Tomcat Concurrent requests on a shopping store page [15].
lighttpd Concurrent requests using PHP to watermark images [1].
Node.js Concurrent requests on a messenger bot [12].

Table 2: Eight services and workloads used in experiments.

We compared PLOVER with four fault-tolerance sys-
tems: CRANE [35], an open-source SMR system among
recent ones [35, 45, 50]; QEMU-MicroCheckpoint [13]
(for short, MC), a REMUS-based primary-backup system
carried in QEMU [80]; Synchronization Traffic Reduc-
tion (STR) [63], a primary-backup system designed to
reduce the number of transfered pages; and COLO [38],
a primary-backup system deployed in Huawei [20]. MC
has an RDMA implementation [14], but it is being ac-
tively developed and not runnable on our hosts. We did
not use REMUS because it was built before 2008 and did
not run on our hosts. This section focuses on six ques-
tions:
§6.1: Can PLOVER correctly enforce deterministic execu-

tions by transferring only divergent pages?
§6.2: How fast is PLOVER compared to MC, STR, and

COLO? How does it scale to multi-core?
§6.3: How effective is each PLOVER technique on reduc-

ing divergence of dirty pages?
§6.4: What is PLOVER’s CPU footprint and how well

does it support VM consolidation?
§6.5: Can PLOVER efficiently handle replica failures?
§6.6: What did we learn from VSMR and its implemen-

tation PLOVER? What are PLOVER’s limitations?

6.1 Verifying Correctness

To check whether PLOVER can capture all divergent
memory pages, we took Racey [48], a nondeterminism
stress testing benchmark. Racey generates many data
race accesses by using multiple threads to access an in-
memory array concurrently without acquiring any locks,
and it computes an output based on the array content.

We wrote a shell script to repetitively launch the Racey
program in PLOVER leader VM for 3K times and ap-
pended its output to a file in local VM. We compared
the files between PLOVER’s leader and secondary and
found the files had the same content. Thus, PLOVER in-
deed captured and transfered all divergent pages.

VMware’s documentation [9, 17] states that
vSphereFT-6.5 works similar to MC. Since vSphereFT
is not open source and has restrictions on publishing
evaluation results [16], we compared PLOVER with MC

instead.

6.2 Performance and Scalability on Multi-core

Figure 3 shows PLOVER, MC, STR, and COLO’s
throughput on 8 services with different number of clients.
MC used 100ms-slot (MC’s default) and STR used
25ms-slot (STR’s own default). All experiments ran on
4-vCPU per VM (unless specified) because COLO [38]
and REMUS [36] evaluated up to 4 vCPUs per VM. On
average, PLOVER’s throughput is 2.2X higher than MC,
STR, and COLO.

As the number of clients increases, PLOVER’s through-
put overhead becomes less obvious. The overhead
mainly comes from the syncvm operations, which is de-
termined by the syncvm frequency and the time spent on
each syncvm. When the load on the service increases,
the VM takes more time to be idle, so the syncvm fre-
quency becomes smaller. On the other hand, the time
spent on each syncvm remains almost the same because
PLOVER only transfers divergent pages. Therefore the
syncvm overhead becomes smaller when the number of
client increases.
PgSql is the only service for which PLOVER is slower

than COLO. COLO compares per-connection outputs be-
tween its primary and backup and skips syncvm if out-
puts did not diverge. PgSql ran SQL transaction work-
loads and its outputs were mostly the same. Except for
PgSql, PLOVER was several times faster than COLO.

To analyze COLO, we also looked into SSDB, which
had concurrent SET/GET requests. We found that
COLO’s output divergence was frequent when data de-
pendencies exist among connections (i.e., GET requests
frequently got different responses when SET and GET
requests on the same key arrived at SSDB concurrently).
When any output in any connection had an output diver-
gence, COLO did a syncvm. COLO evaluation shows that
it greatly slowed down when the number of client con-
nections was large. PLOVER is not sensitive to outputs.

Intuitively, STR should perform better than MC be-
cause it only transfers divergent dirty pages in syncvm.
However, our evaluation found that sometimes STR’s
throughput is lower than MC (e.g., 64 clients in Redis).
This comes from two aspects. First, STR uses a static
syncvm interval and this causes many divergent dirty
pages to be transferred. Second, compared to MC, STR
requires extra time to compute and compare dirty page
hashes.

All eight services’ unreplicated executions reach their
peak throughput on 64 clients except for PgSql; PgSql
reaches its peak throughput on 32 clients. For the re-
maining of the paper, we use the peak throughput points
of unreplicated executions of each service as our sample
points.

Figure 4 shows the response time of the four systems

 0

 100000

 200000

 300000

 400000

 500000

8 16 32 48 64 80

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(a) Redis

Unreplicated

Plover

COLO

MC

STR

 0

 10000

 20000

 30000

 40000

 50000

8 16 32 48 64 80 96 112

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(b) SSDB

 0

 3

 6

 9

 12

 15

8 16 32 48 64 80

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(c) MediaTomb

 0

 50

 100

 150

 200

 250

8 16 32 48 64 80

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(d) DjCMS

 0

 50

 100

 150

 200

 250

 300

8 16 32 48 64

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(e) pgsql

 0

 200

 400

 600

 800

 1000

8 16 32 48 64 80 96 112 128
th

ro
ug

hp
ut

 (r
eq

/s
ec

)
number of clients

(f) Tomcat

 0

 300

 600

 900

8 16 32 48 64 80 96 112 128

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(g) lighthttpd

 0

 20

 40

 60

 80

 100

 120

 140

 160

8 16 32 48 64 80

th
ro

ug
hp

ut
 (r

eq
/s

ec
)

number of clients
(h) Node.js

Figure 3: Throughput comparison (4 vCPUs per VM). The error bars represent 95% confidence intervals about the mean.
For the remaining figures and tables, we use the peak throughput points of unreplicated executions as our sample points.

100

200

400

Redis SSDB MediaT DjCMS PGSQL Tomcat lighttpd Node.js

N
or

m
al

iz
ed

 L
at

en
cy

 (%
)

Plover

MC

STR

COLO

Figure 4: Response times normalized to unreplicated execu-
tions (4 vCPUs per VM). 100% means no overhead.
normalized to unreplicated executions. For six services
(excluding Redis and SSDB), PLOVER’s overhead of re-
sponse time follows the same trend as the overhead of
throughput because each client connection in these six
services sends requests one by one. For Redis and SSDB,
because the requests arrive in batches in order to saturate
the two services, all four systems incur high overhead on
response time. Specifically, PLOVER incurred the highest
latency overhead for SSDB, because its same dirty page
rate was only 77% (Table 3).

Figure 5 explains why PLOVER’s performance was
higher. PLOVER consumes 9.2X less bandwidth than
MC, STR, and COLO on average. This reduction makes
PLOVER the first VM fault-tolerance system that sup-
ports consolidating multiple VMs on a host (§6.4).

0

1

2

3

4

5

6

7

8

Redis SSDB MediaT DjCMS PGSQL Tomcat lighttpd Node.js

N
et

w
or

k
B

an
dw

id
th

 C
on

su
m

pt
io

n
(G

bp
s)

Plover

MC

STR

COLO

Figure 5: PLOVER network bandwidth consumption com-
pared with STR, MC and COLO (four vCPUs per VM).

To understand PLOVER’s performance, Table 3 shows
its micro events. For all evaluated services, we ob-
served that 72%∼97% pages between leader and sec-

ondary were the same. This greatly reduced page trans-
ferring time, a major performance bottleneck in primary-
backup systems such as MC. The time between every
two syncvm operations largely varied, which reflects that
PLOVER can automatically detect service idle time (§5.1)
for diverse workloads.

Table 4 shows that MC-25ms and MC-100ms have
similar performance: a larger syncvm time slot accu-
mulates more dirty pages, and thus much longer copy
time and transfer time (§3.3). Combining Table 3 and Ta-
ble 4 explains why PLOVER was much faster than MC:
PLOVER only needs to transfer 3%∼ 28% of dirty pages.

The results of STR-25ms and STR-100ms are similar.
In our experiments, the throughput difference between
these two systems was 18% on average. This is because
STR uses a static syncvm interval, in which primary and
secondary process different number of client requests.
As a result, both STR-25ms and STR-100ms have low
same dirty page rate and need to transfer most of the
dirty pages. Therefore, we only focus on evaluating MC-
100ms and STR-25ms (their own default settings) in the
following sections.

To evaluate the effectiveness of RDMA in PLOVER’s
implementation, we changed PLOVER’s dirty page
bitmap and divergent page transfer mechanisms from
RDMA to TCP (PLOVER-TCP). We ran the 8 ser-
vices with PLOVER-TCP and found that, compared to
PLOVER, PLOVER-TCP’s overall throughput dropped
by 2.1% ∼ 9.8%. We found that PLOVER-TCP in-
creased the time spent in the two transfer mechanisms
by 35.1% ∼ 74.2%. Because neither of the two mecha-
nisms is PLOVER’s performance bottleneck, PLOVER’s
high performance mainly stems from greatly reducing
the pages that need to be transferred rather than RDMA.

We also evaluated PLOVER scalability on up to 16
vCPUs per VM. Figure 6 shows the scalability results
on four services, normalized to PLOVER throughput on
four vCPUs. The throughputs of the other four services
were not scalable to multi-core (e.g., PgSql is I/O bound
and its throughput increased by only 14.7% when we
changed the number of vCPUs per VM from 4 to 16),

Service Compute Compare Trans Interval Page Same
Redis 3.5ms 1.9ms 2.8ms 153ms 13.5k 93%
SSDB 2.3ms 1.4ms 6.2ms 180ms 9.1k 77%
MediaT 7.9ms 4.0ms 17.1ms 914ms 29.2k 86%
DjCMS 0.9ms 1.3ms 3.3ms 90ms 3.6k 74%
PgSql 2.8ms 1.5ms 8.3ms 93ms 11.1k 76%
Tomcat 1.1ms 0.6ms 3.6ms 78ms 4.3k 72%
lighttpd 9.4ms 5.0ms 2.8ms 86ms 33.9k 97%
Node.js 9.6ms 5.5ms 28.8ms 375ms 37.8k 74%

Table 3: PLOVER performance analysis for each syncvm op-
eration (on average). “Compute” means the time of comput-
ing hashes for dirty pages; “Compare” means the time of
comparing hashes between leader and secondary; “Trans”
means the time of transferring divergent pages; “Interval”
means the time between two syncvm detected by PLOVER
(§4.3); “Page” means the number of dirty pages in each
syncvm; “Same” means the same rate of dirty pages.

MC-25ms MC-100ms
Program Page Copy Transfer Page Copy Transfer
Redis 6.1k 6.6ms 30.2ms 11.0k 11.9ms 35.1ms
SSDB 2.7k 2.9ms 7.8ms 4.8k 5.2ms 20.0ms
mediaT 4.6k 5.1ms 20.5ms 3.8k 4.2ms 16.5ms
DjCMS 2.8k 3.1ms 9.0ms 3.8k 4.1ms 13.2ms
PgSql 7.9k 8.5ms 39.0ms 8.2k 8.9ms 40.9ms
Tomcat 6.5k 6.5ms 15.6ms 12.2k 13.2ms 39.8ms
lighttpd 33.3k 23.9ms 53.5ms 33.9k 11.6ms 55.7ms
Node.js 11.3k 11.6ms 36.7ms 21.3k 14.9ms 42.5ms

Table 4: MC performance analysis for each syncvm oper-
ation (on average) with 25ms and 100ms time slot. “Page”
means the number of dirty pages in each syncvm; “Copy”
means the time for copying dirty pages (§3.3); “Transfer”
means the time for transferring ditry pages.
so the four services do not need the 16-vCPU speedup.
Overall, PLOVER scaled well for all four services, and its
throughput was 3.8X higher than MC, STR, and COLO
on 16-vCPU VMs. When the number of virtual CPUs
increased from 1 to 16, the throughput for COLO, STR,
and MC reached a bottleneck at 4 cores and even dropped
for SSDB and MediaTomb. Prior study [36, 40, 42] points
out a main reason of this huge drop: the number of dirty
pages a primary-backup approach has to transfer will in-
crease greatly when more vCPUs are added into one VM.

10
0%

1 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of vCPUs

(a) SSDB

Plover
MC

COLO
STR

10
0%

1 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of vCPUs

(b) Mediatomb

Plover
MC

COLO
STR

10
0%

1 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of vCPUs

(c) Tomcat

Plover
MC

COLO
STR

10
0%

1 4 8 16

N
or

m
al

iz
ed

 T
hr

ou
gh

pu
t

Number of vCPUs

(d) lighttpd

Plover
MC

COLO
STR

Figure 6: Throughput scalability on the number of vCPUs
per VM, normalized to PLOVER’s 4-vCPU throughput. The
more vCPUs per VM, the faster PLOVER than STR, MC
and COLO.

6.3 Effectiveness of PLOVER Reduction Techniques

PLOVER’s high performance is mainly brought by two
techniques: same total order of inputs and efficiently de-
termining service idle time (§4.3). To assess their effec-
tiveness, we used three plans.

First (Plan1), we implemented a per-TCP-connection
input forwarding mechanism between leader and sec-
ondary to order each TCP connection separately and used
a 25ms syncvm time slot. Second (Plan2), we enforced
a total order of inputs for all connections between leader
and secondary, and used a 25ms syncvm time slot. Third
(Plan3), we ran the full PLOVER.

For all three plans, we measured Same Dirty Page Rate
(SDPR): the percentage of same dirty physical pages be-
tween two replicas. The difference between Plan1 and
Plan2 shows the effectiveness of total ordering of net-
work inputs between leader and secondary. The differ-
ence between Plan2 and Plan3 (PLOVER) shows the
effectiveness of determining service idle time. When
PLOVER is configured with a static syncvm interval
(25ms), it has an average of 5.1% higher SDPR than
Plan2. This shows that using PAXOS instead of STR to
order network inputs incurs only a small cost.

Figure 7 shows that, the SDPR for 8 services differed
by 25.5% on average between Plan1 and Plan2, and the
difference between Plan2 and Plan3 was 29.2% on aver-
age. Both PLOVER’s two techniques were quite effective
on improving SDPR and the performance of services.

0

10

20

30

40

50

60

70

80

90

100

Redis SSDB MediaT DjCMS PGSQL Tomcat lighttpd Node.js

S
am

e
D

irt
y

P
ag

e
R

at
e

(S
D

P
R

) (
%

) Plan1 (25ms syncvm)

Plan2 (total order + 25ms syncvm)

Plan3 (total order + adaptive syncvm)

Figure 7: Effectiveness of PLOVER techniques on reducing
divergent pages.

6.4 CPU Footprint and Consolidation

Figure 8 shows PLOVER’s CPU footprint on the 8 ser-
vices compared with unreplicated execution in KVM,
MC and COLO. STR’s CPU footprint is not included
in the figure because it is similar to PLOVER’s. Both
PLOVER and COLO let their leaders and secondaries exe-
cute clients’ requests concurrently. MC’s secondary does
not execute clients’ requests but is busy applying updated
states. Different from COLO and MC, PLOVER has a wit-
ness which consumed 7% ∼ 15% CPU to agree on net-
work inputs without executing them.

Except for Redis, PLOVER’s leader and secondary in-
curred 2.7%∼ 9.2% and 5.3%∼ 18.3% more CPU than

unreplicated executions, including computing hashes,
comparing hashes and transferring divergent pages.
PLOVER’s CPU footprint was not significant for two
reasons. First, computing hash for each page only took
6.3µs. Second, by transferring only divergent pages,
PLOVER saved much CPU on transferring pages. For
Redis, all three systems incurred obvious CPU footprint
because Redis is single threaded, so its unreplicated ex-
ecution only used 1 out of the 4 vCPUs.

We also evaluated PLOVER’s performance on VM con-
solidation. We deployed one to five PLOVER leader VMs
(each with 4 vCPUs) on a 24-core host, ran PgSql in
each VM, and spawned the same number of clients for
each VM. We found the total throughputs of all VMs in
the host increased from 230 (one VM) to 1089 requests/s
(five VMs) and the network bandwidth consumption in-
creased from 1.8 Gbps to 10.1 Gbps. These results sug-
gest that PLOVER is friendly to consolidating multiple
fault-tolerant VMs on the same host due to its greatly re-
duced network bandwidth consumption compared to MC
and COLO. Neither MC [13] nor COLO [38] evaluated
consolidation. vSphereFT-6.5 [5] currently supports up
to two 4-vCPU VMs on each physical host.

0

100

200

300

400

500

600

700

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

U
nR

ep
P

lover
M

C
C

O
LO

C
P

U
 U

sa
ge

 (%
)

Leader or UnRep

Secondary or Backup

Plover’s Witness

Node.jslighttpdTomcatPgSQLDjCMSMediaTSSDBRedis

Figure 8: CPU footprint on 4-vCPU VMs. “UnRep” means
unreplicated execution. PLOVER has 3 replicas; MC and
COLO have 2. PLOVER and COLO have similar footprint.

6.5 Handling Hardware Failures

We measured the performance of PLOVER when various
failures happened. We killed the leader, secondary, and
witness in each experiment and monitored the real-time
throughput of Redis. When the witness was killed, we
did not observe performance impacts for Redis.

Figure 9 shows Redis’s throughput fluctuation when
we killed the leader at the 3rd second and then added a
new replica after a few seconds. The APUS leader elec-
tion protocol [92] employed by PLOVER took a 100ms
timeout to detect the leader’s failure and 16.3µs to elect
the secondary as the new leader. Then the new leader did
a full VM migration to make the witness’s guest VM up-
to-date, which took about 2.8s. We also partitioned the
leader out and then added it back after a second, and we

found the new leader was elected almost as quickly as
the leader’s failure case without having a split-brain is-
sue. Unlike existing SMR systems [35, 74] which need
complex mechanisms to find the new leader’s IP address,
clients were not perturbed during a PLOVER leader elec-
tion because VSMR replicates an entire guest VM (in-
cluding its IP address) as a state machine.

0

200K

250K

300K

350K

400K

 0 1 2 3 4 5 6 7 8 9 10 11 12 13

Th
ro

ug
hp

ut
 (r

eq
ue

st
s

/ s
ec

)

Time (sec)

Figure 9: Redis’s performance on handling PLOVER’s
leader failure and adding a new replica.

6.6 Lessons Learned

We found VM a promising abstraction to enforce same
executions among SMR replicas. This owes to three main
reasons. First, the VM abstraction can efficiently and sys-
tematically capture state changes in the guest OS, includ-
ing both userspace and kernel memory. We also found
VM useful on synchronizing systems nondeterminism
(e.g., enforcing same physical times and ASLR layouts)
across our replicas. Second, a VM carries a rich set of
management primitives (e.g., migration), which makes
SMR recovery easy to implement.

Third, a VM itself has several transparency features
that SMR needs. For instance, the same VM replicated
on different physical hosts can maintain the same IP
and MAC addresses, making client connections transpar-
ently switch to the new PLOVER leader if current leader
fails. In contrast, traditional SMR implementations (e.g.,
Raft [74]) require complex mechanisms to find the new
leader. In this regard, VSMR makes SMR simpler.

PLOVER has two limitations. First, it requires the
leader VM and the secondary VM to occupy the same
amount of computation resources, so that they can fin-
ish processing current requests roughly at the same time
and do syncvm efficiently. We deemed this requirement
reasonable due to three reasons: (1) it is much easier
to achieve in VM deployments than on bare-metal, be-
cause VMs have performance isolation and they will not
overuse resources; (2) PLOVER has greatly reduced net-
work bandwidth consumption, a major resource that may
cause performance contention among VMs on the same
host; and (3) requiring primary and backup to run on
roughly the same amount of computation resources is a
common requirement in primary-backup systems [17].

Second, as an SMR approach, VSMR requires three
replicas and thus it consumes more CPU than primary-
backup systems. Our evaluation shows that PLOVER’s
CPU consumption is compatible to COLO, about twice as

big as unreplicated executions. Nevertheless, PLOVER’s
robust fault-tolerance, modest performance overhead,
and low network bandwidth consumption could make its
extra CPU usage worthwhile.

7 Related Work
VM-based Fault-tolerance. Existing VM-based fault-
tolerance systems [13, 36, 42, 62–64, 82] typically take
the primary-backup approach: they propagate incremen-
tal updates from the primary VM to the backup VM.
Primary-backup is more scalable than the log-replay
[83] approach on multi-core because the latter needs
to record exact interleavings of shared memory ac-
cess. However, all typical VM fault-tolerance systems
(REMUS, COLO, MC and vSphereFT) evaluated up to
4 vCPUs per VM. As most programs scale to more and
more cores and access increasingly larger memory work-
ing set, transferring these dirty pages becomes a noto-
rious problem [36, 38, 42] for the primary-backup ap-
proach, greatly degrading program performance and hi-
jacking excessive network bandwidth.

Four recent papers aim to alleviate the open problem.
First, COLO [38] lets primary and backup compare per-
TCP-connection outputs and avoid dirty page propaga-
tion if no outputs diverge. COLO has effectively scaled
the Remus-based approach to up to four vCPUs per VM.
As shown in both COLO’s and our evaluation, when the
number of client connections is large or when data de-
pendency among connections exists, COLO does many
more syncvm operations than REMUS. PLOVER is not
sensitive to output divergence.

Second, Gerofi et al. [42] shows that using copy-on-
write during the dirty memory copying (tcopy in §3.3),
primary-backup can resume VMs faster than REMUS;
this work also shows that using a 10Gbps RDMA NIC
can transfer dirty page faster than using a 1Gbps Ethernet
NIC. Another latest work [82] also shows that RDMA
can mitigate tcopy. These two works [42, 82] are comple-
mentary to PLOVER because PLOVER focuses on greatly
reducing the amount of transferred dirty pages.

Third, Adaptive-Remus [37] shows that REMUS can
monitor its output buffer and do a syncvm once notic-
ing outputs. This work improves REMUS’s performance
by 29% when the number of client connections was
small. However, with many connections, it will invoke
a syncvm for almost every network output and incur pro-
hibitive performance overhead.

Fourth, Tardigrade [62] uses lightweight VM (LVMs)
to decrease the memory footprint on the primary to re-
duce checkpoint costs. On the other hand, PLOVER fo-
cuses on transferring only the divergent pages between
primary and secondary to alleviate the checkpoint over-
head. Besides, Tardigrade typically runs a single-process
application, while PLOVER runs multiple processes (pro-

grams) in a guest VM.
State Machine Replication (SMR). Fault-tolerance is
an essential technique in distributed systems [27, 29, 68].
SMR [68] is a powerful fault-tolerance technique: it typ-
ically uses PAXOS [55, 56, 68, 71, 89]) to enforce a
total order of inputs for the replicated service, tolerat-
ing various failures. Many PAXOS implementation pro-
tocols [30, 31, 35, 68] exist. Consensus is widely used in
datacenters [19, 49, 94] and worldwide Internet [33, 65].
Much work is done to improve specific aspects, includ-
ing commutativity [66, 71], understandability [56, 74],
and verification [44, 93].

To make SMR work with modern parallel programs,
extra mechanisms are needed to ensure same program
executions across replicas. Existing SMR systems pro-
pose a few fast mechanisms, including annotating global
variables in program code [50] and enforcing same order
of inter-thread synchronization [35, 45]. These mecha-
nisms have shown reasonable performance on real-world
programs, but they may require developer intervention
(e.g., incorrect annotation or data races). Moreover, these
mechanisms only enforce best-effort determinisms on
userspace, not in kernel. PLOVER implements the new
VSMR approach to realize an automatic, faster, and more
scalable SMR system.
Multi-core Replay. Deterministic replay [25, 39–41, 46,
53, 54, 70, 75, 84, 90] aims to replay the exact recorded
executions. Scribe tracks page ownership to enforce de-
terministic memory access [54]. Respec [57] uses online
replay to keep multiple replicas of a multithreaded pro-
gram in sync. In these record-replay systems, a false-
sharing problem exists: recording becomes expensive
even if multiple threads access different portions of same
page. As most false-shared pages should have same con-
tents, PLOVER may mitigate this problem.

8 Conclusion
We have presented VSMR, a novel SMR approach that
makes VM fault-tolerance much faster and more scal-
able on multi-core. We have described PLOVER, the first
VSMR system implementation and its evaluation on a
wide range of real-world server programs and services.
PLOVER runs several times faster than three popular
primary-backup systems and it saves much bandwidth.
PLOVER has the potential to greatly improve the reliabil-
ity of real-world online services, and it can be applied to
other research areas (e.g., multi-core replay).

Acknowledgments
We thank Jay Lorch (our shepherd) and anonymous re-
viewers for their many helpful comments. This paper is
funded in part by a research grant from the Huawei In-
novation Research Program (HIRP) 2017, HK RGC ECS
(No. 27200916), HK RGC GRF (No. 17207117), and a
Croucher innovation award.

References
[1] Adding watermarks to images using alpha

channels. http://php.net/manual/en/
image.examples-watermark.php.

[2] An Introduction to the InfiniBand Architec-
ture. http://buyya.com/superstorage/
chap42.pdf.

[3] Apache tomcat. http://tomcat.apache.
org/.

[4] Comparison of 40G RDMA and Traditional
Ethernet Technologies. https://www.nas.
nasa.gov/assets/pdf/papers/40_Gig_
Whitepaper_11-2013.pdf.

[5] Configuration Maximums (vSphere 6.5). https:
//www.vmware.com/pdf/vsphere6/r65/
vsphere-65-configuration-maximums.
pdf.

[6] Data Plane Development Kit (DPDK). http://
dpdk.org/.

[7] django cms - enterprise content management with
django. https://www.django-cms.org/
en/.

[8] Django fluent dashboard. https:
//github.com/django-fluent/
django-fluent-dashboard.

[9] Fault Tolerance Performance in vSphere
6. https://blogs.vmware.
com/performance/2016/01/
vsphere6-fault-tolerance-perf.
html.

[10] Implementing TCP Sockets over RDMA.
https://www.openfabrics.org/
images/eventpresos/workshops2014/
IBUG/presos/Thursday/PDF/09_
Sockets-over-rdma.pdf.

[11] Mellanox Products: RDMA over Converged Ether-
net (RoCE). http://www.mellanox.com/
page/products_dyn?product_family=
79.

[12] Pokdex messenger bot for pokmon go. https:
//github.com/zwacky/pokedex-go.

[13] QEMU MicroCheckpoint. https:
//wiki.qemu.org/Features/
MicroCheckpointing.

[14] RDMA migration and rdma fault tolerance for
QEMU. http://www.linux-kvm.org/
images/0/09/Kvm-forum-2013-rdma.
pdf.

[15] Simple shopping store. https:
//github.com/SaiUpadhyayula/
SimpleShoppingStore.

[16] VMware End User License Agreements.
http://www.vmware.com/download/
eula.html.

[17] VMware vSphere 6 Fault Tolerance: Archi-
tecture and Performance. http://www.
vmware.com/files/pdf/techpaper/
VMware-vSphere6-FT-arch-perf.pdf.

[18] Which Hardware Fails the Most and Why.
http://www.storagecraft.com/blog/
hardware-failure/.

[19] Why the data center needs an operating system.
https://cs.stanford.edu/˜matei/
papers/2011/hotcloud_datacenter_
os.pdf.

[20] Huawei FusionSphere. https://www.
youtube.com/watch?v=yvsVuLAOhCo,
2014.

[21] MediaTomb - Free UPnP MediaServer. http://
mediatomb.cc/, 2014.

[22] MySQL Database. http://www.mysql.
com/, 2014.

[23] Intermediate Course In Operating System:
High Availability. www.cs.cornell.edu/
ken/book/New%20514%20slide%20set/
12-HighAvailability.ppt, 2015.

[24] The OTHER way of recovering
from VMware ESXi Split Brain.
https://www.pei.com/2017/02/
way-recovering-vmware-esxi-split-brain/,
2017.

[25] G. Altekar and I. Stoica. ODR: output-
deterministic replay for multicore debugging. In
Proceedings of the 22nd ACM Symposium on Op-
erating Systems Principles (SOSP ’09), pages 193–
206, Oct. 2009.

[26] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In SOSP ’03: Pro-
ceedings of the nineteenth ACM symposium on Op-
erating systems principles, pages 164–177, 2003.

http://php.net/manual/en/image.examples-watermark.php
http://php.net/manual/en/image.examples-watermark.php
http://buyya.com/superstorage/chap42.pdf
http://buyya.com/superstorage/chap42.pdf
http://tomcat.apache.org/
http://tomcat.apache.org/
 https://www.nas.nasa.gov/assets/pdf/papers/40_Gig_Whitepaper_11-2013.pdf
 https://www.nas.nasa.gov/assets/pdf/papers/40_Gig_Whitepaper_11-2013.pdf
 https://www.nas.nasa.gov/assets/pdf/papers/40_Gig_Whitepaper_11-2013.pdf
 https://www.vmware.com/pdf/vsphere6/r65/vsphere-65-configuration-maximums.pdf
 https://www.vmware.com/pdf/vsphere6/r65/vsphere-65-configuration-maximums.pdf
 https://www.vmware.com/pdf/vsphere6/r65/vsphere-65-configuration-maximums.pdf
 https://www.vmware.com/pdf/vsphere6/r65/vsphere-65-configuration-maximums.pdf
http://dpdk.org/
http://dpdk.org/
https://www.django-cms.org/en/
https://www.django-cms.org/en/
https://github.com/django-fluent/django-fluent-dashboard
https://github.com/django-fluent/django-fluent-dashboard
https://github.com/django-fluent/django-fluent-dashboard
 https://blogs.vmware.com/performance/2016/01/vsphere6-fault-tolerance-perf.html
 https://blogs.vmware.com/performance/2016/01/vsphere6-fault-tolerance-perf.html
 https://blogs.vmware.com/performance/2016/01/vsphere6-fault-tolerance-perf.html
 https://blogs.vmware.com/performance/2016/01/vsphere6-fault-tolerance-perf.html
 https://www.openfabrics.org/images/eventpresos/workshops2014/IBUG/presos/Thursda y/PDF/09_Sockets-over-rdma.pdf
 https://www.openfabrics.org/images/eventpresos/workshops2014/IBUG/presos/Thursda y/PDF/09_Sockets-over-rdma.pdf
 https://www.openfabrics.org/images/eventpresos/workshops2014/IBUG/presos/Thursda y/PDF/09_Sockets-over-rdma.pdf
 https://www.openfabrics.org/images/eventpresos/workshops2014/IBUG/presos/Thursda y/PDF/09_Sockets-over-rdma.pdf
http://www.mellanox.com/page/products_dyn?product_family=79
http://www.mellanox.com/page/products_dyn?product_family=79
http://www.mellanox.com/page/products_dyn?product_family=79
https://github.com/zwacky/pokedex-go
https://github.com/zwacky/pokedex-go
 https://wiki.qemu.org/Features/MicroCheckpointing
 https://wiki.qemu.org/Features/MicroCheckpointing
 https://wiki.qemu.org/Features/MicroCheckpointing
 http://www.linux-kvm.org/images/0/09/Kvm-forum-2013-rdma.pdf
 http://www.linux-kvm.org/images/0/09/Kvm-forum-2013-rdma.pdf
 http://www.linux-kvm.org/images/0/09/Kvm-forum-2013-rdma.pdf
https://github.com/SaiUpadhyayula/SimpleShoppingStore
https://github.com/SaiUpadhyayula/SimpleShoppingStore
https://github.com/SaiUpadhyayula/SimpleShoppingStore
 http://www.vmware.com/download/eula.html
 http://www.vmware.com/download/eula.html
 http://www.vmware.com/files/pdf/techpaper/VMware-vSphere6-FT-arch-perf.pdf
 http://www.vmware.com/files/pdf/techpaper/VMware-vSphere6-FT-arch-perf.pdf
 http://www.vmware.com/files/pdf/techpaper/VMware-vSphere6-FT-arch-perf.pdf
 http://www.storagecraft.com/blog/hardware-failure/
 http://www.storagecraft.com/blog/hardware-failure/
 https://cs.stanford.edu/~matei/papers/2011/hotcloud_datacenter_os.pdf
 https://cs.stanford.edu/~matei/papers/2011/hotcloud_datacenter_os.pdf
 https://cs.stanford.edu/~matei/papers/2011/hotcloud_datacenter_os.pdf
https://www.youtube.com/watch?v=yvsVuLAOhCo
https://www.youtube.com/watch?v=yvsVuLAOhCo
http://mediatomb.cc/
http://mediatomb.cc/
http://www.mysql.com/
http://www.mysql.com/
www.cs.cornell.edu/ken/book/New%20514%20slide%20set/12-HighAvailability.ppt
www.cs.cornell.edu/ken/book/New%20514%20slide%20set/12-HighAvailability.ppt
www.cs.cornell.edu/ken/book/New%20514%20slide%20set/12-HighAvailability.ppt
https://www.pei.com/2017/02/way-recovering-vmware-esxi-split-brain/
https://www.pei.com/2017/02/way-recovering-vmware-esxi-split-brain/

[27] K. P. Birman. Replication and fault-tolerance in the
isis system. In Proceedings of the Tenth ACM Sym-
posium on Operating Systems Principles, SOSP
’85, 1985.

[28] W. J. Bolosky and M. L. Scott. False sharing and its
effect on shared memory performance. In USENIX
Systems on USENIX Experiences with Distributed
and Multiprocessor Systems - Volume 4, Sedms’93,
1993.

[29] T. C. Bressoud and F. B. Schneider. Hypervisor-
based fault tolerance. In Proceedings of the 15th
ACM Symposium on Operating Systems Principles
(SOSP ’95), Dec. 1995.

[30] M. Burrows. The chubby lock service for loosely-
coupled distributed systems. In Proceedings of the
Seventh Symposium on Operating Systems Design
and Implementation (OSDI ’06), pages 335–350,
2006.

[31] T. D. Chandra, R. Griesemer, and J. Redstone.
Paxos made live: An engineering perspective. In
Proceedings of the Twenty-sixth Annual ACM Sym-
posium on Principles of Distributed Computing
(PODC ’07), Aug. 2007.

[32] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul,
C. Limpach, I. Pratt, and A. Warfield. Live migra-
tion of virtual machines. In Proceedings of the 2Nd
Conference on Symposium on Networked Systems
Design & Implementation - Volume 2, NSDI’05,
2005.

[33] J. C. Corbett, J. Dean, M. Epstein, A. Fikes,
C. Frost, J. J. Furman, S. Ghemawat, A. Gubarev,
C. Heiser, P. Hochschild, W. Hsieh, S. Kan-
thak, E. Kogan, H. Li, A. Lloyd, S. Melnik,
D. Mwaura, D. Nagle, S. Quinlan, R. Rao, L. Rolig,
Y. Saito, M. Szymaniak, C. Taylor, R. Wang,
and D. Woodford. Spanner: Google’s globally-
distributed database. In Proceedings of the 12th
Symposium on Operating Systems Design and Im-
plementation (OSDI ’16), Oct. 2012.

[34] A. Corradi, M. Fanelli, and L. Foschini. Vm con-
solidation: A real case based on openstack cloud.
Future Gener. Comput. Syst., Mar. 2014.

[35] H. Cui, R. Gu, C. Liu, and J. Yang. Paxos made
transparent. In Proceedings of the 25th ACM Sym-
posium on Operating Systems Principles (SOSP
’15), Oct. 2015.

[36] B. Cully, G. Lefebvre, D. Meyer, M. Feeley,
N. Hutchinson, and A. Warfield. Remus: High

availability via asynchronous virtual machine repli-
cation. In Proceedings of the 5th USENIX Sympo-
sium on Networked Systems Design and Implemen-
tation, pages 161–174. San Francisco, 2008.

[37] M. P. da Silva, R. R. Obelheiro, and G. P. Koslovski.
Adaptive remus: adaptive checkpointing for xen-
based virtual machine replication. International
Journal of Parallel, Emergent and Distributed Sys-
tems, 32(4):348–367, 2017.

[38] Y. Dong, W. Ye, Y. Jiang, I. Pratt, S. Ma, J. Li, and
H. Guan. Colo: Coarse-grained lock-stepping vir-
tual machines for non-stop service. In Proceedings
of the 4th Annual Symposium on Cloud Computing,
SOCC ’13, 2013.

[39] G. Dunlap, S. T. King, S. Cinar, M. Basrat, and
P. Chen. ReVirt: enabling intrusion analysis
through virtual-machine logging and replay. In
Proceedings of the Fifth Symposium on Operating
Systems Design and Implementation (OSDI ’02),
pages 211–224, Dec. 2002.

[40] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman,
and P. M. Chen. Execution replay of multiproces-
sor virtual machines. In Proceedings of the 4th In-
ternational Conference on Virtual Execution Envi-
ronments (VEE ’08), pages 121–130, Mar. 2008.

[41] D. Geels, G. Altekar, P. Maniatis, T. Roscoe, and
I. Stoica. Friday: global comprehension for dis-
tributed replay. In Proceedings of the Fourth Sym-
posium on Networked Systems Design and Imple-
mentation (NSDI ’07), Apr. 2007.

[42] B. Gerofi and Y. Ishikawa. Rdma based replica-
tion of multiprocessor virtual machines over high-
performance interconnects. In Proceedings of the
2011 IEEE International Conference on Cluster
Computing, CLUSTER ’11, 2011.

[43] https://github.com/google/
cityhash.

[44] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and
L. Zhang. Practical software model checking via
dynamic interface reduction. In Proceedings of the
23rd ACM Symposium on Operating Systems Prin-
ciples (SOSP ’11), pages 265–278, Oct. 2011.

[45] Z. Guo, C. Hong, M. Yang, D. Zhou, L. Zhou, and
L. Zhuang. Rex: Replication at the speed of multi-
core. In Proceedings of the 2014 ACM European
Conference on Computer Systems (EUROSYS ’14),
page 11. ACM, 2014.

 https://github.com/google/cityhash
 https://github.com/google/cityhash

[46] Z. Guo, X. Wang, J. Tang, X. Liu, Z. Xu, M. Wu,
M. F. Kaashoek, and Z. Zhang. R2: An application-
level kernel for record and replay. In Proceedings
of the Eighth Symposium on Operating Systems De-
sign and Implementation (OSDI ’08), pages 193–
208, Dec. 2008.

[47] D. Gupta, L. Cherkasova, R. Gardner, and A. Vah-
dat. Enforcing performance isolation across vir-
tual machines in xen. In Proceedings of the
ACM/IFIP/USENIX 2006 International Conference
on Middleware, Middleware ’06, 2006.

[48] M. D. Hill and M. Xu. Racey: A stress test for de-
terministic execution. http://www.cs.wisc.
edu/˜markhill/racey.html, 2009.

[49] B. Hindman, A. Konwinski, M. Zaharia, A. Gh-
odsi, A. D. Joseph, R. Katz, S. Shenker, and I. Sto-
ica. Mesos: A platform for fine-grained resource
sharing in the data center. In Proceedings of the
8th USENIX conference on Networked Systems De-
sign and Implementation, NSDI’11, Berkeley, CA,
USA, 2011. USENIX Association.

[50] M. Kapritsos, Y. Wang, V. Quema, A. Clement,
L. Alvisi, M. Dahlin, et al. All about eve: Execute-
verify replication for multi-core servers. In Pro-
ceedings of the Tenth Symposium on Operating Sys-
tems Design and Implementation (OSDI ’12), vol-
ume 12, pages 237–250, 2012.

[51] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and
G. Candea. Failure sketching: A technique for au-
tomated root cause diagnosis of in-production fail-
ures. In Proceedings of the 25th ACM Symposium
on Operating Systems Principles (SOSP ’15), Oct.
2015.

[52] http://www.linux-kvm.org/.

[53] R. Konuru, H. Srinivasan, and J.-D. Choi. Deter-
ministic replay of distributed Java applications. In
Proceedings of the 14th International Symposium
on Parallel and Distributed Processing (IPDPS
’00), pages 219–228, May 2000.

[54] O. Laadan, N. Viennot, and J. Nieh. Transparent,
lightweight application execution replay on com-
modity multiprocessor operating systems. In Pro-
ceedings of the ACM SIGMETRICS Conference on
Measurement and Modeling of Computer Systems
(SIGMETRICS ’10), pages 155–166, June 2010.

[55] L. Lamport. Paxos made simple.
http://research.microsoft.com/
en-us/um/people/lamport/pubs/
paxos-simple.pdf.

[56] L. Lamport. The part-time parliament. ACM Trans.
Comput. Syst., 16(2):133–169, 1998.

[57] D. Lee, B. Wester, K. Veeraraghavan,
S. Narayanasamy, P. M. Chen, and J. Flinn.
Respec: efficient online multiprocessor replayvia
speculation and external determinism. In Fifteenth
International Conference on Architecture Support
for Programming Languages and Operating
Systems (ASPLOS ’10), pages 77–90, Mar. 2010.

[58] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and
D. R. K. Ports. Fast replication with nopaxos: Re-
placing consensus with network ordering. In Pro-
ceedings of the 12th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’16), Nov.
2016.

[59] https://www.lighttpd.net/.

[60] T. Liu, C. Curtsinger, and E. D. Berger.
DTHREADS: efficient deterministic multithread-
ing. In Proceedings of the 23rd ACM Symposium
on Operating Systems Principles (SOSP ’11),
pages 327–336, Oct. 2011.

[61] T. Liu, C. Tian, Z. Hu, and E. D. Berger. Predator:
Predictive false sharing detection. SIGPLAN Not.,
49(8), Feb. 2014.

[62] J. R. Lorch, A. Baumann, L. Glendenning, D. T.
Meyer, and A. Warfield. Tardigrade: Leverag-
ing lightweight virtual machines to easily and
efficiently construct fault-tolerant services. In
Proceedings of the 12th USENIX Conference on
Networked Systems Design and Implementation,
NSDI’15, 2015.

[63] M. Lu and T.-c. Chiueh. Fast memory state syn-
chronization for virtualization-based fault toler-
ance. In Dependable Systems & Networks, 2009.
DSN’09. IEEE/IFIP International Conference on,
pages 534–543. IEEE, 2009.

[64] M. Lu and T.-c. Chiueh. Speculative memory state
transfer for active-active fault tolerance. In Pro-
ceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing
(Ccgrid 2012), CCGRID ’12, 2012.

[65] Y. Mao, F. P. Junqueira, and K. Marzullo. Men-
cius: building efficient replicated state machines for
wans. In Proceedings of the 8th USENIX confer-
ence on Operating systems design and implementa-
tion, volume 8, pages 369–384, 2008.

http://www.cs.wisc.edu/~markhill/racey.html
http://www.cs.wisc.edu/~markhill/racey.html
http://www.linux-kvm.org/
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
http://research.microsoft.com/en-us/um/people/lamport/pubs/paxos-simple.pdf
https://www.lighttpd.net/

[66] P. J. Marandi, C. E. Bezerra, and F. Pedone. Re-
thinking state-machine replication for parallelism.
In Proceedings of the 2014 IEEE 34th Interna-
tional Conference on Distributed Computing Sys-
tems, ICDCS ’14, 2014.

[67] A. J. Mashtizadeh, T. Garfinkel, D. Terei,
D. Mazieres, and M. Rosenblum. Towards practical
default-on multi-core record/replay. In Proceedings
of the Twenty-Second International Conference on
Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’17, 2017.

[68] D. Mazieres. Paxos made practical. Technical re-
port, Technical report, 2007. http://www. scs. stan-
ford. edu/dm/home/papers, 2007.

[69] C. Mitchell, Y. Geng, and J. Li. Using one-sided
rdma reads to build a fast, cpu-efficient key-value
store. In Proceedings of the USENIX Annual Tech-
nical Conference (USENIX ’14), June 2013.

[70] P. Montesinos, M. Hicks, S. T. King, and J. Tor-
rellas. Capo: a software-hardware interface for
practical deterministic multiprocessor replay. In
Fourteenth International Conference on Architec-
ture Support for Programming Languages and Op-
erating Systems (ASPLOS ’09), pages 73–84, Mar.
2009.

[71] I. Moraru, D. G. Andersen, and M. Kaminsky.
There is more consensus in egalitarian parliaments.
In Proceedings of the 13th ACM Symposium on Op-
erating Systems Principles (SOSP ’91), Nov. 2013.

[72] M. Nelson, B.-H. Lim, and G. Hutchins. Fast trans-
parent migration for virtual machines. In Proceed-
ings of the Annual Conference on USENIX Annual
Technical Conference, ATEC ’05, 2005.

[73] Nginx web server. https://nginx.org/,
2012.

[74] D. Ongaro and J. Ousterhout. In search of an
understandable consensus algorithm. In Proceed-
ings of the USENIX Annual Technical Conference
(USENIX ’14), June 2014.

[75] S. Park, Y. Zhou, W. Xiong, Z. Yin, R. Kaushik,
K. H. Lee, and S. Lu. PRES: probabilistic replay
with execution sketching on multiprocessors. In
Proceedings of the 22nd ACM Symposium on Op-
erating Systems Principles (SOSP ’09), pages 177–
192, Oct. 2009.

[76] S. Pertet and P. Narasimhan. Causes of failure in
web applications (cmu-pdl-05-109). Parallel Data
Laboratory, page 48, 2005.

[77] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos,
A. Krishnamurthy, T. Anderson, and T. Roscoe. Ar-
rakis: The operating system is the control plane. In
Proceedings of the Eleventh Symposium on Oper-
ating Systems Design and Implementation (OSDI
’14), Oct. 2014.

[78] M. Poke and T. Hoefler. Dare: High-performance
state machine replication on rdma networks. In
Proceedings of the 24th International Symposium
on High-Performance Parallel and Distributed
Computing, HPDC ’15, 2015.

[79] Postgresql. https://www.postgresql.
org, 2012.

[80] http://www.qemu.org.

[81] http://redis.io/.

[82] V. A. Sartakov and R. Kapitza. Multi-site syn-
chronous vm replication for persistent systems with
asymmetric read/write latencies.

[83] D. J. Scales, M. Nelson, and G. Venkitachalam. The
design of a practical system for fault-tolerant vir-
tual machines. SIGOPS Oper. Syst. Rev., Dec. 2010.

[84] S. M. Srinivasan, S. Kandula, C. R. Andrews, and
Y. Zhou. Flashback: A lightweight extension for
rollback and deterministic replay for software de-
bugging. In Proceedings of the USENIX Annual
Technical Conference (USENIX ’04), pages 29–44,
June 2004.

[85] ssdb.io/.

[86] R. E. Strom, D. F. Bacon, and S. Yemini. Volatile
logging in n-fault-tolerant distributed systems.
IBM Thomas J. Watson Research Division, 1987.

[87] S. Suneja, C. Isci, V. Bala, E. de Lara, and T. Mum-
mert. Non-intrusive, out-of-band and out-of-the-
box systems monitoring in the cloud. SIGMET-
RICS Perform. Eval. Rev., June 2014.

[88] S. Technologies. Transient error protection. 2005.

[89] R. Van Renesse and D. Altinbuken. Paxos made
moderately complex. ACM Computing Surveys
(CSUR), 47(3):42:1–42:36, 2015.

[90] http://www.vmware.com/solutions/
vla/.

[91] C. A. Waldspurger. Memory resource management
in VMware ESX server. In Proceedings of the Fifth
Symposium on Operating Systems Design and Im-
plementation (OSDI ’02), 2002.

https://nginx.org/
https://www.postgresql.org
https://www.postgresql.org
http://www.qemu.org
http://redis.io/
ssdb.io/
http://www.vmware.com/solutions/vla/
http://www.vmware.com/solutions/vla/

[92] C. Wang, J. Jiang, X. Chen, N. Yi, and H. Cui.
APUS: Fast and scalable Paxos on RDMA. In Pro-
ceedings of the Eighth ACM Symposium on Cloud
Computing (Santa Clara, CA, USA, 2017.

[93] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin,
M. Yang, F. Long, L. Zhang, and L. Zhou.
MODIST: Transparent model checking of unmod-
ified distributed systems. In Proceedings of the
Sixth Symposium on Networked Systems Design

and Implementation (NSDI ’09), pages 213–228,
Apr. 2009.

[94] M. Zaharia, B. Hindman, A. Konwinski, A. Gh-
odsi, A. D. Joesph, R. Katz, S. Shenker, and I. Sto-
ica. The datacenter needs an operating system. In
Proceedings of the 3rd USENIX Conference on Hot
Topics in Cloud Computing, 2011.

	1 Introduction
	2 Background
	2.1 RDMA
	2.2 Virtual Machine and Its Fault-tolerance
	2.3 Paxos and SMR Systems

	3 Overview
	3.1 Deployment Suggestion
	3.2 Plover Architecture
	3.3 Comparing Plover and primary-backup

	4 The Plover Runtime System
	4.1 Terminology Setup
	4.2 SMR Operation Types
	4.3 Efficiently Determining Slot Boundary
	4.4 Protocol for syncvm
	4.5 Handling Replica Failures
	4.6 Correctness

	5 Implementation Details
	5.1 Determining Server Program Idle Status
	5.2 Computing Dirty Page Hashes Concurrently
	5.3 Fast Consensus in Hypervisor

	6 Evaluation
	6.1 Verifying Correctness
	6.2 Performance and Scalability on Multi-core
	6.3 Effectiveness of Plover Reduction Techniques
	6.4 CPU Footprint and Consolidation
	6.5 Handling Hardware Failures
	6.6 Lessons Learned

	7 Related Work
	8 Conclusion

