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Abstract—The quality-of-life of leg amputees can be improved
dramatically by using a cyber-physical system (CPS) that controls
artificial legs based on neural signals representing amputees’ in-
tended movements. The key to the CPS is the neural-machine inter-
face (NMI) that senses electromyographic (EMG) signals to make
control decisions. This paper presents a design and implementa-
tion of a novel NMI using an embedded computer system to col-
lect neural signals from a physical system—a leg amputee, pro-
vide adequate computational capability to interpret such signals,
and make decisions to identify user’s intent for prostheses con-
trol in real time. A new deciphering algorithm, composed of an
EMG pattern classifier and a postprocessing scheme, was devel-
oped to identify the user’s intended lower limb movements. To deal
with environmental uncertainty, a trust management mechanism
was designed to handle unexpected sensor failures and signal dis-
turbances. Integrating the neural deciphering algorithm with the
trust management mechanism resulted in a highly accurate and re-
liable software system for neural control of artificial legs. The soft-
ware was then embedded in a newly designed hardware platform
based on an embedded microcontroller and a graphic processing
unit (GPU) to form a complete NMI for real-time testing. Real-time
experiments on a leg amputee subject and an able-bodied subject
have been carried out to test the control accuracy of the new NMI.
Our extensive experiments have shown promising results on both
subjects, paving the way for clinical feasibility of neural controlled
artificial legs.

Index Terms—High-performance computer, neural-machine in-
terface (NMI), prosthetics, trust management.

I. INTRODUCTION

T HERE are over 32 million amputees worldwide whose
lives are severely impacted by their limb losses. This

number is growing as the population ages and as the inci-
dence of dysvascular disease increases. Over 75% of major
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amputations were lower-limb, with nearly 17% of lower-limb
amputees suffering bilateral amputations [1]. Therefore, there is
a continued need to provide this large and growing population
of amputees with the best care and return of function possible.

With the rapid advances of cyber system technologies, it has
in recent years become possible for high-speed, low-cost, and
real-time embedded computers to be widely applied in biomed-
ical systems. The computerized prosthetic leg is one prominent
example, in which motion and force sensors and a microcon-
troller embedded in the prosthesis form a close loop control and
allow the user to produce natural gait patterns [2], [3]. However,
the function of such a computerized prosthesis is still limited.
The primitive prosthesis control is based entirely on mechanical
sensing without knowledge of user intent. Users have to “tell”
the prostheses their intended activities manually or using body
motion, which is cumbersome and does not allow smooth task
transitions. The fundamental limitation on all existing prosthetic
legs is lack of neural control that would allow the artificial legs
to move naturally as if they were the patient’s own limb.

This paper presents a novel neural machine interface (NMI)
that makes neural controlled artificial legs possible. The new
NMI is a cyber physical system (CPS), in which a complex
physical system (i.e., neuromuscular control system of a leg
amputee) is monitored and deciphered in real time by a cyber
system. It senses neural control signals from leg amputees, in-
terprets such signals, and makes accurate decisions for pros-
theses control. The neural signals that our NMI senses and col-
lects from leg amputees are Electromyographic (EMG) signals
that represent neuromuscular activity and are effective biolog-
ical signals for expressing movement intent [4]. EMG signals
have been used in many engineering applications, such as EMG-
based power-assisted wheelchair [5], biofeedback therapeutic
manipulator for lower limb rehabilitation [6], neuro-fuzzy inter-
ference system for identifying hand motion commands [7], and
neural controlled artificial arms [8], [9]. Previous research has
shown that EMG was effective and clinically successful for ar-
tificial upper limbs [8], [9]. However, no EMG-controlled lower
limb prosthesis is currently available, and published studies in
this area are very limited because of the following technical
challenges.

First of all, in human physiological systems, EMG signals
recorded from leg muscles during dynamic movements are
highly non-stationary. Dynamic signal processing strategies
[10] are required for accurate decoding of user intent from such
signals. In addition, patients with leg amputations may not
have enough EMG recording sites available for neuromuscular
information extraction due to the muscle loss [10]. Maximally
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extracting neural information from such limited signal sources
is necessary and challenging.

The second important challenge is that the accuracy in iden-
tifying the user’s intent for artificial legs is more critical than
that for upper limb prostheses. A 90% accuracy rate might be
acceptable for control of artificial arms, but it may result in one
stumble out of ten steps, which is clearly inadequate for safe
use of artificial legs. Achieving high accuracy is further compli-
cated by environmental uncertainty, such as perspiration, tem-
perature change, and movement between the residual limb and
prosthetic socket may cause unexpected sensor failure, influ-
ence the recorded EMG signals, and reduce the trustworthiness
of the NMI [11]. It is therefore critical to develop a reliable and
trustworthy NMI for safe use of prosthetic legs.

The third challenge is the compact and efficient integration
of software and hardware in an embedded computer system in
order to make the EMG-based NMIs practical and available to
patients with leg amputations. Such an embedded system must
provide high-speed and real-time computation of neural deci-
phering algorithm because any delayed decision-making from
the NMI also introduces instability and unsafe use of prostheses.
Streaming and storing multiple sensor data, deciphering user in-
tent, and running sensor monitoring algorithms at the same time
superimpose a great challenge to the design of an embedded
system for the NMI of artificial legs.

To tackle these challenges, a neural interfacing algorithm
has been developed that takes EMG inputs from multiple EMG
electrodes mounted on a user’s lower limb, decodes the user’s
intended lower limb movements, and monitors sensor behav-
iors based on trust models. Our EMG pattern recognition (PR)
algorithm, together with a postprocessing scheme, effectively
process non-stationary EMG signals of leg muscles so as to
accurately decipher the user’s intent. The neural deciphering
algorithm consists of two phases: offline training and online
testing. To ensure the trustworthiness of NMI in an uncertain
environment, a real-time trust management (TM) module was
designed and implemented to examine the changes of the EMG
signals and estimate the trust level of individual sensors. The
trust information can be used to reduce the impact of untrust-
worthy sensors on the system performance.

The new deciphering algorithm was implemented on an em-
bedded hardware architecture as an integrated NMI to be carried
by leg amputees. The two key requirements for the hardware
architecture were high-speed processing of training process
and real-time processing of the interfacing algorithm. To meet
these requirements, the newly designed embedded architecture
consists of an embedded microcontroller, a flash memory, and a
graphic processing unit (GPU). The embedded microcontroller
provided necessary interfaces for AD/DA signal conversion
and processing and computation power needed for real-time
control. The control algorithm was implemented on the bare
machine with our own memory and IO managements without
using existing OS to avoid any unpredictability and variable
delays. The flash memory was used to store training data. EMG
PR training process involved intensive signal processing and
numerical computations, which needs to be done periodically
when the system trust value is low. Such computations can
be done efficiently using modern GPUs that provide super-

computing performance with very low cost. New parallel
algorithms specifically tailored to the multicore GPU were
developed exploiting memory hierarchy and multithreading of
the GPU. Substantial speedups of the GPU for training process
were achieved making the classifier training time tolerable in
practice.

A complete prototype has been built implementing all the
software and hardware functionalities. The prototype was used
to carry out real-time testing on human subjects. A male pa-
tient with a unilateral transfemroal amputation was recruited
in our experiments for evaluation of the user intent identifica-
tion module. The goal of our experiments is to use the newly
designed NMI prototype to sense, collect, and decode neural
muscular signals of the human subject. Based on the neural sig-
nals, the NMI tries to interpret the subject’s intent for sitting and
standing, two basic but difficult tasks for patients with trans-
femoral amputations due to the lack of power from the knee
joint. The trust management module was also tested on a male
able-bodied subject by introducing motion artifacts during the
subject’s normal sitting and standing task transitions. The de-
tection rate and false alarm rate for distribution detection was
evaluated.

Extensive experiments of our NMI on the human subjects
have shown promising results. Among the 30 sitting-to-standing
transitions and the 30 standing-to-sitting transitions of the am-
putee subject, our NMI recognized all the intended transitions
correctly with a maximum decision delay of 400 ms. Our
algorithm can also filter out occasional signal disturbances
and motion artifacts with 99.37% detection rate and 0%
false alarm rate. The videos of our experiments can be found
at http://www.youtube.com/watch?v=H3VrdqXfcm8 and
http://www.youtube.com/watch?v=6NwtMOw0YS0.

This paper is organized as follows. The Section II presents
the system architecture and design of the algorithms and em-
bedded system. Section III describes the experimental settings
for our real-time testing of the NMI prototype on the amputee
and able-bodied subjects. The results of the study are demon-
strated in Section IV, followed by related work in Section V,
and a conclusion in Section VI.

II. SYSTEM ARCHITECTURES

A. System Architecture

The architecture of neural-machine interface is shown in
Fig. 1. Multiple channels of EMG signals are the system inputs.
EMG signals are preprocessed and segmented by sliding anal-
ysis windows. EMG features that characterize individual EMG
signals are extracted for each analysis window. The system
consists of two major pathways: one path for classifying user
movement intent and the other for sensor trust evaluation (the
dashed blocks in Fig. 1). To identify user intent, EMG features
of individual channels are concatenated into one feature vector.
The goal of pattern recognition is to discriminate among de-
sired classes of limb movement based on the assumption that
patterns of EMG features at each location is repeatable for a
given motion but different between motions [9]. The output
decision stream of EMG pattern classifier is further processed
to eliminate erroneous task transitions. In the path for sensor
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Fig. 1. Software architecture of EMG-based neural-machine interface for arti-
ficial legs.

Fig. 2. Hardware architecture of designed neural-machine interface.

trust evaluation, the behaviors of individual sensors are closely
monitored by abnormal detectors. A trust manager evaluates
the trust level of each sensor and then adjusts the operation of
the classifier for reliable EMG pattern recognition.

The hardware architecture of the NMI (Fig. 2) for artificial
legs consists of seven components: EMG electrodes, amplifier
circuits, analog-to-digital converters (ADCs), flash memory,
RAM, GPU, and an embedded controller. Multiple channels
of EMG signals are collected from different muscles on the
patient’s residual limb using EMG electrodes. The amplifier
circuits are built to make signal polarity, amplitude range,
and signal type (differential or single-ended) compatible with
the input requirements of ADCs. The outputs of the amplifier
circuits are converted to digital format by the ADCs and then
stored in a flash memory or a RAM. The embedded hardware
works in two modes: training mode and real-time testing
mode. In the training mode, a large amount of EMG data are
collected and stored in the flash memory. These data are then
processed to train the EMG pattern classifier. The PR algorithm
for the training phase includes complex signal processing
and numerical computations, which are done efficiently in a
high-performance GPU. The parameters of the trained clas-
sifier are stored in the flash memory upon completion of the
training phase. The real-time testing phase is implemented on
the embedded microcontroller, including both the PR algorithm
and the TM algorithm. In the real-time testing mode, the EMG
signals are sampled continuously and stored in the RAM of
the embedded controller. The EMG data are then sent to the
trained classifier for a decision to identify the user’s intended
movement and at the same time each EMG sensor is monitored
by an abnormal detector. The trust value of each sensor is
evaluated by a trust manager.

B. Identification of User Intent

A dynamic EMG pattern classification strategy and postpro-
cessing methods were developed in this study for high decision
accuracy.

1) EMG Signals: EMG signals recorded from gluteal and
thigh muscles of residual limb were considered.

2) EMG Features: Four time-domain (TD) features [12] (the
mean absolute value, the number of zero-crossings, the wave-
form length, and the number of slope sign changes) were se-
lected for real-time operation because of their low computa-
tional complexity [9] compared to frequency or time-frequency
domain features. The detailed equation and description of these
four TD features can be found in [12].

3) EMG Pattern Classification: Various classification
methods, such as linear discriminant analysis (LDA) [12],
multilayer perceptron [13], Fuzzy logic [14], and artificial
neural network [10], [15], have been applied to EMG PR. The
simple LDA classifier was used in this study because of the
comparable classification accuracy to more complex classifiers
[9], [16]–[18] and the computation efficiency for real-time
prosthesis control [9].

The idea of discriminant analysis is to classify the observed
data to the movement class in which the posteriori probability

can be maximized. Let denote the
movement classes and be the feature vector in one analysis
window. The posteriori probability is the probability of class

given the observed feature vector and can be expressed as

(1)

where is the priori possibility, is the likelihood,
and is the possibility of observed feature vector . Given
the movement class , the observed feature vectors have a mul-
tivariate normal (MVN) distribution. In addition, the priori pos-
sibility is assumed to be equivalent for each movement class,
and every class shares a common covariance. Hence, the maxi-
mization of posteriori possibility in (1) becomes

(2)

The following expression:

(3)

is defined as the linear discriminant function, where is the
mean vector and is the common covariance matrix.

During the offline training, and were estimated by fea-
ture vectors calculated from a large amount of training data and
were stored in the flash memory.

Let

and
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where is the number of observations in class ; is the
observed feature vector in class ; is the feature matrix

; is the mean ma-
trix that has the same number of columns
as in . Then, the parameters in the linear discriminant func-
tion (3) were known, i.e.,

(4)

In the real-time testing, the observed feature derived from
each analysis window was fed to the classifier to calculate
in (4) for each movement class and was classified into a specific
class that satisfied

4) Dynamic Pattern Classification Strategy: When EMG sig-
nals are non-stationary, the EMG features across time show
large variation within the same task mode, which results in over-
laps of features among classes and therefore low accuracy for
PR [10]. By assuming that the pattern of non-stationary EMGs
has small variation in a short-time window and EMG patterns
are repeatable for each defined short-time phase, a phase-de-
pendent EMG classifier was designed, which was successfully
applied to accurately and responsively recognize the user’s loco-
motion modes [10]. For non-locomotion modes such as sitting
and standing, the classifier can be built in the movement initia-
tion phase by the same design concept. The structure of such a
dynamic design of the classifier can be found elsewhere [10].

5) Postprocessing of Decision Stream: Majority vote was
used to eliminate erroneous decisions from the classifier. Ma-
jority vote [9] simply removes the decision error by smoothing
the decision output. Note that this method can further increase
the accuracy of NMI, but may sacrifice the system response
time.

C. Trustworthy Sensor Interface

The NMI for artificial legs must be reliable and trusted by
the prosthesis users. The design goals of trustworthy sensor are:
1) prompt and accurate detection of disturbances in real-time
applications and 2) assessment of reliability of a sensor/system
with potential disturbances. To achieve these goals, a trust man-
agement module that contains three parts: abnormal detection,
trust manager, and decision support was designed.

1) Abnormal Detection: For each EMG channel, an ab-
normal detector is applied to detect disturbances occurring in
the EMG signal. Disturbances that cause sensor malfunctions
can be diverse and unexpected. Among all these disturbances,
motion artifacts can cause large damage and are extremely dif-
ficult to totally remove. Motion artifacts are also fairly common
in both laboratory environment and in real systems. Therefore,
in this paper, the focus was on the detection of motion artifacts.

To detect abnormality in EMG signals, a change detector that
identifies changes in the statistics of EMG signals was pro-
posed. During preliminary study, it was found that motion ar-
tifacts can lead to changes in two time-domain (TD) features:
mean absolute value (increase) and the number of slope sign
changes (decrease). Let and denote these two
features, respectively. Positive change in and negative

change in are used as indicators of the presence of mo-
tion artifacts. Moreover, since the changes are in two direc-
tions, a two-sided change detector, which can detect both posi-
tive change and negative change, is required.

Many statistical methods can be used to build the change de-
tector. In this work, the Cumulative Sum (CUSUM) algorithm
was chosen because it is reliable for detecting small changes,
insensitive to the probabilistic distribution of the underlying
signal, and optimal in terms of reducing the detection delay [19].
Particularly, the two-sided CUSUM detector was adopted [20]

(5)

(6)

where represents the th data sample, is the mean value of
data without changes, and is CUSUM sensitivity parameter.
The smaller the is, the more sensitive the CUSUM detector
is to small changes. In (5) and (6), and are used for de-
tecting the positive and negative changes, respectively. If (or

) exceeds a certain threshold , a positive (or negative)
change is detected. The initial values of and were set
to 0. In the real-time testing, once CUSUM detector detects a
change, it will raise an alarm and restart by setting and
as 0 in order to detect the next change. By doing so, it can re-
spond sensitively and promptly to multiple changes in the EMG
signal.

The presence of a positive change in and a nega-
tive change in at the same time can serve as the in-
dicator of a motion artifact. Therefore, is applied to de-
tect positive changes in and is applied to detect
negative changes in . When and exceed their
corresponding thresholds at the same time, a motion artifact is
detected.

In (5), denotes the th sample of , and is calcu-
lated as mean of the absolute value of EMG signal within the
th window. In (6), denotes the th sample of , and

is calculated as number of the slope sign changes within the th
window. The value in (5) and (6) is computed as the average
of before any changes were detected. The sensitivity param-
eter, , is set as 0.05, and the threshold is set as 0.1 for both
(5) and (6).

Notice that, to promptly respond to disturbances, CUSUM
detector restarts for the next round of disturbance detection right
after it detects a disturbance. However, there may be a distur-
bance lasting for some time and CUSUM detector would de-
tect it for more than once. This may lead to an inaccurate trust
calculation. To avoid this problem, a post processing scheme is
proposed to stabilize the detection result. Disturbances that are
very close to each other are combined (i.e., within continuous
windows) as one disturbance. In our real-time testing, is set as
3, which represents 240 ms. That is, if the detector is triggered
repeatedly within 240 ms, we consider this as one disturbance.

2) Trust Manager: After the abnormal detector detects the
disturbance in an EMG signal, the EMG sensor is either perma-
nently damaged or perfectly recoverable. To evaluate the trust
level of the sensor, let denotes the probability that a sensor
behaves normally after one disturbance is detected.
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Assume all disturbances are independent. The probability that
a sensor is still normal after disturbances, denoted by , is

. The trust value is computed from the probability value
by the entropy-based trust quantification method [21], as

if
if

where is the trust value and is the entropy calculated
as

(7)

Different values should be set according to the nature of
the disturbance. The larger the value, the less likely the distur-
bance can damage the sensor. The calculation of trust is extend-
able to the case that different disturbances are detected for one
sensor. For example, if two disturbances, whose values are
0.8 and 0.9, respectively, are detected for a sensor, the value
in (7) can be replaced by 0.8 0.9. In this paper, only one type
of disturbance (i.e., motion artifact) was tested. The value for
motion artifact is set as 0.9.

3) Decision Making and Report: The trust information is
provided to the user intent identification (UII) module to assist
trust-based decisions. There are two levels of decisions.

1) Sensor level: When the sensor’s trust value drops below
a threshold, this sensor is considered as damaged, and its
reading is removed from the UII module. The classifier
needs to be retrained without the damaged sensor.

2) System level: After removing the damaged sensors, the
system trust can be calculated by the summation of trust
values of the remaining sensors. If the system trust is lower
than a threshold, this entire UII model is not trustworthy,
and actions for system recovery must be taken. One pos-
sible action is to retrain the classifier. Another possible ac-
tion is to instruct the patient to manually examine the arti-
ficial leg system.

D. Hardware Design

Technical challenges in hardware design are twofold. First of
all, in order to increase the decision accuracy, frequent training
computations may often be required, especially in uncertain en-
vironment, where the appearance of disturbances can be un-
predictable and frequent. A training computation needs to be
done not only whenever the user puts on the prosthesis but also
whenever the system trust level goes below the predetermined
threshold. Training data need to be recollected in these two
cases. In addition, when a sensor’s trust value drops below a
threshold, the classifier also needs to be retrained using existing
training data in the flash memory such that the classifier can
make decisions based on the remaining undisturbed sensors.
The training algorithms require intensive numerical computa-
tions that take a significantly long time, in the range of a few
minutes to hours on a general purpose computer system [22]. It
is very important to substantially speed up this training com-
putation to make the training time of our NMI tolerable and
practical. The second challenge is the real-time processing of

decision making in order to have smooth control of the artifi-
cial legs. Such real-time processing includes signal sampling,
AD/DA conversion, storing digital information in memory, ex-
ecuting PR algorithms, periodical trust management, and deci-
sion outputs. To meet these technical challenges, a new hard-
ware design incorporating a multicore GPU and an embedded
system with a built-in flash memory was presented.

High-performance and low-cost multicore GPUs [23] have
traditionally been thought of as commodity chips to drive
consumer video games. However, the push for realism in such
games along with the rapid development of semiconductor
technologies has made GPUs capable of supercomputing per-
formance for many applications at very low cost. There are
many low-end to medium GPU controller cards available on the
market for under $50. However, they deliver extraordinary com-
putation power in the range of several hundreds of GFLOPS.
Besides high-performance and low-cost, there has also been a
technology drive for reliable and low-power GPUs alongside
FPGAs and CPUs for embedded applications such as military
systems. For example, an embedded system using the ATI
Radeon HD 3650 GPU draws very little power but delivers per-
formance levels of hundreds of GFLOPS. The next-generation
mobile GPUs are expected to nearly double this performance
with a similar power envelope. Our NMI makes the first attempt
to exploit such high-speed and low-cost GPU for the purpose of
speeding up complex PR training computations. Our design for
the training of the classifier used a NVIDIA 9500GT graphic
card that has four multiprocessors with 32 cores working at
the clock rate of 1.4 GHz. Each multiprocessor supports 768
active threads giving rise to a total of 3072 threads that can
execute in parallel. These threads are managed in blocks. The
maximum number of threads per block is 512. The size of the
global memory is 1 GB with bandwidth of 25.6 GB/s. 64 KB of
the global memory is read-only constant memory. The threads
in each block have 16 KB shared memory which is much faster
than the global memory because it is cached. In this study,
this GPU card was connected using the PCI Express bus.
Whenever the training computation was triggered, the GPU
was called in to perform the training process and store the
parameters of trained classifier in the flash memory to be used
for real-time decision-making.

The second part of the hardware design is based on
Freescale’s MPC5566 132 MHz 32 bits microcontroller
unit (MCU) with the Power Architecture, as shown in Fig. 3.
The MCU has 40 channels of ADCs with up to 12 bit resolution
and two levels of memory hierarchy. The fastest memory
is 32 KB unified cache. The lower level memories include
128 KB SRAM and 3 MB flash memory. The default system
clock of the MCU is 12 MHz. The frequency modulated phase
locked loop (FMPLL) generates high-speed system clocks of
128 MHz from an 8 MHz crystal oscillator. The direct memory
access (DMA) engine transfers the commands and data between
SRAM and ADC without direct involvement of the CPU. Min-
imizing the intervention from CPU is important for achieving
optimal system response. The device system integration unit
(SIU) configures and initializes the control of general-purpose
I/Os (GPIOs). The real-time results of the embedded system,
including the identified user intent, individual sensor status and
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Fig. 3. Block diagram of embedded system design on MPC5566 EVB for
real-time testing. MPC5566: device modules; ADC: analog-to-digital con-
verter; FMPLL: frequency modulated phase-locked loop; SRAM: internal
static RAM; SIU: system integration unit; DMA: direct memory access.

trust value, are sent to the GPIO pins and displayed by multiple
LEDs on MPC5566 EVB.

III. EXPERIMENTS AND PROTOTYPE

A. Evaluation of Designed Algorithm

1) Assigned Tasks: To prove the design concept, the NMI
system was designed to decipher the task transitions between
sitting and standing. These tasks are the basic activities of daily
living but difficult for patients with transfemoral amputations
due to the lack of knee power. During the transition phase, EMG
signals are non-stationary. The classifier was designed in the
short transition phase. Although it is possible to activate the
knee joint directly based on the magnitude of one EMG signal
or force data recorded from the prosthetic pylon, unintentional
movements of the residual limb in the sitting or standing posi-
tion may accidently activate the knee, which in turn may cause
a fall in leg amputees. Hence, intuitive activation of a powered
artificial knee joint for mode transitions requires accurate de-
coding of EMG signals for identifying the user’s intent from
the brain.

2) Data Collection: This study was conducted with Institu-
tional Review Board (IRB) approval at the University of Rhode
Island and informed consent of subjects. For the real-time eval-
uation of the designed pattern recognition algorithm, one male
patient with a unilateral transfemoral amputation was recruited.
To evaluate the sensor trust algorithm, one male able-bodied
subject, free from orthopedic or neurological pathologies, was
recruited. Seven surface EMG electrodes (MA-420-002, Motion
Lab System Inc., Baton Rouge, LA) were used to record sig-
nals from gluteal and thigh muscles in one side of both subjects.
The EMG electrodes contained a preamplifier which band-pass
filtered the EMG signals between 10 Hz and 3,500 Hz with a
pass-band gain of 20. For the able-bodied subject, the gluteal
and thigh muscles on the dominant leg were monitored. After
the skin was shaved and cleaned with alcohol pads, the EMG
electrodes were placed on the anatomical locations described
in [24]. For the amputee subject, the muscles surrounding the
residual limb and the ipsilateral gluteral muscles were moni-
tored. The subject was instructed to perform hip movements and
to imagine and execute knee flexion and extension. We placed
EMG electrodes at the locations, where strong EMG signals

can be recorded. EMG electrodes were embedded into a cus-
tomized gel-liner system (Ohio Willow Wood, US) for reliable
electrode-skin contact. A ground electrode was placed near the
anterior iliac spine for both able-bodied and amputee subjects.
An MA-300 system (Motion Lab System Inc., Baton Rouge,
LA) collected seven channels of EMG data. The cutoff fre-
quency of the anti-aliasing filter was 500 Hz for EMG channels.
All the signals were digitally sampled at a rate of 1000 Hz and
synchronized.

The states of sitting and standing were indicated by a pressure
measuring mat. The sensors were attached to the gluteal region
of the subject. During the weight bearing standing, the recording
of the pressure sensors were zero; during the non-weight bearing
sitting, the sensors gave nonzero readings.

3) Experiment Protocol: To evaluate the pattern recogni-
tion algorithm, before the real-time system testing, a training
session was required in order to collect the training data for
the classifier. During the training session, the subject was in-
structed to perform four tasks (sitting, sit-to-stand, standing, and
stand-to-sit) on a chair (50 cm high). For sitting or standing task,
the subject was required to keep the position for at least 10 s. In
the sitting or standing position, the subject was allowed to move
the legs and shift the body weight. For two types of transitions,
the subject performed the transitions without any assistance at
least five times. During the real-time system evaluation testing,
the subject was asked to sit and stand continuously. A total of
five trials were conducted. In each trial, the subject was required
to sit and stand at least five times, respectively. Rest periods
were allowed between trials in order to avoid fatigue.

To evaluate the sensor trust algorithm, 13 trials of real-time
disturbance detection testing were performed on able-bodied
subject. In each trial, motion artifacts were introduced randomly
on one EMG electrode in each task phase for four times. To
add motion artifacts, the experimenter tapped an EMG electrode
with roughly same strength. Motion artifacts were introduced
159 times in the entire experiment.

4) Real-Time Evaluation of EMG Pattern Recognition: Four
classes during the movement initiation phase were considered:
sitting, sit-to-stand transition, standing, and stand-to-sit transi-
tion. Note that the classes of sitting and standing were not sta-
tionary because the subject was instructed to move the legs and
shift the body weight in these positions. The output of the clas-
sifier was further combined into two classes (class 1: sitting and
stand-to-sit transition; class 2: standing and sit-to-stand transi-
tion). Four TD features defined in [12] and LDA-based classi-
fier were used. Overlapped analysis windows were used in order
to achieve prompt system response. For the real-time algorithm
evaluation, 140 ms window length and 80 ms window increment
were chosen. Two indicators were used to evaluate the real-time
performance of EMG pattern classifier: classification accuracy
and classification response time. Two types of classification re-
sponse time were defined: the time delay (RT1) between the mo-
ment that the classification decision switched from sitting (0)
and standing (1) and the moment that the gluteal region pres-
sure changed from nonzero value (non-weight bearing sitting) to
zero value (weight-bearing standing); the time delay (RT2) be-
tween the moment that the classification decision switched from
standing (1) to sitting (0) and the moment that the gluteal region
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pressure changed from zero value (weight-bearing standing) to
nonzero value (non-weight bearing sitting).

5) Real-Time Evaluation of Abnormal Detection and Trust
Management: EMG electrodes recorded EMG signals under the
task transitions, unintentional leg movements, and sensor distur-
bances. There were two different states: (1) normal movements

, including unintentional leg movements and transitions be-
tween sitting and standing, the total number of which were 364,
and (2) disturbances , the total number of which were 159.
The detectors detected two types of results: normal or dis-
turbance .

For the data sets with motion artifacts, the data in each trial
were divided into analysis windows. A state ( or ) was as-
signed to each window. There were four detection results. 1)
Hit : ' ', ' '. 2) False Alarm

: ' ', ' '. 3) Miss Detection :
' ', ' '. 4) Correct no detection :
' ', ' '. The performance of designed

detector were evaluated by

The trust value of sensors will also be shown.

Algorithm Implementation on NMI Hardware System

The offline PR training algorithm, the real-time PR testing al-
gorithm, and the real-time TM algorithm were all implemented
on the NMI hardware described in the previous section. The
window length and the window increment were set to 140 and
80 ms, respectively. This is because the computation speed of
MPC5566 is limited. It takes approximate 80 ms to compute
the EMG PR algorithm and to run the abnormal detection/trust
evaluation algorithm on the data collected in a 140 ms window.
Therefore, the window increment should be no less than 80 ms.
It was observed in our experiments that enlarging the window
length exceeding 120 ms does not affect the classification per-
formance [10] but increases the decision-making time, which
causes delayed system response.

A parallel algorithm specially tailored to the GPU archi-
tecture for the computation intensive part of the PR training
algorithm was designed using CUDA: Compute Unified Device
Architecture, which is a parallel computing engine developed
by NVIDIA. At the time of this experiment, our GPU was not
directly connected to the embedded MCU. Rather, NVIDIA
9500GT graphics card plugged into the PCI-Express slot of the
PC server was used to do the training computation. The training
results were then manually loaded into the flash memory of the
embedded system board for real-time testing. The GPU took
inputs from 7 EMG channels, each of which had about 10 000
data points. The EMG data were segmented into analysis win-
dows with 140 ms in length. As a result, each window contained
a 140 7 matrix. The training algorithm first extracted four TD
features from each channel, producing a 28 1 feature vector
for each window. Our parallel algorithm on the CUDA spawned
seven threads for each window resulting in totally 2800 threads
for 400 windows. All these threads were executed in parallel on

the GPU to speed up the process. The resultant features were
stored in a matrix, where is the number of windows.

thread blocks were then set up in the algorithm, where is
the number of observed motions of the user. Each one of the
thread blocks had 28 14 threads, and a total of
threads could execute simultaneously in parallel on the GPU
architecture.

To demonstrate the speedup provided by our parallel imple-
mentation on the GPU, an experiment that compared the compu-
tation times of our training algorithm on both the GPU system
and the fully equipped 3 GHz Pentium 4 PC server was con-
ducted. (The results will be shown in Section IV-C.)

The real-time testing algorithm was implemented on
Freescale’s MPC5566 evaluation board, integrating both the
PR algorithm for user intent identification and the TM algo-
rithm for sensor trust evaluation. The parameters of the trained
PR classifier, a 28 4 matrix and a 1 4 matrix, calculated
during the training phase by GPU were stored in the built-in
flash memory on the MPC5566 EVB in advance. The ADCs
sampled raw EMG data of seven channels at the sampling rate
of 1000 Hz continuously. Same as in the training phase, the
EMG data were divided into windows of length 140 ms and
increment 80 ms. In every analysis window, four TD features
were extracted for each individual channel. During the user
intent identification process, a 28 1 feature vector was derived
from each window and then fed to the trained classifier. After
the EMG pattern classification, one movement class out of four
was identified. The result was postprocessed by the majority
vote algorithm to produce a final decision—sitting or standing.
During the sensor trust evaluation process, each EMG sensor
was monitored by an individual abnormal detector. Only two of
the four TD features (the mean absolute value and the number
of slope sign changes) were used to detect motion artifacts
(algorithm details in Section II-C). Each abnormal detector
monitored the changes of these two TD features to produce a
status output for its corresponding sensor: normal or disturbed.
A trust level manager then evaluated the trust level of individual
sensor based on accumulated disturbance information.

In the real-time embedded system design, to ensure smooth
control of the artificial legs, precise timing control and efficient
memory management are two challenges due to the speed and
memory limitations of the embedded controller. We developed
our own hardware management mechanism on the bare machine
of the MPC5566 EVB without depending on any real-time OS
to avoid unpredictability and delay variations. A circular buffer
was designed to allow simultaneous data sampling and decision
making. The circular buffer consisted of three memory blocks

, , and that were used to store the ADC sampling data.
Each block stored the data sampled in one window increment
(80 samples in this experiment). An additional memory block,

, was used as a temporary storage during the computation of
PR algorithm and TM algorithm.

Fig. 4 shows the timing diagram of the control algorithm
during the real-time testing process. In Fig. 4, equals the
window increment, is the execution time of PR algorithm,
and is the execution time of TM algorithm. Two conditions
need to be satisfied to ensure the smooth control of decision
making without delay: (1) and (2) ,
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Fig. 4. Timing control of real-time decision making.

where is the window length. At point , the ADCs begin
to sample EMG signals continuously and the digital data are
stored in . From point , is filled up and the incoming
data are stored in . At , the data for the first window
are available (stored in and ), and an interrupt request is
generated to notify the CPU that the data is ready for computa-
tion and trigger the computation to start. At the same time, new
data keep coming in to be stored in . After the time interval

, at point , the PR computation and the sensor trust
computation of complete. The first decision is made,
identifying the user’s intent of window whether to sit or
stand, and also reporting the status and the trust value of each
sensor. At time , is filled up and data for as a result
of sliding 80 ms are ready for the computation again, using data
partly in B2 and partly in B3. At this time, is no longer in
use so it can be replaced by new sampling data. At time , the
decision of window is made. At time , data for
(stored in and ) are available, the algorithm computation
for begins. At time , is done and can be reused.

B. Real-Time Testing of the NMI Prototype

Using the NMI prototype described above, real-time tests
were carried out as described in Section III-A. At the time of this
experiment, our trust model focused on abnormal detection and
the trust was evaluated at the sensor level. The communication
between the trust manager and the classifier was not fully con-
sidered. Therefore, to better evaluate our system performance,
a two-phase experiment was set up to evaluate the performance
of pattern recognition and that of sensor trust management sep-
arately. For both phases, the subjects performed transitions be-
tween sitting and standing continuously. During the phase of
PR evaluation, there was no motion artifact manually added.
However, the subject’s unintentional movements and the move-
ments between the residual limb and prosthetic socket were still
a factor. The movement decisions made by the classification
system were displayed on a LED light and a computer monitor
in real time. In our experiment, a five-window majority vote was
applied to the decision stream to further eliminate the classifi-
cation errors. During the phase of sensor trust evaluation, mo-
tion artifacts were manually introduced by randomly tapping an
EMG electrode with roughly equal strength. The sensor status

TABLE I
SYSTEM CLASSIFICATION RESPONSE TIME

Fig. 5. Real-time performance of the designed NMI system. The decision
stream (0: sitting, 1: standing) is aligned with the pressure data (black solid
line) measured under the gluteal region of the subject.

and the sensor trust value were monitored and displayed on a
computer monitor. The user intent classification results were ig-
nored during this phase.

IV. RESULTS AND DISCUSSIONS

A. Real-Time Performance of Pattern Recognition

During the continuous real-time testing (more than 30 times
sit-to-stand transitions and 30 times stand-to-sit transitions), all
of the transitions between sitting and standing were accurately
recognized. Although the subject moved the legs during the sit-
ting position and shifted the body weight in the standing posi-
tion, no classification error was observed.

The system classification response time (RT1 and RT2) was
calculated by using the pressure data under the gluteal region
and shown in Table I.

The real-time performance of the designed NMI prototype in
one representative trial is shown in Fig. 5. Due to a five-window
majority vote method applied, around 400 ms decision delay for
the sit-to-stand transitions were observed in Fig. 5, comparing
to the falling edges of pressure data. It can be clearly seen that
the majority vote postprocessing method significantly improved
system accuracy but sacrificed system response time. The video
of real-time system performance can be found at http://www.
youtube.com/watch?v=H3VrdqXfcm8.

Compared to the real-time testing results on one able-bodied
subject (upper two photos in Fig. 6) in our experiments [25],
a similarly high classification accuracy and reasonable system
response time were achieved on the patient with transfemoral
amputation (lower two photos in Fig. 6). The promising real-
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Fig. 6. Real-time testing of the designed NMI prototype on one patient with
transfemoral amputation (lower two photos). Upper two photos show our ex-
periments on an able-bodied subject.

Fig. 7. Real-time performance demonstration of the abnormal detector under
motion artifacts. The representative EMG signals (upper panel), the detection
results of CUSUM (middle panel), and the trust value (lower panel) are
demonstrated.

time performance of our designed NMI prototype demonstrates
a great potential to allow the amputee patients to intuitively and
efficiently control the prosthetic legs.

B. Real-Time Performance of Sensor Trust Algorithm

Fig. 7 shows the performance of the designed trust man-
agement method. There are three subfigures. The upper figure
shows the EMG signal disturbed by motion artifacts. The middle
one shows the CUSUM detection results, the red bar represents
the period that a motion artifact was detected. As seen in the
figure, CUSUM detector was sensitive to motion artifacts, but
insensitive to the muscle activity due to the normal leg move-
ments. Additionally, the CUSUM had very small detection
delay. The red bars were always present immediately after a
motion artifact. The lower figure shows the corresponding trust

TABLE II
SPEEDUPS OF OUR GPU PARALLEL TRAINING ALGORITHM

OVER THE 3 GHZ PC SERVER

value. The trust value for motion artifacts gradually reduced
when consistent disturbances were detected. In the future work,
other methods for trust value calculation will be explored. For
instance, for sensors with non-perfect trust values, it can be
checked whether their future readings are consistent with other
sensors that have high trust values. By doing so, the sensors that
experienced an occasional disturbance and were not damaged
can gradually regain the trust. Furthermore, the performance of
CUSUM detector was evaluated by calculating its detection rate
and false alarm rate. During the real-time testing experiments.
The undetected disturbances are disturbances with either small
amplitude or short duration, so that a small number of such
disturbances were not expected to affect the NMI decision
significantly. The video of our experiment can be found at
http://www.youtube.com/watch?v=6NwtMOw0YS0.

The designed CUSUM detector is accurate and prompt. The
limitations of the current study are that only one electrode was
disturbed and the trust manager evaluated the trust only at the
sensor level. In the next design phase, we will: 1) consider the
situation with multiple sensor failures; 2) enable the communi-
cation between the trust manager and the classifier; and 3) eval-
uate the system-level trust of the entire NMI.

C. Performance of CPU vs. GPU for Training Procedure

Table II shows the measured speedup of our parallel algo-
rithm on the NVIDIA GPU over the PC server for different
window sizes. It is clear from this table that our parallel im-
plementation on the GPU gives over an order of magnitude
speedup over the PC server. This order of magnitude speedup
is practically significant. Consider the case where the training
time took half hour on a PC server [22]. The same training al-
gorithm takes less than a minute using our new parallel algo-
rithm on the GPU. From an amputee user point of view, training
for less than a minute for the purpose of accurate and smooth
neural control of the artificial leg is fairly manageable as com-
pared to training for half an hour every time training is neces-
sary. Furthermore, the speedup increases as the number of win-
dows increases (Table II). As a result, parallel computation of
the training algorithm on GPU helps greatly in the NMI design
since the larger the number of windows, the higher its decision
accuracy will be [25].

D. Discussion

While our experiments on two subjects, one able-bodied sub-
ject and the other transfemoral amputee subject have demon-
strated promising results of the new NMI prototype, system per-
formance may vary among different subjects due to the inter-
subject variations. One of our future research tasks is to recruit
more amputee subjects with diverse age and gender groups to
evaluate the performance of the new NMI.
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In this presented study, only two simple tasks (sitting and
standing) were tested. To allow the prosthesis to perform more
functions, more tasks in locomotion such as level ground
walking, stair ascent/descent, and ramp ascent/descent should
be considered in our future work. A phase-dependent strategy,
which was proposed in our previous study [10], may be required
for the designed neural-machine interface structure to handle
the walking dynamics.

Among all types of disturbances, motion artifact occurs most
frequently in practice and therefore is the main disturbance
studied in this paper. Besides motion artifact, there are also
some other disturbances which should be considered in our
future work, such as baseline noise amplitude change, signal
saturation, sensor loss of contact, etc. To handle these diverse
disturbances, we may need to extend the work by: 1) applying
the abnormal detection on more EMG features and 2) modi-
fying the trust manager so that the trust value is determined not
only by how many times disturbances occur but also by more
complex factors, such as disturbance type, duration, severe
level, etc.

V. RELATED WORK

Real-time EMG pattern recognition has been designed to
increase the information extracted from EMG signals and
improve the dexterity of myoelectric control for upper limb
prosthetics [9], [26]. However, no EMG-controlled lower-limb
prostheses are currently available. Recently, the need for neural
control of prosthetic legs has brought the idea of EMG-based
control back to attention. Two previous studies have attempted
to use EMG signals to identify locomotion modes for prosthetic
leg control [10], [27]. Jin et al. [27] used features extracted
from EMG signals from a complete stride cycle. Using such
features, the algorithm results in a time delay of one stride cycle
in real-time. In practical application, this is inadequate for safe
prosthesis use. Our previous study designed a phase-dependent
EMG pattern recognition method [10], which is a dynamic
classifier over time. The result indicated over 90% classification
accuracy, which can be applied for real-time NMI. While both
studies demonstrated that EMG information recorded from
transfemoral amputees is sufficient for accurate identification
of user intent, there has been no experimental study on design
and implementation of embedded system to realize the NMI
for reliable and real-time control of prosthesis.

Reliable EMG pattern recognition system for artificial legs
has been developed in our previous study [11]. It can enhance
the system performance when sudden disturbances were applied
to multiple sensors. In the previous work, however, the distur-
bances were generated through simulations and the algorithms
were only tested offline [25]. The proposed algorithms in this
paper, which were very different from the previous approaches,
focused on real-time design with low detection latency, and were
implemented and tested in a real-time embedded system.

There has been extensive research in using GPUs for gen-
eral purpose computing (GPGPU) to obtain exceptional com-
putation performance for many data parallel applications [23],
[28]–[30]. A good summary of GPGPU can be found in [23],
[31], and [32]. Our prior study made the first attempt to use

GPU in EMG-controlled artificial legs and other medical appli-
cations [22]. Our results on individual computation components
on EMG signal pattern recognition showed good speedups of
GPU over CPU for various window sizes. The focus of the work
reported in [22] was on parallel implementations of individual
algorithms on GPU whereas this paper makes the first attempt to
integrate the entire system for neural-machine interfacing (i.e., a
CPS) for real-time control of artificial legs. Our prior works [22]
report offline analysis, while the work presented in this paper
implements online decoding method for real-time testing. To
the best knowledge of the authors, there has been no existing
study on implementing the entire training algorithm on GPU for
different numbers of windows and integrating the training algo-
rithm together with real-time testing on the same subject.

VI. CONCLUSION

A new EMG-based neural-machine interface (NMI) for ar-
tificial legs was developed and implemented on an embedded
system for real-time operation. The NMI represents a typical
cyber-physical system that tightly integrated cyber and physical
systems to achieve high accuracy, reliability, and real-time op-
eration. This cyber-physical system consists of: 1) an EMG pat-
tern classifier for decoding the user’s intended lower limb move-
ments and 2) a trust management mechanism for handling unex-
pected sensor failures and signal disturbances. The software was
then embedded in a newly designed hardware platform based
on an embedded microcontroller and a GPU to form a com-
plete NMI for real-time testing. To prove our design concepts, a
working prototype was built to conduct experiments on a human
subject with a transfemormal amputation and an able-bodied
subject to identify their intent for sitting and standing. We also
tested our trust management model on an able-bodied human
subject by adding motion artifacts. The results showed high
system accuracy, reliability and reasonable time response for
real-time operation. Our NMI design has a great potential to
allow leg amputees to intuitively and efficiently control pros-
thetic legs, which in turn will improve the function of prosthetic
legs and the quality-of-life for patients with leg amputations.
Our future work includes the consideration of other movement
tasks such as walking on different terrains, communications be-
tween trust models and user intent identification models, and
exploring online training algorithms.
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