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Abstract— In the multimedia and hierarchical manage-
ment scenarios, many group communications require a se-
curity infrastructure that ensures multiple levels of access
privilege for group members. In this paper, we present a
multi-group key management scheme that achieves such
a hierarchical access control by employing an integrated
key graph and managing group keys for all users with
different access privileges. Compared with applying exist-
ing key management schemes directly to the hierarchical
access control problem, the proposed scheme significantly
reduces the overhead associated with key management and
achieves better scalability when the number of access levels
increases. In addition, the proposed key graph is suitable
for both centralized and contributory environments.

Index Terms— access control, communication system
privacy, system design

I. I NTRODUCTION

The rapid progress in the technologies underlying
multicast networking has led to the development of many
group-oriented applications, such as video conferencing,
pay-per-view broadcast of sport events, and communal
gaming [1] [2]. For the purpose of security or billing,
many group-oriented communications require theaccess
control mechanism such that only authorized members
can access group communications [3].

Access control is usually achieved by encrypting the
content using an encryption key, known as the session
key (SK) that is shared by all legitimate group members.
Since the group membership will most likely be dynamic
with users joining and leaving the group, the encryption
keys shall be updated to prevent the leaving/joining user
from accessing the future/prior communications [3]. The
issues of establishing and updating the group keys are
addressed by groupKey Managementschemes [3]–[5].

There already exist many key management schemes,
such as the centralized schemes presented in [2], [4]–
[12] and the contributory schemes presented in [13]–
[21]. These schemes address the access control issues in
a single multicast session. They focus on establishing and
updating keys with dynamic membership and provide all
group members the same level of access privilege. That
is, the users who possess the decryption keys have the

full access to the content, and the users who do not have
the decryption keys cannot interpret the data.

In practice, many group applications contain multiple
related data streams and have the members with various
access privileges. These applications prevail in various
scenarios.
• Multimedia applications distributing data in multi-

layer coding format [22]. For example, in a video
broadcast, users with a normal TV receiver can
receive the normal format, while others with HDTV
receivers can receive both the normal format and
the extra information needed to achieve HDTV
resolution.

• Multicast programs containing several related ser-
vices. For example, the cellular phone service
provider offers a set of extra broadcast services,
such as weather, news, traffic and stock quota.

• Communications in hierarchically managed orga-
nizations, such as military group communications
where participants have different access authoriza-
tions.

Since group members subscribe to different data steams,
or possibly multiple of them, it is necessary to develop
access control mechanism that supports the multi-level
access privilege, which shall be referred to as thehier-
archical access control.

Hierarchical access control problem can be converted
into a set of single-session access control problems,
which have already been addressed by many existing
key management schemes [2]–[21]. By doing so, the
access control issue for each data stream is managed
separately. This, however, leads to inefficient use of keys
and does not scale well when the number of data streams
increases, as we will demonstrate in the later sessions.

In this paper, we develop amulti-group key manage-
ment scheme that manages keys for all members with
different access privileges. Particularly, we design an
integrated key graphthat maintains the keying material
for all members and incorporates new functionalities that
are not present in conventional multicast key manage-
ment, such as the user relocation on the key graph. The
proposed multi-group key management scheme achieves
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forward and backward security [19] when users (1) join
the group communication with certain access privilege;
(2) leave the group communication; and (3) add or
drop the subscription of one or several data streams
(change access privilege). In addition, the idea of the
integrated key graph can be used in both centralized and
contributory environments. This paper will first present
the centralized multi-group key management scheme and
then discuss its extension in the distributed scenarios.
Compared with using single-session access control solu-
tions, such as a variety of tree-based key management
scheme [6], [19], the proposed scheme reduces the
usage of the communication, computation and storage
overhead, and is scalable when the number of access
levels increases.

The rest of the paper is organized as follows. The
hierarchical access control problem is formulated in
Section II. The centralized multi-group key management
is presented in Section III, IV, and V. Particularly,
Section III describes the construction of the integrated
key graph and the rekey algorithm. Section IV ana-
lyzes the performance of the proposed scheme and the
asymptotical behavior. Section V provides the simulation
results and compares the proposed scheme with existing
tree-based solutions in various application scenarios.
The contributory key management scheme that uses the
integrated key graph is presented in Section VI, followed
by the conclusion in Section VII.

II. SYSTEM DESCRIPTION

In this section, we introduce the notations that describe
users’ dynamic membership, and formulate the hieratical
access control problem.

A. Data Group and Service Group

Data Group(DG) is defined as the users who receive
the same single data stream. The concept of DG is based
on the data transmission. Each DG is associated with
a multicast session, which has a multicast address and
a multicast routing tree [1]. For example, a multicast
movie is encoded into Base Layer (BL), Enhancement
Layer 1(EL1) and Enhancement Layer 2 (EL2) using
scalable coding techniques [22]. Then, there are three
DGs that are corresponding to the BL, EL1 and EL2
data stream, respectively. From the users’ points of
view, they may subscribe to different quality levels. The
users subscribing to the highest quality level receive all
three data streams; the users subscribing to the moderate
quality level receive BL and EL1 data streams; and
the users subscribing to the basic quality level receive
only the BL data stream. It is clear that the DGs have
overlapped membership because users may subscribe
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Fig. 1. Typical scenarios requiring hierarchical access control.
(a)Multimedia applications distributing data in multi-layer format,
(b)Multicast programs containing several related services, (c) Hier-
archical management.

multiple data streams. In this paper, the DGs are denoted
by D1, D2, · · · , DM , whereM is the total number of the
DGs.

We also defineService Group(SG) as the users
who have the same access privilege and receive the
exactly same set of data streams. Figure 1 illustrates the
access privilege of the SGs in typical scenarios requiring
hierarchical access control, as discussed in Section I. In
this work, SGs are denoted byS1, S2, · · · , SI , whereI
is the total number of the SGs. Each SG is associated
with a 1-by-M binary vector. In particular, the SGSi

is associate withVi = [ti1, t
i
2, · · · , tiM ], andtim = 1 only

when the users in the SGSi subscribe the DGDm, i.e.

Si = {D1, t
i
1}

⋂
{D2, t

i
2}

⋂
· · ·

⋂
{DM , tiM}

where{Dm, 0} = Dm and {Dm, 1} = Dm. It is easy
seen thatI ≤ 2M − 1. In addition, we define a virtual
service group,S0, which represents users who do not
participate in any group communications. Clearly,V0 is
an all zero vector.

Based on these definitions, the group size of SGs and
DGs must satisfy:
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n(Dm) =
I∑

i=1

tim · n(Si), (1)

wheren(Si) is the number of users in the SGSi and
n(Dm) is the number of users in the DGDm.

B. Hierarchical Access Control

In order to achieve hierarchical access control while
not transmitting multiple copies of data, it is necessary
to encrypt the different data streams using separate keys
[23]. Thus, the users in each DG share a key, referred
to as thedata group key, which is used to encrypt the
data stream of this DG. The data group key ofDm is
denoted byKD

m . Obviously, the users in SGSi must
posses{KD

m , ∀ m : tim = 1}.
In the applications containing multiple SGs, users not

only join/leave the service, but also switch between SGs
by subscribing or dropping data streams. We introduce
the notation,Si → Sj , which represents a user switching
from SG Si to SG Sj . Since S0 represents the users
who do not participate any group communications, this
notation already includes the cases of user join (S0 →
Si) and departure (Si → S0).

Similar to the single-session access control problem
addressed by traditional key management schemes [3],
hierarchical access control in this work should guarantee
the forward and backward security [19]. When a user
switches from SGSi to Sj , it is necessary to

• update the data group keys of{Dm,∀ m : tim =
1 and tjm = 0}, such that the switching user cannot
access the previous communications in those DGs;

• and update the data group keys of{Dm, ∀m : tim =
0 and tjm = 1}, such that the switching user cannot
access the future communications in those DGs.

III. C ENTRALIZED MULTI -GROUPKEY

MANAGEMENT SCHEME

Popular key management are classified as centralized
schemes and contributory schemes [8]. Centralized key
management, such as [2], [4]–[12], rely on a centralized
server, referred to as the key distribution center (KDC),
which generates and distributes encryption keys. The
contributory key management schemes do not rely on
centralized servers. Instead, every group member makes
independent contribution and participates the process of
group key establishment, as in [13]–[21].

Hierarchical access control can be achieved in either
centralized or contributory manner. While the contribu-
tory solution will be discussed in Section VI, this section
and the following two sections will be dedicated to the
centralized schemes.
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Fig. 2. A typical key management tree

A. Employing independent key trees to achieve Hierar-
chical access control

To reduce the communication, computation and stor-
age overhead, tree structure is widely used in centralized
key management schemes to maintain the keying mate-
rial and coordinate the key generation [2], [4]–[9].

A typical key tree used in centralized key management
schemes [2]–[6], [8] is illustrated in Figure 2. Each node
of the key tree is associated with a key. The root of
the key tree is associated with the session key. Each
leaf node is associated with a user’s private key. The
intermediate nodes are associated with key-encrypted-
keys (KEK), which are auxiliary keys and only for the
purpose of protecting the session key and other KEKs.
To make concise presentation, we do not distinguish
the node and the key associated with this node in the
remainder of the paper.

Each user stores his private key, the session key, and
a set of KEKs on the path from himself to the root
of the key tree. When a user leaves the service, the
KDC generates new versions of his keys and distributes
new keys to the remaining users by sending a set of
rekey messages in the multicast channel [4], [5]. The
communication overhead associated with key updating
can be described byrekey message size, defined as the
amounts of rekey messages measured in the unit as the
same size as SK or KEKs. It has been shown that the
rekey message size increases linearly with the logarithm
of the group size [3]–[5]. When a user joins the service,
the KDC chooses a leaf position on the key tree to put
the joining user. In [6], the KDC updates the keys along
the path from the new leaf to the root by generating the
new keys from the old keys using a one-way function
[6], which do not need transmitting additional rekey
messages.

When using tree-based schemes to achieve hierarchi-
cal access control, a separate key tree must be con-
structed for each DG, with the root being the data
group key and the leaves being the users in this DG.
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This approach is referred to as theIndependent-treekey
management scheme, and is illustrated in Figure 3.

The main advantage of employing separate key trees is
the simplicity in implementation and group management.
This scheme, however, does not exploit the relationship
among the subscribers and makes inefficient use of keys
due to the overlap in DG membership. As an extreme
example, if a user that subscribes all DGs leaves, key
updating has to take place on all key trees.

B. Multi-group Key Management Scheme

To achieve hierarchical access control, we propose a
multi-group key management scheme that employs one
integrated key graph accommodating key materials for
all users. This key graph comprise several key trees, and
is constructed in three steps.

Step1:For each SGSi, construct a subtree having the
leaf nodes being the users inSi and the root
node being associated with a key, denoted by
KS

i . These subtrees are referred to as theSG-
subtrees.

Step2:For each DGDm, construct a subtree whose
root is the DG keyKD

m and whose leaves are
{KS

i ,∀i : tim = 1}. These subtrees are referred
to as theDG-subtrees.

Step3:Generate the key graph by connecting the
leaves of the DG-subtrees and roots of SG-
subtrees.

This 3-step procedure is illustrated in Figure 4 for
the services containing 3 layers and having 4 users in
each SG. We noted that some duplicated structures may
appear on DG-subtrees and can be merged to reduce the
number of keys on the key graph. In the example shown
in Figure 4,KS

3 andKD
3 , which are on the same line, are

merged. The DG-subtrees ofD2 andD1 have the same
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Fig. 4. Multi-group key management graph construction

structure that connectKS
2 andKS

3 . Thus, the parent node
of KS

2 andKS
3 on DG-subtree ofD2 is merged withKD

2 .
This multi-group key graph can also be interpreted as

M overlapped key trees, each of which hasKD
m as the

root and the users in DGDm as the leaves. Obviously,
these M key trees can be used in the independent-
tree scheme. This reveals the fact that the multi-group
key graph removes the ”redundancy” presented in the
independent-tree scheme. Therefore, it has the potential
to reduce the overhead associated with key updating.

As defined in [4], keysetrefers to the set of keys
associated with a edge node on the key graph and
possessed by the user located at this edge node. In our
key graph, the keyset of a user in SGSi is the keys on
the pathes from himself to the roots of the DG-subtrees
of Dm for {m : tim = 1}. It is noted that the keyset for
users inS0 is simply an empty set.

Besides user join and departure, the rekey algorithm in
the multi-group key management scheme must address
users’ relocation on the key graph. Next, we describe the
rekey algorithm forSi → Sj , which already includes the
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cases for user join and departure. Here, the switching
user is moved from the SG-subtree ofSi to a new
location on the SG-subtree ofSj . Let φi denote the
keyset associated with the user’s previous position, and
φj denote the keyset associated with the user’s new
position. Then,

• the KDC updates the keys inφi∩φj using one-way
functions, similar as that in [6] for user join.

• and, the KDC generates new versions of the keys in
φi∩φj and distributes these new keys from bottom
to up by using their children node keys, similar as
that in [6] for user departure.

We illustrate this rekey algorithm through an example,
where user8 switching from SGS2 to S1. On the SG-
subtree ofS1, we assume that the leaf node associated
with user 4 is split to accommodate user 8. Then, user 4
and 8 will share a new KEK, denoted byK4−8. On the
SG-subtree ofS2, user 7 will be move up and occupy
the node that is previously associated withK7−8. In this
case,φ2 is {K7−8,K

S
2 ,KD

2 , SK2, K
D
1 , SK1} andφ1 is

{K4−8,K3−4,K
S
1 ,KD

1 , SK1}.
Let the notationxnew represent the new version of key

x, {y}x represent the keyy encrypted by keyx, anduk

represent the private key of userk. As in [6], each key
is associated with a revision number.

In this example, the KDC generates the new keys,
Knew

3−4 and KS,new
1 , from the old keys using a one-way

function, and increases the revision numbers of those
new keys. Thus, the user 1,2,3,4 will know about the key
change when the data packet indicating the increase of
the revision numbers first arrives, and compute the new
keys using the one-way function. No rekey messages are
necessary for distribution ofKnew

3−4 andKS,new
1 .

In addition, the KDC generates new keys,{Knew
4−8 ,

KS,new
2 , KD,new

2 , and SKnew
2 , and distributes them

through a set of rekey messages as:

{Knew
4−8}u8 , {Knew

4−8}u4 , {KS,new
2 }K5−6 , {KS,new

2 }u7

{KD,new
2 }KS,new

2
, {KD,new

2 }KS
3
, {SKnew

2 }KD,new
2

Here, the rekey message size is7.
It is noted thatφi ∩ φj may contain the new KEKs

that are on the SG-subtree ofSj and created for ac-
commodating the switch user. These new KEKs should
be encrypted using users’ private keys and distributed
through rekey messages. In addition,φi∩φj may contain
KEKs that were previously on the SG-subtree ofSi

and do not exist any more after the relocation of the
switching user. Obviously, these keys should not be
updated.

IV. PERFORMANCEMEASURES ANDANALYSIS

Communication, computation and storage overhead
associated with key updating are major performance
measures for key management schemes [3]–[5]. In the
hierarchical access control scenarios, we define the per-
formance measures as:

• Storage overhead at the KDC, denoted byRKDC

and defined as the expected number of keys stored
at the KDC.

• Rekey overhead at the KDC, denoted byMKDC and
defined as the expected number of rekey messages
transmitted by the KDC per key updating.

• Storage overhead of users, denoted byRu∈Si
and

defined as the expected number of keys stored by
the users in the SGSi.

• Rekey overhead of users, denoted byMu∈Si
and

defined as the expected number of rekeying mes-
sages received by the users in the SGSi per key
updating.

Here,RKDC and Ru∈Si
describe the storage overhead,

while MKDC andMu∈Si
reflect the usage of communi-

cation and computation resources.

A. Storage Overhead

Similar to most key management schemes [3]–[6], [8],
the key tree investigated in this work is fully loaded and
maintained as balanced as possible by putting the joining
users on the shortest branches.

Let fd(n) denote the length of the branches andrd(n)
denote the total number of keys on the key tree when the
key tree has degreed and accommodatesn users. Since
the key tree is balanced,fd(n) is eitherL0 or L0 + 1,
whereL0 = blogd nc. Particularly,

• the number of users who are on the branches with
lengthL0 is dL0 − dn−dL0

d−1 e,
• and, the number of users who are on the branches

with lengthL0 + 1 is n− dL0 + dn−dL0

d−1 e.
Thus, the total number of keys on this key tree is
calculated as:

rd(n) = n + 1 +
dL0 − 1
d− 1

+ dn− dL0

d− 1
e. (2)

Using the fact thatn−dL0

d−1 ≤ dn−dL0

d−1 e < n−dL0

d−1 + 1, we
have

dE[n]− 1
d− 1

+ 1 ≤ E[rd(n)] <
dE[n]− 1

d− 1
+ 2, (3)

where the expectation,E[.], is taken over the distribution
of n(Dm) and the length of the branches on the key trees.
The left-hand-side equality achieves whenlogd(n) is an
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integer. In addition, sincelogd(n) is a concave function
andblogd nc ≤ logd n, it is clear that

E[fd(n)] ≤ E[logd n] + 1 ≤ logd E[n] + 1. (4)

With equation (3) and (4), we are ready to analyze
the storage overhead. When using the separate key trees
(i.e. independent-tree scheme), the KDC stores all keys
on total M key trees, and users inSi store subsets of
keys on the key trees that are associated withDm, for
{m : t0m = 1}. Thus,

Rind
KDC =

M∑

m=1

E [rd(n(Dm))] , (5)

Rind
u∈Si

=
M∑

m=1

tim (E[fd(n(Dm))] + 1) , (6)

In the Multi-group key management scheme, the DG-
subtree ofDm has cm =

∑
i t

i
m leaf nodes. Before

removing the redundancy on DG-subtrees, there are in
total

∑M
m=1 rd(cm) keys on DG-subtrees. Also, the total

number of keys on the SG-subtrees is
∑I

i=1 rd(n(Si)).
Therefore, after merging duplicated structures of DG-
subtrees, the storage overhead at the KDC is

Rmg
KDC ≤

I∑

i=1

E[rd(n(Si))] +
M∑

m=1

E [rd(cm)] . (7)

A user in the SGSi storesfd(n(Si)) keys on the SG-
subtree and up to

∑M
m=1 tim(fd(cm) + 1) keys on the

DG-subtrees. Therefore, the users’ storage overhead of
the multi-group scheme is:

Rmg
u∈Si

≤ E[fd(n(Si))] +
M∑

m=1

tim(E[fd(cm)] + 1).(8)

Without loss generality, we demonstrate the storage
overhead of the independent-tree and the multi-group
key management in the applications containing multiple
layers, as illustrated in Figure 1(a). In this case,tim = 1
for m ≤ i and tim = 0 for m > i. We also assume that
each layer contains the same amount of users, denoted
by n(Si) = n0. Thus,n(Dm) = (M −m + 1)n0. Using
(6) and (8), the users’ storage overhead is calculated as:

Rind
u∈Si

=
i∑

m=1

(E[fd((M −m + 1) · n0)] + 1) (9)

Rmg
u∈Si

= E[fd(n0)] +
i∑

m=1

(E[fd(M −m + 1)] + 1) (10)

When the group size is large, i.e.n0 → ∞, equation
(4)(9) and (10) tells that

Rind
u∈Si

∼ o(i · log(n0)), Rmg
u∈Si

∼ o(log(n0)). (11)

Using (5) and (7), the storage overhead at the KDC is
calculated as:

Rind
KDC =

M∑

m=1

E[rd(m · n0)] (12)

Rmg
KDC ≤ M · E[rd(n0)] +

M∑

m=1

E[rd(m)] (13)

From (3), it is seen thatlimn→∞ rd(n) = d
d−1n. There-

fore,

Rind
KDC ∼ o(

d

d− 1
M(M + 1)

2
n0) (14)

Rmg
KDC ∼ o(

d

d− 1
M · n0). (15)

By using the integrated key graph instead of the
separate key trees, the multi-group key management
scheme reduces the storage overhead at both the KDC
and the users’ side. As indicated in (14) and (15), this
advantage of the proposed scheme becomes larger when
the applications contain more SGs, i.e. requiring more
levels of access control. The proposed scheme in fact
scales better when the number of layers (M) increases.
As we will show later in Section V, this property is also
valid for the rekey overhead.

B. Rekey Overhead

The rekey overhead defined earlier in this Section is
closely related with the users’ statistical behaviors, such
as the probability for user joining/leaving/switching.
Without specifying the model for users’ dynamic mem-
bership in this section, we calculate the amount of
rekey messages transmitted by the KDC when one user
switches fromSi to Sj , denoted byCi,j .

Switching from SGSi to SG Sj is equivalent to
adding the subscription to the DG{Dm, ∀m : tim =
0 and tjm = 1} and dropping the subscription to the DG
{Dm,∀m : tim = 1 and tjm = 0}. When using the tree-
based key management schemes, the rekey message size
is calculated as:

Cind
ij =

M∑

m=1

max(tim − tjm, 0) · (d · fd(n(Dm))) (16)

It is noted that the term(max(tim − tjm, 0)) equals to1
when tim = 1 and tjm = 0. Therefore, When this term
equals to 1,d · fd(n(Dm) rekey messages are necessary
to update keys on the key tree associated with the DG
Dm.

In the multi-group key management scheme, when a
user switches fromSi to Sj and i 6= j,
• The amount of messages that update the keys on

the SG-subtree ofSi is up to (d · fd(n(Si))− 1).
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• The amount of messages that distribute the new
KEK on the SG-subtree ofSj is up to2.

• If this user drops the subscription of the DGDm,
i.e. (max(tim − tjm, 0)) = 1, the amount of rekey
messages that update keys on the DG-subtree of
Dm is up to (d · fd(cm) + 1).

• If this user remains the subscription of the DGDm,
i.e. tim = tjm = 1, the amount of rekey messages
that update keys on the DG-subtree ofDm is up to
(d · fd(cm)).

Therefore, when using the multi-group scheme andi 6=
j, we have

Cmg
ij ≤ ∑M

m=1

(
max(tim − tjm, 0) · (d · fd(cm) + 1)

+ timtjmd · fd(cm)
)
+ d · fd(n(Si)) + 1, (17)

Similar as in Section IV-A, we analyze the rekey
overhead in a multi-layer scenario withn(Si) = n0. In
this case, the rekey message size for one user leaving,
i.e. Sj → S0, is computed from (16) and (17) as:

Cind
0j =

j∑

m=1

d · E[fd((M −m + 1)n0)] (18)

Cmg
0j ≤ d · E[fd(n0)] + 1 +

j∑

m=1

(d · E[fd(M −m + 1)] + 1) (19)

Whenn0 →∞, we can see that

Cind
0j ∼ o(i · d · log(n0)), Cmg

0j ∼ o(d · log(n0)). (20)

The comprehensive comparison between the proposed
scheme and the independent-tree scheme will be pro-
vided in Section V through simulations.

V. SIMULATIONS AND PERFORMANCECOMPARISON

In this section, the performance of the proposed multi-
group key management scheme are compared with the
existing tree-based key management schemes in various
applications scenarios.

A. Statistical dynamic membership model

In this work, we assume that when a user switches
between SGs, the SG that he switches to depends only
on his current SG. In addition, [24] [25] studied the
characteristics of the membership dynamics of MBone
multicast sessions and suggested that the users arrival
process and membership duration can be modelled by
Poisson and exponential distribution respectively, in a
short period of time.

Therefore, the users’ statistical behavior can be de-
scribed by an embedded Markov chain [26]. Particularly,

S0

not in service
V0={ 0,0,0}

S1

low quality
V1={ 1,0,0}

S2

moderate quality
V2={ 1,1,0}

S3

high quality
V3={ 1,1,0}

Join

Departure
Switching

Fig. 5. Discrete Markov chain model for Multi-layer applications.

there are a total ofI + 1 states, denoted bỹSi, i =
0, · · · , I. When a user is in the SGSi, he is in the
stateS̃i. After a user enters a statẽSi, i.e. subscribes or
switches to SGSi, this user stays at statẽSi for time Ti,
which is governed by an exponential random variable.
When time is up, the user moves to a stateS̃j . The
selection ofS̃j only depends on the current stateS̃i and
is not related with previous states.

In practice, it is usually not necessary to update keys
immediately after membership changes. Many applica-
tions allow the join/departure users receive limited previ-
ous/future communications [27]. For example, a joining
user may receive a complete group-of-picture (GOP) [22]
although partial of this GOP already been transmitted
before his subscription. Those situations preferbatch
rekeying[27], which is to postpone the updates of keys
such that the rekeying overhead is reduced by adding or
removing several users altogether.

In this work, batch rekeying is implemented as pe-
riodic updating of keys and the time between key
updates are fixed and denoted byBt. For the users
who join/leave/switch SGs in the time interval((k −
1)Bt, kBt], the key updating will take place at timekBt,
andk are positive integers. When using batch rekeying,
from the key updating points of view, we can prove that
the previous continuous Markov model can be simplified
as a discrete Markov chain model [26], as illustrated in
Figure 5. In this model,

• The transition matrix is denoted byP =
[pij ](I+1)×(I+1), where pij is the probability that
one user moves from SGSi to Sj in the time
interval (kBt, (k + 1)Bt] given that this user is in
Si at timekBt.

• The n-step transition probability matrix is denoted
by P (n), and obviously,P (n) = PN . The element
at the ith row andjth column of P (n) is denoted
by pij(n).

• The stationary state probability is a1-by-(I + 1)
vector, denoted byπ = [π0, π1, · · · , πI ].
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Fig. 7. Storage overhead at the users in each SG

We notice that most practical applications have the
following properties.

• Since users should be able to subscribe every SG,
p(n)0j 6= 0 for some positive finiten, and for any
j.

• Since users should be able to leave from every SG,
p(n)i0 6= 0 for some positive finiten, and for any
i.

• Since users can always stay in his current SG,pii >
0.

• The expected time that a user stays in the group
communication, i.e. the mean recurrence time [26]
of the stateS0, is finite.

Because of these properties, we can show that this
Markov chain is irreducible, aperiodic and positive re-
current. As a results, the stationary state probability mass
function (pmf) exists [26] and is the unique solution of

πP = π, and
∑

i

πi = 1 (21)

B. Performance with different group size

We first study the applications containing multiple
layers, as illustrated in Figure 1(a). The users in SGSi

have access to the DGD1, D2, · · · , Di. In addition, we
add the following constrains on the transition matrix.
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Fig. 9. Rekey overhead at the users in each SG

• Users join the service to different SGs with the same
probability, i.e.P0j = α,∀j > 0.

• Users leave the service from different SGs with the
same probability, i.e.Pi0 = β,∀i > 0.

• While a user is in the service, he adds/drops only
one DG a time, i.e.Pi,j = 0, ∀i, j > 0 and |i−j| >
1. Also, he switches between SGs with the same
probability, i.e.Pi,j = γ, ∀i, j > 0 and |i− j| = 1.

Thus, the transition matrix is described by only three
variables. For example, the multi-layer service withM =
3 has the transition matrix as:

P =




1− 3α α α α
β 1− β − γ γ 0
β γ 1− β − 2γ γ
β 0 γ 1− β − γ




In all simulations, batch rekeying is applied and the key
trees are binary. The stationary state is chosen as the
initial state, i.e.Si containsN0πi users at the beginning
of the service.

In Figure 6, 7, 8 and 9, the multi-group scheme and
the independent-tree scheme are compared for different
group size,N0. The results are averaged over 300 realiza-
tions, and the number of layers is 4. In these simulations,
we chooseα = 0.005, β = 0.01, andγ = 0.001.

Figure 6 shows that the storage overhead at the KDC,
RKDC , increases linearly with the group size, which
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Fig. 10. Storage overhead at the KDC with different number of SGs

can be verified by (5)(7) and (3). And, the multi-group
scheme reducesRKDC by more than 50%.

Figure 7 shows that the users’ storage overhead,
Ru∈Si

, increases linearly with the logarithm of the group
size, which can be verified by (9) and (10). The users
who subscribe only one layer have the similar storage
overhead in both schemes. The multi-group scheme
results in larger advantages when users subscribe more
layers.

The KDC’s rekeying overhead,RKDC and the users’
rekey overhead,Ru∈Si

are shown in Figure 8 and 9, re-
spectively. In both cases, the multi-group scheme reduces
the rekey overhead by more than 50%.

C. Scalability with increase in the number of layers

Next, we change the number of layers (M) while
maintaining roughly the same number of users in the
service by choosing the join probabilityα as 0.02/M .
The values ofβ and γ are the same as that in Section
V-B.

Figure 10(a) and Figure 11(a) show the storage and
rekey overhead at the KDC, respectively. WhenM
increases, the storage and rekey overhead of the multi-
group scheme do not change much, while the overhead of
the independent-tree scheme increases linearly withM .
It is not surprising that the multi-group scheme scales
better whenM increase. By removing the redundancy
in DG membership, the scale of the key graph mainly
depends on the group size, not the number of layers or
services. On the other hand, by constructingM separate
key trees, the independent-tree scheme requires larger
storage and rekey overhead whenM increases even
whenN0 is fixed.

Figure 10(b) shows that the ratio betweenRind
KDC and

Rmg
KDC increases linearly withM , which agrees with the
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equation (14) and (15). This is also true for the rekey
overhead, as shown in Figure 11(b).

D. Performance with different transition probability

In the previous simulations, we setγ = 0.1β, which
means that the users are more likely to leave the service
than to switch SGs. Figure 12 shows the rekey overhead
with different values ofγ, which describes the probabil-
ity of user switching between SGs. In this simulation,
M = 4, N0 = 1000, and the values ofα andβ are the
same as those in the previous experiments.

Whenγ is very small, the multi-group scheme reduces
the rekey overhead by about 50%, as we have shown in
the previous simulations. Whenγ is less than2β, the
advantages of the multi-group scheme decreases with the
increase ofγ. This is because the multi-group scheme
introduces larger rekey overhead when users switch SGs
by simply adding the subscription to some DGs. To see
this, let a user move from SGS1 to SG S2. When
using the independent-tree scheme, this user only need
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Fig. 13. Rekey overhead at the KDC with unevenly loaded SGs in
multi-service applications

to be added to the key tree associated with the DGD2

and no rekeying messages are necessary. When using
the multi-group scheme, we need to update keys on the
SG-subtree ofS1 and the DG-subtree ofD1. Therefore,
the performance gain reduces when more users tend to
switch SGs.

When γ continues to increase, however, the rekey
overhead of the multi-group scheme decreases. Partic-
ularly, when γ = 0.45, which describes the scenarios
when users are much more likely to switch SGs than
staying in the current SG or leaving the service, the
performance gain of the multi-group scheme is about
50% again. This phenomena is due to the fact that
the size of the SG-subtree is greatly reduces when a
significant potion of users are switching away from this
SG. In this case, removing a large potion of users from
the key tree using batch rekeying requires less rekey
messages than just removing several users.

E. Simulation of Multi-service applications

We also simulated the multi-service scenarios as illus-
trated in Figure 1(b), which contains3 DGs and7 SGs.
The users can subscribe any one or multiple DGs and
switch between any SGs. The transition matrix is 8 by
8, with Pj0 = 0.01, ∀j > 0 andPi,j = 0.00017, ∀i, j >
0 and i 6= j. N0 is fixed to be 1500. The values of
P0i, ∀i > 0, are adjusted such that the SGs contain
varying number of users and

∑I
i=1 P0i is maintained to

be the same.
The horizontal axis in Figure 13 is the ratio between

the number of users subscribing more than one DGs and
the number of users subscribing only one DG. Larger is
the ratio, more overlap is in DG membership. Figure 13
shows that the advantages of the multi-group scheme is
larger when more users subscribe multiple DGs.

VI. CONTRIBUTORY SOLUTIONS FOR HIERATICAL

ACCESS CONTROL

In many scenarios, it is not preferred to rely on a
centralized server that arbitrates the establishment of the
group key. This might occur in applications where group
members do not explicitly trust a single entity, or there
are no servers or group members who have sufficient
resources to maintain, generate and distribute keying
information. Thus, the distributed solutions of the key
management problem have seen considerable attention
[6], [13]–[21].

Many contributory schemes are inspired by the Diffie-
Hellman (DH) key exchange protocol [28]. Extend-
ing two-party DH protocol to the group scenario, the
schemes presented in [13], [16]–[18] arrange users in
a logical ring or chain and accumulate the keying ma-
terial while traversing group members one by one. In
[19]–[21], logical tree structures are introduced and the
number of rounds for the formation of the group key is
reduced to the logarithm of the group size. Due to their
scalability with large group size, the tree-based schemes
are selected as the basic building blocks to address the
hierarchical access control problem in the distributed
environments.

A. Tree-based contributory key management schemes

The tree-based scheme in [21] is based on applying
two-party DH protocol amongst two subgroups of users.
In particular, the users in the first subgroup, who share a
common subgroup keyKi, send{gKi mod p} to users
in the second subgroup; and the users in the second
subgroup, who share a common subgroup keyKj , send
{gKj mod p} to users in the first subgroup. Here,g is
the exponential base andp is modular based in the DH
protocol [28]. Then, users in two subgroups compute a
new key:Kij = gKiKj mod p. By doing so, these two
subgroups can be merged into a larger subgroup that
share the common keyKij .

The key tree used in [19] [21] is similar to that in
the centralized schemes, as shown in Figure 2. The
intermediate keys and the group key are generated from
bottom to up as follows. In the first round, users are
grouped into pairs and perform two-party DH. Thus, two
users form a subgroup. In each of the following rounds,
the subgroups formed in the previous round are paired up
and each pair of subgroups perform DH and are merged
into a larger subgroup with a shared key. Finally, all
users are merged into one group that share the group
key Kε. When a user joins or leaves the service, the
group key are regenerated in the similar fashion except
that some existing intermediate keys do not need to be
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recalculated [19], [21]. In the example shown in Figure
2, Kε is established in4 rounds. When user 16 leaves
the service, user 15 generates a new private key and 3
rounds should be performed to computeKnew

11 , Knew
1 ,

andKnew
ε .

B. Contributory Multi-group key management scheme

The multi-group key management schemes can be ex-
tended to the contributory environment by using the same
graph construction procedure presented in Section III-
B. Similar as in the centralized environments, separate
key trees for each DG must be constructed when us-
ing existing tree-based contributory schemes [19]–[21],
and the multi-group contributory schemes maintains one
integrated key graph for all users.

The key establishment protocols are straightfor-
ward extensions from the existing protocols in tree-
based contributory schemes [19]–[21]. When users
join/leave/switch, the keys need to be recalculated is the
same as the keys that need to be updated in the protocols
presented in Section III-B. The new keys are recalculated
by applying the DH protocol between the users who are
under the left child node and the users who are under
the right child node from bottom to up.
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Fig. 16. The number of rounds performed to establish the group
key with different number of SGs/Layers

For contributory key management schemes, the num-
ber of rounds is usually used to measure the commu-
nication, computation, and latency [29] associated with
key establishment and updating [18]–[20].

With the same simulation setup as that in Section V-B,
the performance of the independent-tree and multi-group
contributory key management schemes are compared for
different group size. Figure 14 shows the total number
of rounds to establish the group key, which reflects the
latency in key establishment [29]. Figure 15 shows the
number of rounds performed by the users in each SG,
which describes the users’ computation overhead. In
each round, a user performs two modular exponentiation.

With the same simulation setup as that in Section V-
B, the number of rounds for key updating are shown in
Figure 16 with different number of layers.

Compared with the tree-based contributory schemes,
the multi-group contributory scheme significantly re-
duces the computation and latency associated with key
establishment and updating. The advantages of the multi-
group contributory scheme is larger whenM increases.

VII. C ONCLUSION

This paper presented a multi-group key management
scheme that achieves hierarchical access control in se-
cure group communications, where multiple data streams
are distributed to group members with various access
privileges. We designed an integrated key graph, as well
as the rekey algorithms, which allow users subscrib-
ing/dropping the group communications and changing
access levels while maintaining the forward and back-
ward security. Compared with using the existing tree-
based key management schemes that are designed for a
single multicast session, the proposed scheme can greatly
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reduce the overhead associated with key management. In
the multi-layer services containing 4 layers, we observed
more than 50% reduction in the usage of storage, com-
putation, and communication resources in the centralized
environments, and the number of rounds to establish
and update keys in the contributory environments. More
important, the proposed scheme scales better than the
existing tree-based schemes, when the group applications
contains more data streams and require the mechanism
to manage more levels of access control.
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