
1

Dynamic Join-Exit Amortization and Scheduling
for Time-Efficient Group Key Agreement

Yinian Mao, Yan Sun, Min Wu and K. J. Ray Liu
Department of Electrical and Computer Engineering

University of Maryland, College Park
{ymao, ysun, minwu, kjrliu}@eng.umd.edu

Abstract— In this paper, we propose a time-efficient
contributory key agreement framework for secure com-
munications in dynamic groups. The proposed scheme
employs a special join-tree/exit-tree topology in the logical
key tree and effectively exploits the efficiency of amortized
operations. We derive the optimal parameters and design
an activation algorithm for the join and exit trees. We also
show that the asymptotic average time cost per user join
and leave event isΘ(log (log n)), wheren is the group size.
Our experiment results on both simulated user activities
and the real MBone data have shown that the proposed
scheme outperforms the existing tree-based schemes.

Index Terms— secure group communications, time effi-
ciency, dynamic tree topology.

I. I NTRODUCTION

T HE recent development in multicast communica-
tions has led to the deployment of many group-

oriented applications [1], such as video conferencing,
network game and data-collection in sensor networks
[2]. In many group communication systems, group com-
munication security is an indispensable component [3].
One important aspect of group communication security is
access control [4], which can be achieved by encrypting
the communication content using a secret key known to
all group members [5] [6]. Such a key is usually referred
to as thegroup key[7] [8] [9].

To address the access control issue in group com-
munications, many group key agreements have been
proposed [4], [7], [8], [10]–[22]. These schemes can be
classified into two categories, centralized schemes [7],
[10], [11], where a central key server is responsible for
generating and distributing keys to all group members,
and contributory schemes [12]–[14], where each group
member contributes his/her own share to the group key.
There are also key management schemes that emphasize
the underlying communication technology, such as the
Internet [5], [18] or wireless networks [15].

To establish and update a group key in a large dynamic
group often requires a considerable amount of effort.
Consider a group ofn users. Upon each user’s join, the

group key needs to be updated to prevent the joining
user from accessing the past communications. And upon
each user’s departure, the group key needs to be updated
to prevent the leaving user from accessing the future
communications. The communication and computation
overhead associated with key update is related to the
group sizen. When the group is large and thejoin and
leave events are frequent, the entire group may face a
big burden in key update.

Scalability in large dynamic groups has been one
of the main concerns for group key agreements [23].
Many existing works have addressed this problem both
from theoretical points of view [24], [25], and from
construction perspectives [8], [16]–[22], [26]. Previous
literature has also shown that, in group key management
schemes, a logicalkey treecan be employed to organize
the group users [7] [13]. The usage of a logical key tree
reduces the communications complexity associated with
join and leave events toΘ(log n), wheren is the group
size.

Since the two-party Diffie-Hellman (DH) protocol [27]
was proposed in 1976, many contributory key agree-
ments that extend the two-party DH to group scenarios
have been proposed [13], [14], [28], [29]. In some appli-
cations, contributory key agreements are particularly at-
tractive due to three reasons. First, it does not require the
existence of a secure communication channel. Second, it
does not put all trust in a third party (a key server) to
generate and distribute keys for group members. Third,
it does not need the establishment of a key server, which
could be infeasible in some practical situations [13].
While the communication and computation complexity
of contributory key agreements have drawn extensive
attention [13], [14], [24], [25], the discussion on the
time-efficiency issues of contributory schemes remains
limited. Furthermore, cryptographic primitives of a con-
tributory key agreement, such as modular multiplica-
tion and exponentiation [30], is computationally more
expensive than their centralized counterpart [5], which
poses a time-efficiency challenge to contributory key
agreements.

2

In this paper, we investigate time efficiency issues of
contributory key agreements. We first analyze the impor-
tance of time efficiency in contributory key agreements
and propose two performance metrics for tree-based
contributory schemes. To improve the time efficiency,
we design a novel key tree topology with join and
exit subtrees. Together with this key tree topology, we
propose a set of algorithms to handle user join and
leave events. We then integrate all the algorithms into a
Dynamic Subtree Group Key Agreement. The proposed
scheme employs amortization and scheduling techniques
to improve the time efficiency in large dynamic groups.
Our analytical results show that the proposed scheme
achieves an average operation time ofΘ(log (log n))
for a join event in asymptotic performance, and also
Θ(log (log n)) for a leave event when group dynam-
ics are knowna priori. In addition to the improved
time efficiency, our scheme has low communications
and computation complexity in terms of the number of
messages and exponentiations.

The rest of this paper is organized as follows. Sec-
tion II reviews tree-based contributory key agreement
and proposes two time efficiency performance metrics.
Section III discusses the join and exit tree topology
and algorithms used in our scheme. In Section IV, we
integrate these algorithms into a unified protocol. We
present the simulation results in Section V and discuss
several other performance aspects in Section VI. Finally,
the conclusions are drawn in Section VII.

II. BACKGROUND AND PERFORMANCEMETRICS

In this section, we discuss the time efficiency issues
of contributory key agreement and review a class of tree-
based contributory key agreements. The performance
metrics that measure the time efficiency are also for-
mulated.

A. Time-Efficiency Issues in Contributory Key Agree-
ments

Time efficiency of contributory key agreements de-
scribes the processing time of key updating due to
users’ join and departure. After sending the join request,
a join user has to wait until group keys are updated
before being able to participate in the group communi-
cation. Since both computing cryptographic primitives
and exchanging messages for a key update are time-
involving, this waiting time is not negligible. Similarly,
in the case of user departure, the amount of time needed
to recompute a new group key reflects the latency in
user revocation. In applications with large group size
and highly dynamic membership, the time efficiency of

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

M1 M2 M3 M4

(a) a key tree

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

M1 M2 M3

<3,6>

M4 M5

<3,7>

New intermediate
node

New member

(b) user join
Fig. 1. Notation for a key tree

the key management is an important quality-of-service
concern.

Many contributory key agreements aim at extending
the two-party DH protocol to the group scenario, such
as [13], [14], [28], [29]. These schemes evaluate their
time performance by the number of rounds needed to
perform the protocol. In general, the number of rounds
cannot always accurately reflect the time cost, especially
when different rounds represent different operations. For
example, in GDH.2 [29], one modular exponentiation is
performed in the first round, whilen modular exponenti-
ations are performed in then-th round. In this work, we
will focus on the tree-based contributory schemes using
DH, each round of which is to perform a two-party DH.
In this scenario, we can use round as the basic time unit.

B. Key Establishment and Update in Tree-based Con-
tributory Schemes

In this part, we briefly review rekeying operations
for join and leave events in tree-based contributory key
agreements [13], [14], [20], which can use two-party DH
protocol as a basic module. These schemes satisfy the
security requirements for group key distribution, namely,
group key secrecy, forward secrecy, backward secrecy
and key independence as defined in [13] and [8].

In a tree-based key agreement, three types of keys are
organized in a logical key tree, as illustrated in Fig.2(a).
The leaf nodes in a key tree represent the private keys
held by group members. The root of the tree corresponds
to the group key, which is held by all members in the
group. All other inner nodes represent subgroup keys,
each of which is held by the group members that are
descendants of the corresponding inner node. We adopt
the notations from [13] as follows:

Mi i-th group member
〈l, v〉 v-th node at levell in a key tree
K〈l,v〉 the key associated with the node〈l, v〉
g exponentiation base
p modular base

To establish a group key, the keys in the key tree are
computed in a bottom-up fashion. Users are first grouped
into pairs and each pair performs a two-party DH to form

3

a sub-group. These sub-groups will again pair up with
each other and perform the two-party DH to form larger
sub-groups. Continuing in this way, the final group key
can be obtained. As an example shown in Fig.1(a), there
are four members in the group. Denoting each member’s
private key asri, the group keyK〈0,0〉 is computed in 2
rounds as:

K〈0,0〉 = g(gr1r2 mod p)(gr3r4 mod p) mod p.

In a user join event, the new user will first be paired
with an insertion node (which may represent a group
of users) to perform a two-party DH. Then all the keys
on the path from the insertion node to the tree root are
updated recursively. An example is shown in Fig.1(b).

Upon a user’s departure, the leaving user’s node and
its parent node will be deleted from the key tree. Its
sibling node will assume the position of its parent node.
Then all the keys on the path from the leaving user’s
grandparent node to the tree root are recalculated from
the bottom to the top.

C. Time Complexity Performance Metrics

In this part we define two time complexity perfor-
mance metrics.

1) Average User Join/Leave Time Metric:The user
join time is defined as the number of rounds to process
key updates for a user join event. The average user join
time, denoted byATCjoin, is calculated as

ATCjoin =
Rjoin

Njoin
, (1)

whereRjoin is the total number of DH rounds performed
for Njoin join events.

Similarly, theuser leave timeis defined as the number
of rounds to process key updates for a user leave event.
The average user leave time, denoted byATCleave, is
calculated as

ATCleave =
Rleave

Nleave
, (2)

where Rleave is the total number of DH rounds per-
formed forNleave leave events.

2) User Join/Leave Latency Metric:We defineuser
join latency as the number of DH rounds needed for
a joining user to acquire a group key, anduser leave
latencyas the number of DH rounds needed to calculate
a new group key that is unknown to the leaving user.
The average user join and leave latency are denoted as
ALjoin andALleave, respectively.

In many existing key agreements [7], [13], [14], [28],
[29], the user join time and latency are always the
same. So does the user leave time and latency. In this
paper, we present a contributory key agreement that

Main Tree

Join
TreeExit

Tree

(a) join and exit tree

Main Tree

Join
Tree

(b) join tree only
Fig. 2. Join Exit Tree Topology

aims at reducing average user join/leave time cost, while
achieving a user join/leave latency that is even lower than
the corresponding user join/leave time.

III. JOIN-EXIT TREE: THE TOPOLOGY AND

ALGORITHMS

In this section, we present a logical key tree topology
that consists of three parts:join tree, exit tree, andmain
tree, as shown in Fig.2(a). Similar to the key trees shown
in [13] and [14], our proposed key tree is a binary tree.
We definejoin tree capacityand exit tree capacityas
the maximum number of users that can be held in the
join and exit tree, respectively. Using the join-exit tree
structure, we present a set of algorithms to handle user
join and leave events. We will also discuss how to choose
the join and exit tree capacity dynamically such that the
average user join and leave time are minimized.

The join tree and exit tree are designed to be consid-
erably smaller than the main tree. The joining users will
first be added to the join tree. Later on, when the join
tree reaches its capacity, all users in the join tree will
be relocated together into the main tree. In addition,
when users’ departure time is known, users that are
likely to leave in the near future will be moved in batch
from the main tree to the exit tree. The join-exit tree
design rationale resembles that of memory hierarchy in
computer design [31]. The join tree and exit tree are
similar to the cache, and the main tree is similar to the
main memory.

The join-exit tree topology can be reduced to a simpler
form. For example, when there is no user in the exit tree,
the topology reduces to a main tree and join tree topol-
ogy as shown in Fig.2(b). To distinguish the proposed
key tree topology from those described in the existing
schemes [14] [13], we call the key tree in Fig.2(a) a
join-exit tree and a key tree without special structures
a simple key tree. We specify the notations related to a
join-exit tree in Table I and present the detailed join-exit
tree algorithms.

4

TABLE I

JOIN-EXIT TREE NOTATIONS

NM number of users in main tree
CJ join tree capacity
CE exit tree capacity
ATCjoin average join time cost(in rounds)
ATCleave average leave time cost(in rounds)

<0,0>

<1,0> <1,1>

<2,0> <2,1> <2,2> <2,3>

M1 M2 M3 M4

<1,0>

<2,0> <2,1>

<3,0> <3,1> <3,2> <3,3>

M1 M2 M3 M4

<1,1>

<0,0>

M5

M5 join

New group
key

New
member

Fig. 3. User join at join tree root

A. The Join Tree Algorithm

We choose the average user join time as performance
metric, and address the following four problems in the
join tree algorithm:

1. If a join tree is used, where in the join tree do we
insert the joining user?

2. When the join tree is full, how do we relocate users
from the join tree to the main tree?

3. What is the optimal join tree capacity?
4. When should we choose to use a join tree?
1) Insertion Strategy for Joining Users:When the

join tree is empty and a new user wants to join, the
insertion node is chosen as the root of the current key
tree. The insertion is done by treating the entire existing
group as one logical user, and performing a two-party
DH between this logical user and the new user. Therefore
the new user forms the root of join tree. This process is
shown in Fig.3. When there are already some users in
the join tree, the insertion node is determined by the
Algorithm 1, whereusernumber(x) returns the number
of users under a given nodex in the key tree.

Algorithm 1 Finding the insertion node
x ← join-tree-root
while usernumber(x) 6= 2k for some integerk do

x ← rightchild(x)
end while
insertion-node← x

Fig.4 shows the growth of the join tree from 1 user to
8 users using the proposed insertion strategy.

2) Relocation Strategy:When the join tree is full,
users in the join tree will be relocated into the main
tree. Relocation can be done in two ways with different
tradeoffs. The difference of these two methods is whether
to preserve the sub-group keys in the original join tree.

Main Tree

Join
Tree

Main Tree

Join
Tree

Relocation

Fig. 5. Join Tree Relocation Method 1

Main Tree

Join
Tree

Main Tree

Relocation

Join tree & main tree
users

Fig. 6. Join Tree Relocation Method 2

The first method is illustrated in Fig.5. During relo-
cation, the subgroup keys among the users in the join
tree are preserved. Hence the join tree structure is also
preserved. All users in the join tree are viewed as a
logical user and this logical user is inserted into the main
tree. An insertion node is chosen as the leaf node on the
shortest branch in the main tree, shown as the black node
in Fig.5. Then all keys along the path (shown as a dashed
line in Fig.5) from the insertion node to the tree root are
updated.

The second relocation method is illustrated in Fig.6.
This method inserts the join tree users into different
nodes in the main tree. The insertion nodes are chosen
to be the leaf nodes in the shortest branches. After the
insertion nodes are found, a new group key is computed
in a bottom-up fashion. The keys on the branches from
all original join tree users to the tree root are updated.

The relocation time for the first and second method is
at mostlog NM and log NM + 1, respectively. The first
method has a lower communication cost. Only2 log NM

messages in total are sent during relocation key update.
The second method helps to maintain the balance of the
key tree, which reduces the expected cost of leave events
[13]. Because the second method addresses both the join
and leave time cost, we choose the second method for
our analysis and simulations.

3) Optimal Join Tree Capacity:Using the proposed
insertion strategy, the user join latency for thek-th user
in the join tree after the last join tree relocation is
measured asr(k) rounds, which is listed in Table II. We
observe that the sequence ofr(k) has a special property,

5

Fig. 4. Sequential User Join Strategy (show join tree only)

TABLE II

SEQUENTIAL USERJOIN LATENCY

k 1 2 3 4 5 6 7 8 9 10 ...
r(k) 1 2 2 3 2 3 3 4 2 3 ...

namely,

r(2p + q) = 1 + r(q), 0 < q ≤ 2p, (3)

where p is a non-negative integer, and q is a positive
integer.

Lemma 1. If the user join latencyr(k) for the k-th
user on the join tree is determined by (3), then

1
CJ

CJ∑

k=1

r(k) ≤ 1
2

log CJ + 1 (4)

holds for any positive integerCJ , and equality is
achieved whenCJ is a power of 2.

Proof: See appendix.
Consider the average join time forCJ users joining

the group after the last join tree relocation. Counting
the relocation time oflog NM , the average join time for
theseCJ users is

ATCjoin =
1

CJ
(

CJ∑

k=1

r(k) + log NM). (5)

Using Lemma 1, we obtain

ATCjoin ≤ 1
2

log CJ + 1 +
1

CJ
log NM . (6)

Since it is not easy to minimizeATCjoin directly, we
minimize its upper bound overCJ . The optimalCJ value
is given by:

Copt
J = argminx>0{

1
2

log x + 1 +
1
x

log NM}
= 2 lnNM (7)

This analysis leads to the following theorem:
Theorem 1. For a given main tree user number

NM and the insertion rule specified by Algorithm 1,
the optimal join tree capacityCJ is 2 ln NM , and the

average join time during two join tree relocations is
upper bounded by

ATCjoin ≤ 1
2

log log NM +
3
2

+
1

2 ln 2
− 1

2
log log e. (8)

Proof: Directly from (5)-(7).
The join tree capacity is thus determined by the

number of users in the main tree. This relation gives
us an upper bound on the average user join time cost.
However, since users can start to communicate once they
are added in the join tree, the user join latency does not
include the relocation overhead oflog NM rounds. When
CJ is equal to2 ln NM , the maximum join latency is
log CJ = log lnNM + 1 and the average join latency is
bounded by

ALjoin ≤ 1
2

log(log NM) +
3
2
− 1

2
log log e.

4) Activation Condition for Join Tree:We now dis-
cuss a condition under which a reduction in average join
time can be achieved by using join tree. We call this
condition the activation conditionfor join tree. Suppose
all users joining the group will first be added to the join
tree. Consider the case when users join one by one and
assume that the join tree and the main tree are balanced.
In the worst case, adding each user in the join tree incurs
a time cost oflog CJ rounds, and a batch relocation
incurs an additional time cost oflog NM rounds forCJ

users. So the average join time satisfies

ATCjoin ≤ log2 CJ + (log2 NM)/CJ . (9)

In the same situation, if a simple key tree with only
a main tree is used , the average join time would
be log NM . Therefore a reduction in time cost can be
obtained by using a join tree if the following inequality
holds:

log CJ + (log NM)/CJ ≤ log NM ,

or equivalently,

log NM ≥ CJ

CJ − 1
log CJ . (10)

6

This condition tells us when the number of users in the
group is large enough, a join tree should be activated
to reduce the average join time. We can show that there
exists a threshold group size,THjoin, such that allNM

values larger thanTHjoin can satisfy (10). Therefore
when the group size is smaller than or equal toTHjoin,
a simple key tree is used. Otherwise, a join tree is
activated.

Example

NM = 9, CJ = 2 lnNM ≈ 4;

log2 NM ≈ 3.2,
CJ

CJ − 1
log CJ ≈ 2.3.

This NM value satisfies (10). ThereforeTHjoin can be
set to 9.

B. The Exit Tree Algorithm

The join tree algorithm employs scheduling and amor-
tization techniques. Scheduling user departure, however,
is a harder task, because there is no simple way to
accurately predict user’s departure time and location in
the key tree. We assume that when users join the group
communication, most of them can have a self-estimated
departure time. In the following analysis, we show that
with perfect user departure information and the use of
exit tree, the average user departure time can be reduced
to Θ(log(log n)), wheren is the group size. Later in the
simulations, we also show that a reduction in average
departure time can be obtained when the estimated
departure time deviates from the actual departure time.

In this part, we first present a batch movement op-
eration, followed by the analysis on optimal exit tree
capacity. Finally we discuss the activation condition for
exit tree.

1) Batch Movement:The batch movementrefers to
the operations to move the potential leaving users from
the main tree to the exit tree. During the batch move-
ment, a series of key updates are performed and a new
group key is computed. The batch movement does not
affect the group communications since the old group
key can still be used without violating any security
requirement. And the new group key becomes effective
upon the completion of its computation.

When a new user joins the group, he/she will report
a self-estimated departure time. The whole group main-
tains a leaving queue, which is a priority queue [32]
indexed by users’ estimated departure time. Before each
join tree relocation, the departure information of the join
tree users are added to the leaving queue.

With a user’s departure, the leaving queue and a
condition for batch movement (to be presented below)
are checked. If the leaving user is in the leaving queue,

TABLE III

NOTATIONS FORBATCH MOVEMENT

B batch movement number
ρ exit tree residual rate
Up user # in exit tree right after the last batch movement
Uc current number of users in exit tree

his/her item will be removed from the leaving queue. If
the batch movement condition is met, the firstB users
in the leaving queue will be moved to the exit tree in
batch, whereB is referred to as thebatch movement size.
The insertion locations for these users in the exit tree are
chosen to maintain the balance of the exit tree. In Table
III we introduce batch movement notations.

Our proposed batch movement condition is

Uc ≤ ρUp, (11)

where we use the exit tree residual rate (or residual rate
for short),ρ ∈ (0, 1), as well asUp and Uc, to control
the timing of batch movement. Using this condition, if
we start from an empty exit tree (Up = 0), the number
of users in the exit tree after thek-th batch movement
will be

∑k−1
i=0 ρiB, which will converge toB/(1− ρ) as

k goes to infinity. Therefore we set the exit tree capacity
CE as

CE = B/(1− ρ). (12)

2) Optimal Exit Tree Capacity:In deriving the op-
timal exit tree capacity, we minimize an upper bound
of the average leaving time over the exit tree capacity.
This upper bound for the average leaving time is not
as tight as that for the average join time because of the
randomness in users’ departure.

A batch movement ofB users to the exit tree will incur
a time cost of(log NM +2). Each user leaving from the
exit tree will incur at most a time cost of(log CE + 2).
Thus the average user leave time for theseB users is
bounded by

ATCleave ≤ 1
B

(log NM + 2) + (log CE + 2).

Using (12), we can rewrite it as

ATCleave ≤ 1
(1− ρ)CE

(log NM + 2) + (log CE + 2).

(13)
Minimizing the right hand side of (13), we obtain

Copt
E = argminx

{
1

(1− ρ)x
(log NM + 2) + (log x + 2)

}

=
lnNM + 2 ln 2

(1− ρ)
. (14)

Therefore when exit tree is activated and its capacity is
computed according to (14), the average leaving time is
bounded by

ATCleave ≤ log(log NM + 2) + δ,

7

whereδ = 2− log(1− ρ)+ log e− log log e. Combining
(14) and (12) leads to the optimal batch movement size

Bopt = lnNM + 2 ln 2. (15)

In summary, the exit tree capacity is chosen as

CE =

{
0 if no exit tree used;
(lnNM + 2 ln 2)/(1− ρ) otherwise.

3) Activation Condition for Exit Tree:Recall that the
average leaving time using a simple key tree withNM

users islog NM . Compared with (13), a reduction in the
average leaving time can be achieved by the proposed
exit tree strategy if

1
(1− ρ)CE

(log NM + 2) + (log CE + 2) ≤ log NM ,

or equivalently,

CE ≥ log NM + 2
(1− ρ)(log NM − log CE − 2)

. (16)

Combining (14) and (16), we have the activation condi-
tion as

log CE ≤ log NM − log e− 2. (17)

Condition (17) indicates that, when the group size is
large enough, employing an exit tree can reduce the
average leaving time. Similar to the join tree case, we
can show that there is a threshold group size,THleave,
such that allNM values larger thanTHleave can satisfy
(17). Only when the group size is larger thanTHjoin,
the exit tree is activated. We notice that the join tree is
activated before the exit tree is. This is because satisfying
(10) requires a smallerNM than satisfying (17).

Example

NM = 256, CE = 7;

log CE ≈ 2.8, log NM − log e− 2 ≈ 4.6.

This NM value satisfies (17). ThereforeTHleave can be
set to 256.

IV. DYNAMIC SUBTREE GROUPKEY AGREEMENT

In this section we present a contributory group key
agreement that jointly use the join and exit tree. Based on
the results in Section III, the join and exit tree capacity
is adjusted according to the group size. So we name it
Dynamic SubTree (DST) group key agreement.

A. Group Key Establishment

In prior works, one of the assumptions in key es-
tablishment stage is that many users are available at
the same time [28] [20]. Thus parallel computation can
take place to establish a group key [20]. In reality,
however, there are situations when users join the group
sequentially, and early arrival users are not necessary to
wait for all users to be present.

In DST scheme, when many users are present at the
same time, subgroup keys in the key tree are computed in
a bottom-up fashion in parallel to obtain the final group
key. This technique is also described in [20]. Otherwise
we establish and update the group key using the join
protocol (discussed below) of DST agreement. The exit
tree will not be activated during the key establishment
stage.

B. Join Protocol

The threshold group size for join tree activation is set
to THjoin = 9. Key update for a user join event follows
the next four steps, as illustrated in Fig.3:

1. Choose an insertion node in the key tree;
2. Generate a new inner node to assume the position

of the insertion node;
3. The insertion node and the new member become

children of the new inner node;
4. Update all the keys associated with the nodes on

the path from the new inner node to the root.
Before the join tree is activated, Algorithm 1 is used in

the simple key tree to choose the insertion node. When
the group size is larger than 9, the join tree is activated.
The join tree capacityCJ is computed according to (7),
and rounded to the nearest integer. If inserting the new
user according to Algorithm 1 will not make the join
tree height more thandlog NMe, the insertion strategy is
followed. Otherwise, the insertion node will be chosen
as the minimum level leaf node in the join tree. This
modification takes into consideration of user departure
from the join tree, and helps make the join tree balanced.

When the join tree becomes full, following the cor-
responding algorithms in Section III, all users in the
join tree will be relocated into the main tree, and their
departure information is put into the leaving queue. After
the relocation, the join and exit tree capacity (if exit
tree is activated) are updated according to (7) and (14),
respectively.

C. Leave Protocol

The threshold group size for exit tree activation is set
to THleave = 256. The exit tree residual rate is set to
ρ = 0.5. Key update for a leave event follows the next
four steps first:

8

1. delete the leaving user node and its parent node,
2. promote the leaving user’s sibling node to their

parent node’s position,
3. update all keys associated with the nodes on the

path from the leaving user’s grandparent node to the tree
root.

4. if the leaving user’s information is in the leaving
queue, remove the corresponding information.

In addition to the above four steps, if a user is leaving
from the main tree or the exit tree, some extra operations
are necessary.

When the user is leaving from the main tree and there
are also users in the join tree, the key update for user
relocation and user departure are performed together.
By doing so the time cost for user relocation is further
amortized. After the key update, the join tree capacity is
updated according to (7). And the exit tree capacity is
also updated if the value computed from (14) becomes
larger than the current user number in the exit tree.

When the user is leaving from the exit tree and the
batch movement condition is satisfied, a batch movement
will be performed according to the batch movement
strategy in Section III. Following the batch movement,
the join and exit tree capacity are updated in the same
way as described in the last paragraph.

In practice, when the number of users in a group is
always aroundTHleave, using the previous activation
condition will lead to repeated switching of the key tree
topology, thus incur a considerable overhead. To stablize
the key tree topology, we propose a delayed switching
policy. The leave tree is activated whenNM ≥ 2THleave

and deactivated whenNM < THleave. This will improve
the stability of the key tree.

V. EXPERIMENTS AND PERFORMANCEANALYSIS

In this section, we present three sets of simulations
according to the ways user activity data are acquired. The
first set of simulations focuses on group key establish-
ment. We consider the scenario of sequential user join.
The second set of simulations is based on user activity
data collected from previous MBone multicast sessions
[33]. The third set of simulations shows the results for
a large dynamic group, whose user activity data are
randomly generated according to a probabilistic model.
In each simulation, the performance of our proposed
scheme is compared with TGDH scheme [13], a typical
of tree-based key agreement.

A. Sequential User Join Key Establishment

For sequential user join, the proposed DST protocol
uses a simple key tree for small group size, and activate
the join tree when the group size is larger than 9.

10
0

10
1

10
2

10
3

10
4

10
5

0

1

2

3

4

5

6

7

8
Sequential user join average time cost

Group size

A
T

C
jo

in

Dynamic join tree (DJT)
Analytical upper bound for DJT
TGDH

Fig. 7. Sequential User Join Average Time Cost

In Fig.7, we plot the average user join time for
sequential user join using TGDH [13] and the proposed
DST. The x-axis indicates the group size, and the y-axis
indicates the average user join time for the corresponding
group size. It can be seen that our dynamic subtree
scheme achieves the same performance as TGDH when
the group size is small, and outperforms TGDH scheme
when the group size becomes large. From the figure we
can see that, when a large group of users is joining
the communication group, TGDH achieves an average
time cost ofΘ(log N), and the proposed DST scheme
achieves an asymptotic performance ofΘ(log (log N)).
The dashed line is the theoretic upper bound for the
average time cost of sequential user join from (8).

B. MBone Data Experiment

From the study of Multicast Backbone (MBone) mul-
ticast sessions, Ammeroth et al. observed that the MBone
multicast group size is usually small (typically 100-200),
and users either stay in the group for a short period of
time or a very long time [34] [33].

Using our proposed DST scheme, an exit tree will
not be activated for a group size smaller thanTHleave.
However, when a user stays in the group for only a short
period of time, it is highly possible that this user joins
the group in the join tree and leaves from the join tree
without getting to the main tree. This analysis indicates
that our proposed DST scheme should outperform the
existing tree-based schemes for the same user activities
in MBone multicast sessions.

We chose three user activity log files1 from three
MBone multicast sessions. Two of these three sessions
are NASA space shuttle coverage and the other one

1ftp://ftp.cc.gatech.edu/people/kevin/release-data

9

0 1000 2000 3000 4000 5000 6000 7000 8000
0

20

40

60
N

(k
)

 Group Dynamic Information of the CBC Newsworld On−Line Test on 10/29/1996

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

J(
k)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

L(
k)

Time (minute)

Fig. 8. MBone Session User Activity: CBC News World

1 2 3

0

1

2

3

4

5

6

Simulation Using MBone Data

A
ve

ra
ge

 J
oi

n
T

im
e DST

TGDH

1 2 3

0

1

2

3

4

5

A
ve

ra
ge

 L
ea

ve
 T

im
e

NASA 1 NASA 2 CBC

NASA 1 NASA 2 CBC

1.688

4.716

1.740

5.651

2.056

4.961

2.730

3.651 3.665

4.595

3.266

3.977

Fig. 9. Simulation Using MBone Data

is CBC News World online test. The user activities
can be shown using a plot along the time line (in
minutes), whereN(t) is the current number of users in
the multicast group,J(t) is the number of users joining
the group at this moment, andL(t) is the number of
users currently leaving the group. These log files serve
as the user activity input for DST protocol simulation.
Comparing the simulation results of the average time
cost for our DST protocol and for TGDH in Fig.9, we
can see that our proposed DST scheme has about50%
improvement in user join, and about20% improvement
in user leave.

C. Simulated Data Experiment

In the simulated data experiment, we generate user ac-
tivities according to a probabilistic model. The duration
of our simulation is 5000 time units and is divided into
four non-overlapping segments,T1 to T4. In each time
segmentTi, users’ arrival time is a Poisson process with

TABLE IV

STATISTICAL PARAMETERS FORUSERBAHAVIOR

duration 0-199 200-499 500-4499 4500-5000
λi 7 5 2 1
µi 2500 500 500 500

long stay short stay

TABLE V

SIMULATED DATA EXPERIMENT COMPARISON

average worst case
join leave join leave

DST 2.352 8.523 14 14
TGDH 10.825 9.956 12 12

mean arrival rateλi and users’ staying time follows an
exponential distribution with mean valueµi. The Poisson
arrival and exponential staying time are suggested in
[33]. The values ofλi andµi are listed in Table IV.

The group size is initialized to be 0. In a total time
of 5000 time units, there are 12000 user join events and
10983 user leave events in total. The maximum group
size at any time is about 2800 and the group size at the
end of simulation is about 1100. Each user’s arrival time
is known. And we assume the estimated staying time are
Gaussian distributed with the mean value being actual
staying time, and the standard deviation proportional to
the mean. LetR be the ratio of the standard deviation
and the mean. We simulate the average join and leave
time for differentR values in the range of [0,1].

The simulation results in Fig.10 show that, when the
estimated departure time deviates from the true value
further, the average leave time increases and the average
join time decreases. Meanwhile, the overall average
processing time of join and leave events increases slowly.
This is because the less accurate the estimated departure
time is, the more users tend to leave from the main tree.
Recall that in our protocol when a user leaves from the
main tree, users in the join tree are relocated into the
main tree without extra time cost. Hence the user leave
time is traded for the user join time. Since the increase
in the leaving time dominates the tradeoff, the overall
average processing time increases.

In Table V we show the average join and leave time
for our proposed DST whenR = 0.3. We also show
the worst case user join and leave time. Here we count
the time cost for relocation or batch movement into the
time cost of the preceding join or leave event. These
worst case operation time remains the same for any
R value. Comparing these time cost results with those
for TGDH, we can see that even when the estimated
departure time is inaccurate, our proposed DST scheme
can still improve the average join and leave time.

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
2

3

4

5

6

7

8

9

10

R

A
ve

ra
ge

 O
pe

ra
tio

n
T

im
e

Simulated Data Experiment

Average Join Time
Average Leave Time
Average Overall Operation Time

Fig. 10. Simulated Data Experiment

VI. D ISCUSSIONS

A. Protocol Complexity

1) Time Complexity from Other Perspectives:In addi-
tion to the time cost for each join and leave event, which
is Θ(log(log n)) on average in our proposed scheme,
it is interesting to examine the amount of time a user
would spend on key update during his/her lifetime in the
group, and the amount of time the whole group would
spend on key update during the lifetime of the group
communications.

Consider a sequence ofn join events followed byn
leave events. We assume that the first user joining the
group is also the last one to leave the group. In the DST
protocol, this first user will spend the majority of his/her
life time in the main tree for key management purpose.
On average, this first user will spend 2-round time for
each user join event and 3-round time for each user
leave event, assuming all users report their staying time
accurately. Therefore this user has spentΘ(n) rounds in
total on key update during his/her life time. Since this
first user has the longest life-time among all users,O(n)
is the upper bound for any user’s total key update time.
For tree-based key agreement using a simple key tree,
this first user will spendΘ(n log n) rounds in total on
key update.

From the system perspective, for the same sequence
of events described above, the whole group will spend
Θ(n log(log n)) rounds in key update using the proposed
DST protocol. If a key agreement using a simple key tree
with only a main tree is employed, the time cost will be
Θ(n log n).

2) Communication Complexity:In this part, we dis-
cuss the average number of messages for user join and
leave events under two scenarios.

In the first scenario, we assume that multicast is
available for group communications. In particular, If
a message needs to be sent tom users, sending one
multicast message is enough. When the subgroup keys
in the join tree are preserved during relocation (reloca-
tion method 1), the average number of messages for a
join event isΘ(log(log n)). Otherwise, using relocation
method 2, the average number of messages needed for
a join event isΘ(log n). For a leave event, the average
number of messages is alwaysΘ(log n).

In the second scenario, we assume that multicast is
not available. If a message needs to be sent tom users,
m duplicate copies of the same message must be sent.
In this case the average number of messages is O(n) for
both user join and leave event.

3) Computation Complexity:In the proposed DST
protocol, the total number of exponentiations performed
by all users is O(n) during the key update for a join
or leave event. Such a measurement capture the overall
computation load of the entire group.

For a particular user, the average number of exponenti-
ations performed by him/her during join and leave events
is less or equal to the average number of DH rounds in
the same scenario. Therefore it is O(log(log n)).

B. The Group Coordinator

As suggested in [12], we prefer to have a group
coordinator in the implementation of our scheme. The
role of this group coordinator is to store the current key
tree topology and manage future topological changes,
such as determining the join location and organizing the
batch movement. However, the trust in the coordinator
is limited, since it is not responsible for generating and
distributing keys. In implementation, the coordinator can
be either a centralized or distributed third party. It can
also consists of several or all members in the group.

The time complexity of the algorithms that a group
coordinator needs to perform, such as a priority queue
or some graph algorithms, may seemingly exceed those
engaged in key updates. However, since we use DH
round as the time unit for key update, the complexity of
computing modular exponentiation in DH protocol is a
dominating factor. Therefore the algorithmic complexity
for the group coordinator would not be an important
factor in the overall system time complexity.

VII. C ONCLUSIONS

In this paper, we have applied dynamic amortization
and scheduling techniques for time-efficient group key
agreement and presented a new contributory key agree-
ment, known as the Dynamic Subtree Group Key Agree-
ment, for secure group communications. Built upon a

11

tree-based key management framework, our proposed
scheme employs a main tree as well as two subtrees
that serve as temporary buffers for joining and leaving
users. The join and exit subtrees help amortize the time
cost for user join and leave events.

Focusing on time efficiency issues in contributory
key management, our proposed scheme can achieve an
average time cost ofΘ(log(log n)) for user join and
leave events for a group ofn users. In addition, our DST
scheme reduces the total time cost of key update over
a user’s lifetime fromΘ(n log n) by the prior work to
Θ(n), and over a system’s life time fromΘ(n log n) to
Θ(n log(log n)). In the mean time, our proposed scheme
also achieves low communication and computation over-
head. These results suggest substantial savings by our
proposed scheme, especially for large dynamic groups.

We have shown through analysis that the optimal
subtree capacity is at the log scale of the group size.
We have also designed an adaptive algorithm to activate
the join/exit subtrees when the gain over using main
tree only is substantial. Our experimental results on
both simulated user activities and the real MBone data
have shown that the proposed scheme outperforms the
existing tree-based schemes in the events of group key
establishment, user join and leave by a large margin for
large and dynamic groups, and does not sacrifice any
time efficiency for small groups.

APPENDIX

In this appendix, we will show that

1
A

A∑

k=1

r(k) ≤ 1
2

log A + 1 (18)

wherer(1) = 1, r(2p+q) = 1+r(q), p is a non-negative
integer, andq ∈ [1, 2p] is a positive integer. The quality
holds whenA is a power of2.

We first use induction to show that whenA = 2p,
p = 0, 1, 2, ..., the equality holds.

WhenA = 1, LHS = RHS = 1.
Next, we assume the equality holds forA = 2p,

namely,

1
2p

2p∑

k=1

r(k) =
1
2

log 2p + 1. (19)

Consider the case ofA = 2p+1.

LHS =
1

2p+1

2p+1∑

k=1

r(k)

=
1

2p+1

(
2p∑

k=1

r(k) +
2p∑

k=1

(r(k) + 1)

)

=
1

2p+1

(
2 · (1

2
log 2p + 1)2p + 2p

)
(∗)

=
1
2

log 2p+1 + 1 = RHS,

where (∗) is obtained by using the induction assumption
(19).

We now prove the inequality for any positive integer
A. It is obvious to see that inequality is true forA = 1, 2.
By induction, suppose that the inequality is true for all
1 ≤ A < 2p + q, and we considerA = 2p + q, where
0 < q ≤ 2p.

LHS =
1
A

A∑

k=1

r(k)

=
1
A

(
2p∑

k=1

r(k) +
q∑

k=1

(r(k) + 1)

)

≤ 1
A

(
(
1
2

log 2p + 1)2p + q(
1
2

log q + 1) + q

)
(∗∗)

=
1
2

{
1
A

(2p log 2p + q log q + 2q)
}

+ 1, (20)

where (∗∗) is obtained by using the induction assump-
tion.

To prove that (20)≤ 1
2 log A+1 is equivalent to prove

2p

A
log 2p +

q

A
log(4q) ≤ log A. (21)

Applying the identityln k =
∫ k
1

1
xdx, log k = log e ·

ln k, (21) can be written as an integration form

log e

{
2p

A

∫ 2p

z

1
x

dx +
q

A

∫ 4q

1

1
x

dx

}
≤ log e

∫ A

1

1
x

dx

⇔ 2p
∫ A

2p

1
x

dx + q

[∫ A

1

1
x

dx−
∫ 4q

1

1
x

dx

]
≥ 0 (22)

We denoteB = 2p and fixp (henceB is fixed). Thus
A = B + q. It is straightforward to see that (22) holds
whenB + q ≥ 4q, or 1 ≤ q ≤ B

3 .
WhenB/3 ≤ q ≤ B, (22) is equivalent to

2p

A

∫ A

2p

1
x

dx− q

A

∫ 4q

A

1
x

dx ≥ 0. (23)

Sinceq is the only variable in (23), letf(q) be the LHS
of (23), and considerf(q) as a continuous function ofq

f(q) =
B

B + q

∫ B+q

B

1
x

dx− q

B + q

∫ 4q

B+q

1
x

dx,

whereq ∈ [B/3, B]. Taking the derivative off(q), we
get

d

dq
f(q) = − B

(B + q)2

∫ 4q

B

1
x

dx < 0. (24)

In previous proof we showed that the equality of
(18) holds whenA is power of 2, i.e.f(B) = 0. We

12

also showed thatf(q) > 0 for 1 ≤ q ≤ B
3 . Since

f(B/3) > 0, f(B) = 0, f(q) is continuous on[B/3, B]
and f ′(q) < 0, we must havef(q) > 0 on [B/3, B].
Thus (22) also holds forB/3 ≤ q ≤ B. This completes
the proof.

REFERENCES

[1] S. Paul,Multicast on the Internet and its applications, Kluwer
academic Publishers, 1998.

[2] L. Eschenauer and V.D. Gligor, “A key-management scheme for
distributed sensor networks,” inProceedings of the 9th ACM
conference on Computer and communications security. 2002,
pp. 41–47, ACM Press.

[3] M.J. Moyer, J.R. Rao, and P. Rohatgi, “A survey of security
issues in multicast communications,”IEEE Network, pp. 12–23,
Nov./Dec. 1999.

[4] H. Harney and C. Muckenhirn, “Group key management
protocol (GKMP) architecture,” RFC 2094, July 1997.

[5] P. Judge and M. Ammar, “Gothic: A group access control
architecture for secure multicast and anycast,” inProceedings
of the IEEE INFOCOM’02, 2002, pp. 1547–1556.

[6] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and
B. Pinkas, “Multicast security: A taxonomy and some efficient
constructions,” inProceedings of the IEEE INFOCOM’99,
1999, pp. 708–716.

[7] C.K. Wong, M. Gouda, and S.S. Lam, “Secure group commu-
nications using key graphs,”IEEE Transactions on Networking,
vol. 8, no. 1, pp. 16–30, Feb 2000.

[8] A. Perrig, D. Song, and J.D. Tygar, “ELK, a new protocol for
efficient large-group key distribution,” inProceedings of the
IEEE Symposium on Security and Privacy, 2001, pp. 247–262.

[9] H. Harney and C. Muckenhirn, “Group key management
protocol (GKMP) specification,” RFC 2093, July 1997.

[10] D. Wallner, E. Harder, and R. Agee, “Key management for
multicast: Issues and architecture,” Internet-Draft draft-wallner-
key-arch-00.txt, June 1997.

[11] I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha,
“Key management for secure internet multicast using boolean
function minimization techniques,” inProceedings of the IEEE
INFOCOM’99, 1999, vol. 2, pp. 689–698.

[12] M. Steiner, G. Tsudik, and M. Waidner, “CLIQUES: a new
approach to group key agreement,” inProceedings of the 18th
International Conference on Distributed Computing Systems,
1998, pp. 380–387.

[13] Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key
agreement for dynamic collaborative groups,” inProceedings
of the 7th ACM Conference on Computer and Communications
Security. 2000, pp. 235–244, ACM Press.

[14] L.R. Dondeti and S. Mukherjee, “DISEC: a distributed frame-
work for scalable secure many-to-many communication,” in
Proceedings of the 5th IEEE Symposium on Computers and
Communications, 2000, pp. 693–698.

[15] Y. Sun, W. Trappe, and K.J.R. Liu, “An efficient key manage-
ment scheme for secure wireless multicast,” inProceedings of
the IEEE International Conference on Communications, 2002,
vol. 2, pp. 1236–1240.

[16] R. Molva and A. Pannetrat, “Scalable multicast security in
dynamic groups,” inProceedings of the 6th ACM conference
on Computer and communications security, 1999, pp. 101–112.

[17] S. Mittra, “Iolus: a framework for scalable secure multicasting,”
in Proceedings of the ACM SIGCOMM’97. 1997, pp. 277–288,
ACM Press.

[18] S. Banerjee and B. Bhattacharjee, “Scalable secure group
communication over IP multicast,”IEEE Journal on Selected
Areas in Communications, vol. 20, no. 8, pp. 1511–1527, Oct.
2002.

[19] M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner,
“The VersayKey framework: Versatile group key management,”
IEEE Journal on Selected Areas in Communications, pp. 1614–
1631, Sept. 1999.

[20] W. Trappe, Y. Wang, and K.J.R. Liu, “Establishment of
conference keys in heterogeneous networks,” inProceedings of
the IEEE International Conference on Communications, 2002,
pp. 1236–1240.

[21] B. Sun, W. Trappe, Y. Sun, and K.J.R. Liu, “A time-efficient
contributory key agreeement scheme for secure group commu-
nications,” inProceedings of the IEEE International Conference
on Communications, 2002, pp. 1159–1163.

[22] S. Zhu, S. Setia, and S. Jajodia, “Performance optimizations for
group key management schemes,” inProceedings of the 23rd
International Conference on Distributed Computing Systems,
2003, pp. 163–171.

[23] A. Ballardie, “Scalable multicast key distribution,” RFC 1949,
May 1996.

[24] K. Becker and U. Wille, “Communication complexity of group
key distribution,” inProceedings of the 5th ACM conference on
Computer and communications security. 1998, pp. 1–6, ACM
Press.

[25] J. Snoeyink, S. Suri, and G. Varghese, “A lower bound
for multicast key distribution,” inProceedings of the IEEE
INFOCOM’01, 2001, vol. 1, pp. 422–431.

[26] D. Balenson, D. McGrew, and A. Sherman, “Key manage-
ment for large dynamic groups: One-way function trees and
amortized initialization,” IETF Internet draft (work in progress),
August 2000.

[27] W. Diffie and M. Hellman, “New directions in cryptography,”
IEEE Transactions on Information Theory, vol. IT-22, no. 6,
pp. 644–654, November 1976.

[28] I. Ingemarsson, D.T. Tang, and C.K. Wong, “A conference key
distribution system,”IEEE Transactions on Information Theory,
vol. IT-28, no. 5, pp. 714–720, September 1982.

[29] M. Steiner, G. Tsudik, and M. Waidner, “Diffie-hellman key
distribution extended to group communication,” inProceedings
of the 3rd ACM conference on Computer and communications
security. 1996, pp. 31–37, ACM Press.

[30] S.E. Eldridge and C.D. Walter, “Hardware implementation
of montgomery’s modular multiplication algorithm,” IEEE
Transactions on Computers, vol. 42, no. 6, pp. 693–699, June
1993.

[31] J.L. Hennessy and D.A. Patterson,Computer architecture: a
quantitative approach, chapter 5, Morgan Kaufmann publishers,
Inc., second edition, 1996.

[32] T.H. Corman, C.E. Leiserson, and R.L. Rivest,Introduction to
algorithms, chapter 7, The MIT Press and McGraw-Hill Book
Company, second edition, 2001.

[33] K.C. Almeroth and M.H. Ammar, “Multicast group behavior
in the Internet’s multicast backbone (MBone),”IEEE Commu-
nications Magazine, pp. 124–129, June 1997.

[34] K.C. Almeroth, “A long-term analysis of growth and usage
patterns in the multicast backbone (MBone),” inProceedings
of the IEEE INFOCOM’00, March 2000, vol. 2, pp. 824–833.

