Dynamic Join-Exit Amortization and Scheduling
for Time-Efficient Group Key Agreement

Yinian Mao, Yan Sun, Min Wu and K. J. Ray Liu
Department of Electrical and Computer Engineering
University of Maryland, College Park
{ymao, ysun, minwu, kjrlig@eng.umd.edu

Abstract—In this paper, we propose a time-efficient group key needs to be updated to prevent the joining
contributory key agreement framework for secure com- user from accessing the past communications. And upon
munications in dynamic groups. The proposed scheme egch user's departure, the group key needs to be updated
employs a special join-tree/exit-tree topology in the logical 15 prevent the leaving user from accessing the future
key tree and effectively exploits the efficiency of amortized communications. The communication and computation

operations. We derive the optimal parameters and design : . .
an activation algorithm for the join and exit trees. We also overhead associated with key update is related to the

show that the asymptotic average time cost per user join 9rOUP Sizen. When the group is large and thein and
and leave event i (log (log n)), where n is the group size. leaveevents are frequent, the entire group may face a
Our experiment results on both simulated user activities big burden in key update.
and the real MBone data have shown that the proposed Scalability in large dynamic groups has been one
scheme outperforms the existing tree-based schemes. of the main concerns for group key agreements [23].
Index Terms—secure group communications, time effi- Many existing works have addressed this problem both
ciency, dynamic tree topology. from theoretical points of view [24], [25], and from
construction perspectives [8], [16]-[22], [26]. Previous
literature has also shown that, in group key management
schemes, a logicdley treecan be employed to organize
HE recent development in multicast communicahe group users [7] [13]. The usage of a logical key tree
tions has led to the deployment of many groupeduces the communications complexity associated with
oriented applications [1], such as video conferencingin and leave events t6(logn), wheren is the group
network game and data-collection in sensor networkize.
[2]. In many group communication systems, group com- Since the two-party Diffie-Hellman (DH) protocol [27]
munication security is an indispensable component [3as proposed in 1976, many contributory key agree-
One important aspect of group communication securitynsents that extend the two-party DH to group scenarios
access control [4], which can be achieved by encryptihgve been proposed [13], [14], [28], [29]. In some appli-
the communication content using a secret key known ¢ations, contributory key agreements are particularly at-
all group members [5] [6]. Such a key is usually referremlactive due to three reasons. First, it does not require the
to as thegroup key[7] [8] [9]. existence of a secure communication channel. Second, it
To address the access control issue in group codwees not put all trust in a third party (a key server) to
munications, many group key agreements have beggnerate and distribute keys for group members. Third,
proposed [4], [7], [8], [10]-[22]. These schemes can bedoes not need the establishment of a key server, which
classified into two categories, centralized schemes [¢huld be infeasible in some practical situations [13].
[10], [11], where a central key server is responsible faWhile the communication and computation complexity
generating and distributing keys to all group membersf contributory key agreements have drawn extensive
and contributory schemes [12]-[14], where each groatention [13], [14], [24], [25], the discussion on the
member contributes his/her own share to the group kéyne-efficiency issues of contributory schemes remains
There are also key management schemes that emphaliiziged. Furthermore, cryptographic primitives of a con-
the underlying communication technology, such as tinébutory key agreement, such as modular multiplica-
Internet [5], [18] or wireless networks [15]. tion and exponentiation [30], is computationally more
To establish and update a group key in a large dynangégpensive than their centralized counterpart [5], which
group often requires a considerable amount of effogoses a time-efficiency challenge to contributory key
Consider a group of users. Upon each user’s join, theagreements.

I. INTRODUCTION

In this paper, we investigate time efficiency issues of
contributory key agreements. We first analyze the impor-
tance of time efficiency in contributory key agreements
and propose two performance metrics for tree-based @ @
contributory schemes. To improve the time efficiency,
we design a novel key tree topology with join and
exit subtrees. Together with this key tree topology, we": MM M
propose a set of algorithms to handle user join and (a) a key tree (b) user join
leave events. We then integrate all the algorithms intoF&@- 1. Notation for a key tree
Dynamic Subtree Group Key Agreement. The proposgge key management is an important quality-of-service
scheme employs amortization and scheduling techniqygscern.
to improve the time efficiency in large dynamic groups. Many contributory key agreements aim at extending
Our analytical results show that the proposed schemp two-party DH protocol to the group scenario, such
achieves an average operation time @flog (logn)) as [13], [14], [28], [29]. These schemes evaluate their
for a join event in asymptotic performance, and al§gne performance by the number of rounds needed to
©(log (logn)) for a leave event when group dynamperform the protocol. In general, the number of rounds
ics are knowna priori. In addition to the improved cannot always accurately reflect the time cost, especially
time efficiency, our scheme has low communicationgnhen different rounds represent different operations. For
and computation complexity in terms of the number @ixample, in GDH.2 [29], one modular exponentiation is
messages and exponentiations. performed in the first round, while modular exponenti-

The rest of this paper is organized as follows. Seftions are performed in the-th round. In this work, we
tion Il reviews tree-based contributory key agreemegf focus on the tree-based contributory schemes using
and proposes two time efficiency performance metriqSH, each round of which is to perform a two-party DH.

Section Il discusses the join and exit tree topology this scenario, we can use round as the basic time unit.
and algorithms used in our scheme. In Section IV, we

integrate these algorithms into a unified protocol. WB. Key Establishment and Update in Tree-based Con-
present the simulation results in Section V and discugibutory Schemes

several other performance aspects in Section VI. Finally,|n this part, we briefly review rekeying operations
the conclusions are drawn in Section VII. for join and leave events in tree-based contributory key
agreements [13], [14], [20], which can use two-party DH
1l. BACKGROUND AND PERFORMANCEMETRICS protocol as a basic module. These schemes satisfy the
security requirements for group key distribution, namely,
?oup key secrecy, forward secrecy, backward secrecy
nd key independence as defined in [13] and [8].
“n a tree-based key agreement, three types of keys are
rganized in a logical key tree, as illustrated in Fig.2(a).
The leaf nodes in a key tree represent the private keys
g_eld by group members. The root of the tree corresponds
to the group key, which is held by all members in the
group. All other inner nodes represent subgroup keys,
Time efficiency of contributory key agreements desach of which is held by the group members that are

scribes the processing time of key updating due #escendants of the corresponding inner node. We adopt
users’ join and departure. After sending the join requegie notations from [13] as follows:

a join user has to wait until group keys are updated

before being able to participate in the group communi- i i-th group member

cation. Since both computing cryptographic primitives (/;v) | v-th node at level in a key tree

and exchanging messages for a key update are time- (v | the key associated with the nodev)
involving, this waiting time is not negligible. Similarly, 9 exponentiation base

in the case of user departure, the amount of time needed? modular base

to recompute a new group key reflects the latency inTo establish a group key, the keys in the key tree are
user revocation. In applications with large group sizeomputed in a bottom-up fashion. Users are first grouped
and highly dynamic membership, the time efficiency afto pairs and each pair performs a two-party DH to form

In this section, we discuss the time efficiency issu
of contributory key agreement and review a class of tre

metrics that measure the time efficiency are also fo(;
mulated.

A. Time-Efficiency Issues in Contributory Key Agre
ments

a sub-group. These sub-groups will again pair up with O
each other and perform the two-party DH to form larger

sub-groups. Continuing in this way, the final group key

can be obtained. As an example shown in Fig.1(a), there é
are four members in the group. Denoting each member’s

private key as-;, the group keyK o, is computed in 2

rounds as:

r1r2 mod r3ra mod
(g p)(g ?) mod p. (@) join and exit tree (b) join tree only

Join Exit Tree Topology

Koo =9

.. A . _Fig. 2.

In a user join event, the new user will first be paired
with an insertion node (which may represent a grouims at reducing average user join/leave time cost, while
of users) to perform a two-party DH. Then all the keygchieving a user join/leave latency that is even lower than
on the path from the insertion node to the tree root afige corresponding user join/leave time.
updated recursively. An example is shown in Fig.1(b).

Upon a user’s departure, the leaving user’s node and
its parent node will be deleted from the key tree. Its
sibling node will assume the position of its parent node.
Then all the keys on the path from the leaving user’s
grandparent node to the tree root are recalculated fro
the bottom to the top.

Il1. JOIN-EXIT TREE: THE TOPOLOGY AND
ALGORITHMS

n]n this section, we present a logical key tree topology
that consists of three partgin tree, exit tree andmain
C. Time Complexity Performance Metrics tree as shown in Fig.2(a). Similar to the key trees shown
In this part we define two time complexity perfor—Irl [13] gnd_ [.14]’ our propqsed key _tree 'S a b'”?“y tree.
: We definejoin tree capacityand exit tree capacityas
mance metrics.) .
the maximum number of users that can be held in the

1) Average User Join/Leave Time Metrid@he user :) : g :
join time is defined as the number of rounds to proceé%'n and exit tree, respectively. Using the join-exit tree
ucture, we present a set of algorithms to handle user

key updates for a user join event. The average user j&ﬁﬁ . .
time, denoted byATC,q, is calculated as join and leave events. We will also discuss how to choose

the join and exit tree capacity dynamically such that the

ATC.. . — Rjoin (1) average user join and leave time are minimized.
Jowm —)
Njoin The join tree and exit tree are designed to be consid-
whereR;,;, is the total number of DH rounds performecgrably smaller than the main tree. The joining users will
for Njein jOin events. first be added to the join tree. Later on, when the join

Similarly, theuser leave timés defined as the numbertree reaches its capacity, all users in the join tree will
of rounds to process key updates for a user leave evdif. relocated together into the main tree. In addition,
The average user leave time, denoted A Cj.qve, is When users’ departure time is known, users that are

calculated as likely to leave in the near future will be moved in batch
ATCloppe = Rleav67) from the main tree to the exit tree. The join-exit tree
Nicave design rationale resembles that of memory hierarchy in
where Rjeq. is the total number of DH rounds percomputer design [31]. The join tree and exit tree are
formed for N.,.. leave events. similar to the cache, and the main tree is similar to the

2) User Join/Leave Latency MetridWe defineuser main memory.
join latency as the number of DH rounds needed for The join-exit tree topology can be reduced to a simpler
a joining user to acquire a group key, ander leave form. For example, when there is no user in the exit tree,
latencyas the number of DH rounds needed to calculatiee topology reduces to a main tree and join tree topol-
a new group key that is unknown to the leaving usesgy as shown in Fig.2(b). To distinguish the proposed
The average user join and leave latency are denotedkag tree topology from those described in the existing
ALjoin and ALjcqye, respectively. schemes [14] [13], we call the key tree in Fig.2(a) a

In many existing key agreements [7], [13], [14], [28]join-exit tree and a key tree without special structures
[29], the user join time and latency are always th&simple key treeWe specify the notations related to a
same. So does the user leave time and latency. In tjam-exit tree in Table | and present the detailed join-exit
paper, we present a contributory key agreement thege algorithms.

TABLE | .
JOIN-EXIT TREENOTATIONS Relocation
Ny number of users in main tree
Cy join tree capacity
Cg exit tree capacity

ATCjoin | average join time cost(in rounds)
AT Cleave | average leave time cost(in rounds)

Fig. 5. Join Tree Relocation Method 1

Relocation

Fig. 3. User join at join tree root

Join tree & main tree
users

A. The Join Tree Algorithm

We choose the average user join time as performance _ _
metric, and address the following four problems in thfdd. 6. Join Tree Relocation Method 2
join tree algorithm:

1. If a join tree is used, where in the join tree do we The first method is illustrated in Fig.5. During relo-

insert the joining user? cation, the subgroup keys among the users in the join
2. When the join tree is full, how do we relocate usefigee are preserved. Hence the join tree structure is also

from the join tree to the main tree? preserved. All users in the join tree are viewed as a
3. What is the optimal join tree capacity? logical user and this logical user is inserted into the main

4. When should we choose to use a join tree? {ree. An insertion node is chosen as the leaf node on the
~ 1) Insertion Strategy for Joining Userswhen the shortest branch in the main tree, shown as the black node
join tree is empty and a new user wants to join, th@ Fig.5. Then all keys along the path (shown as a dashed

insertion node is chosen as the root of the current kg¥e in Fig.5) from the insertion node to the tree root are
tree. The insertion is done by treating the entire existingqated.

group as one logical user, and performing a two—party.l.he second relocation method is illustrated in Fig.6.

th f th t of ioin t Thi fiis method inserts the join tree users into different
€ new userorms e root ot Join ree. ThiS Process iy, yes in the main tree. The insertion nodes are chosen

tshhov'vn_ mt Flg.:?h W.hen 'i_here a(rje a_llrejldty so_medusertstbnbe the leaf nodes in the shortest branches. After the
€ Join tree, the nsertion hode 1S determined by qﬁsertion nodes are found, a new group key is computed
Algorithm 1, Wheregsernumbfzr(a:) retumns the number in a bottom-up fashion. The keys on the branches from
of users under a given nodein the key tree. all original join tree users to the tree root are updated.

Algorithm 1 Finding the insertion node The relocation time for the first and second method is
= — join-tree-root at mostlog Ny; andlog Ny + 1, respectively. The first
while usernumber(z) # 2* for some integek: do ~ Method has a lower communication cost. Onlyg N

x « rightchild(z) messages in total are sent during relocation key update.

The second method helps to maintain the balance of the

key tree, which reduces the expected cost of leave events

[13]. Because the second method addresses both the join

gnd leave time cost, we choose the second method for

our analysis and simulations.

end while
insertion-node— x

Fig.4 shows the growth of the join tree from 1 user t
8 users using the proposed insertion strategy.

2) Relocation StrategyWhen the join tree is full, 3) Optimal Join Tree CapacityUsing the proposed
users in the join tree will be relocated into the maimsertion strategy, the user join latency for thé¢h user
tree. Relocation can be done in two ways with differetm the join tree after the last join tree relocation is
tradeoffs. The difference of these two methods is whethmeasured asg(k) rounds, which is listed in Table Il. We
to preserve the sub-group keys in the original join treebserve that the sequencerdk) has a special property,

......... 8 Side tree user #

8 gﬁ\ gﬁ?@ """"" <”\f\

0t AQ\@ AbAN

M1 M2 M3 M4 M1 M2 M3 M4 M5 ME M7 Ms

Fig. 4. Sequential User Join Strategy (show join tree only)
TABLE I
SEQUENTIAL USERJOIN LATENCY
k 112|3|4|5|6|7|8|9]|10

average join time during two join tree relocations is
upper bounded by

1
gj1]2]2]3]2[3]3[4]2]3 AT Cjoin < = loglogNM%—3+7—flogloge ®8)
2 2In2 2
namely, Proof: Directly from (5)-(7).

» b The join tree capacity is thus determined by the
r(2¥ +q) = 1+7(9), 0<g=2 (3) number of users in the main tree. This relation gives

where p is a non-negative integer, and q is a positiyg &1 UPPEr bound on the average user join time cost.
integer. However, since users can start to communicate once they

Lemma 1. If the user join latency-(k) for the k-th are added in the join tree, the user join latency does not
user on the .join tree is determined by (3), then include the relocation overheadlog IV, rounds. When
' Cy is equal to21In Ny, the maximum join latency is

1 & 1 log C; = logIn Ny + 1 and the average join latency is
Yo > orlk) < 5logCs+1 (4) bounded by
J k=1
1 3 1
holds for any positive integeC’;, and equality is ALjoin < 3 log(log Nar) + 575 logloge.

achieved wher('y is a power of 2.

Proof: See appendix. 4) Activation Condition for Join TreeWe now dis-

Consider the average join time f@f; users joining cuss a condition under which a reduction in average join

the group after the last join tree relocation. Countlng{ne can be achieved by using join tree. We call this
the relocation time ofog N, the average join time for onditionthe activation conditiorfor join tree. Suppose
theseC; users is all users joining the group will first be added to the join

tree. Consider the case when users join one by one and

Cr assume that the join tree and the main tree are balanced.
AT Cjoin = a(z r(k) +log Nas).) In the worst case, adding each user in the join tree incurs
k=1 a time cost oflog C; rounds, and a batch relocation
Using Lemma 1, we obtain incurs an additional time cost dbg N, rounds forC;

1 1 users. So the average join time satisfies
ATCipin < =logCy+1+ —log Nyy. 6

Jom 2 CJ () ATCjom S 10g2 CJ + (log2 NM)/CJ (9)
Since it is not easy to minimizelT'C},;, directly, we

L i In the same situation, if a simple key tree with only
minimize its upper bound oveTr ;. The optimalC'; value

a main tree is used , the average join time would

is given by: be log Njs. Therefore a reduction in time cost can be
. 1 1 obtained by using a join tree if the following inequality
t
cr = argmlnmo{5 logz + 1+ - log Nas} holds:

= 2InNy (7
log Cy + (log Nar)/Cy < log N,
This analysis leads to the following theorem:
Theorem 1. For a given main tree user numbe
Ny and the insertion rule specified by Algorithm 1,
the optimal join tree capacity’; is 21In Ny, and the

pr equivalently,

Cy
> .
logNM_C _110gCJ (10)

TABLE Il

This condition tells us when the number of users in the
NOTATIONS FORBATCH MOVEMENT

group is large enough, a join tree should be activated B
to reduce the average join time. We can show that there | | ot ree residual rate

exists a threshold group siz€H .., such that allV, U, | user # in exit tree right after the last batch movement
values larger tharf'Hj,;, can satisfy (10). Therefore U. | current number of users in exit tree

whgn tr:e ?(roup Size 1S smzllerotEan or equa(E_ tﬁ_ Jjomnrhis/her item will be removed from the leaving queue. If
a simple key tree is used. Otherwise, a join tree {ie batch movement condition is met, the fifstusers

batch movement number

activated. in the leaving queue will be moved to the exit tree in
Example batch, whereB is referred to as thbatch movement size
Ny =9,C5 =2In Ny ~ 4; The insertion locations for these users in the exit tree are
c, chosen to maintain the balance of the exit tree. In Table
logy Nas = 3.2, o1 log Cy ~ 2.3. Il we introduce batch movement notations.

7 Our proposed batch movement condition is

This N, value satisfies (10). Therefo®H;,;, can be

setto 9. Ue < pUp, (11)

. . where we use the exit tree residual rate (or residual rate
B. The Exit Tree Algorithm

- _ _ for short),p € (0,1), as well asU,, and U,, to control

The join tree algorithm employs scheduling and amofhe timing of batch movement. Using this condition, if
tization techniques. Scheduling user departure, howevge start from an empty exit tred/f = 0), the number
is a harder task, because there is no simple way dpysers in the exit tree after theth batch movement
accurately predict user’s departure time and location || pe Skt yi B, which will converge toB/(1 — p) as
1= 1

the key tree. We assume that when users join the grofigoes to infinity. Therefore we set the exit tree capacity
communication, most of them can have a self-estimatgd, 55

departure time. In the following analysis, we show that Cg = B/(1 - p). (12)

with perfect user departure information and the use of , _ , .

exit tree, the average user departure time can be reduce® OPtimal Exit Tree Capacityin deriving the op-

to ©(log(logn)), wheren is the group size. Later in theliMal exit tree capacity, we minimize an upper bound

simulations, we also show that a reduction in averaQé the average leaving time over the exit tree capacity.

departure time can be obtained when the estimateliS upper bound for the average leaving time is not

departure time deviates from the actual departure tim@ tight as that for the average join time because of the
In this part, we first present a batch movement of2NdOMness in users’ departure. _ -

eration, followed by the analysis on optimal exit tree A Patch movementaB users to the exit tree will incur

capacity. Finally we discuss the activation condition fd# ime cost of{log Nas +2). Each user leaving from the
exit tree. exit tree will incur at most a time cost dfog Cp + 2).
1) Batch Movement:The batch movementefers to Thus the average user leave time for thésausers is
the operations to move the potential leaving users frdpunded by
. . . _ 1
the main tre_ze to the exit tree. During the batch move AT Creave < — (log Nar +2) + (log C + 2).
ment, a series of key updates are performed and a new B
group key is computed. The batch movement does ndging (12), we can rewrite it as
affect the group communications since the old group

key can still be used without violating any security“}] Cleave < 1-p)Cx (log Nas +2) + (log Cp +2).

requirement. And the new group key becomes effective (13)
upon the completion of its computation. Minimizing the right hand side of (13), we obtain

When a new user joins the group, he/she will report, , , 1
a self-estimated departure time. The whole group mairie = argmin, {W(log N +2) + (logz + 2)}
tains aleaving queugwhich is a priority queue [32] In Ny +21In2
indexed by users’ estimated departure time. Before each = W (14)

join tree relocation, the departure information of the joi
tree users are added to the leaving queue.

With a user's departure, the leaving queue and
condition for batch movement (to be presented beIO\Bﬁ)unded by
are checked. If the leaving user is in the leaving queue, AT Cieqve < log(log Nas + 2) + 4,

ﬁlherefore when exit tree is activated and its capacity is
cgmputed according to (14), the average leaving time is

whered = 2 —log(1 — p) +log e — loglog e. Combining A. Group Key Establishment

(14) and (12) leads to the optimal batch movement size|, prior works, one of the assumptions in key es-
tablishment stage is that many users are available at
the same time [28] [20]. Thus parallel computation can
take place to establish a group key [20]. In reality,
however, there are situations when users join the group
sequentially, and early arrival users are not necessary to
wait for all users to be present.

In DST scheme, when many users are present at the
o » , same time, subgroup keys in the key tree are computed in
3) Activation Condition for Exit TreeRecall that the 5 pot1om-up fashion in parallel to obtain the final group
average leaving time using a simple key tree Wi, ey This technique is also described in [20]. Otherwise
users islog Ny Compared with (13), a reduction in theye establish and update the group key using the join
average leaving time can be achieved by the proposgdhiocol (discussed below) of DST agreement. The exit

B =1n Ny + 21n2. (15)

In summary, the exit tree capacity is chosen as

o — 0 if no exit tree used,
E=) (InNy +2In2)/(1—p) otherwise.

exit tree strategy if tree will not be activated during the key establishment
1 stage.
ﬁ(logNM +2) + (logCp + 2) < log Ny,
(1=p)C B. Join Protocol
or equivalently, The threshold group size for join tree activation is set
to T'Hjqin = 9. Key update for a user join event follows
Cp > log Njs +2 . (16) the next four steps, as illustrated in Fig.3:
~ (1 p)(log Nas —log Cr — 2) 1. Choose an insertion node in the key tree;

- I . 2. Generate a new inner node to assume the position
;:(;Jr:n:;nmg (14) and (16), we have the activation cond(lj-f the insertion node;

3. The insertion node and the new member become
log Cr < log Ny —loge — 2. (17) children of the new inner node;

4. Update all the keys associated with the nodes on
Condition (17) indicates that, when the group size {se path from the new inner node to the root.
large enough, employing an exit tree can reduce thepefore the join tree is activated, Algorithm 1 is used in
average leaving time. Similar to the join tree case, Wge simple key tree to choose the insertion node. When
can show that there is a threshold group siZéf;...., the group size is larger than 9, the join tree is activated.
such that allVy, values larger thafl’H;q.. can satisfy The join tree capacity’; is computed according to (7),
(17). Only when the group size is larger th@iH;.», and rounded to the nearest integer. If inserting the new
the exit tree is activated. We notice that the jOin tree iﬁ;er according to A|gor|thm 1 will not make the join
activated before the exit tree is. This is because satisfyifige height more thafiog Ny, the insertion strategy is

(10) requires a smalleN),, than satisfying (17). followed. Otherwise, the insertion node will be chosen
Example as the minimum level leaf node in the join tree. This
Ny = 256,Cp = 7; modification takes into consideration of user departure

from the join tree, and helps make the join tree balanced.

When the join tree becomes full, following the cor-
responding algorithms in Section Ill, all users in the
join tree will be relocated into the main tree, and their
departure information is put into the leaving queue. After
the relocation, the join and exit tree capacity (if exit
tree is activated) are updated according to (7) and (14),
IV. DYNAMIC SUBTREE GROUPKEY AGREEMENT respectively.

log Cg =~ 2.8,log Ny —loge — 2 =~ 4.6.

This Ny, value satisfies (17). TherefofleH,.,.,. can be
set to 256.

In this section we present a contributory group key- Leave Protocol
agreement that jointly use the join and exit tree. Based onThe threshold group size for exit tree activation is set
the results in Section lll, the join and exit tree capacity T H.... = 256. The exit tree residual rate is set to
is adjusted according to the group size. So we namepit= 0.5. Key update for a leave event follows the next
Dynamic SubTree (DST) group key agreement. four steps first:

Sequential user join average time cost

1. delete the leaving user node and its parent node, s
2. promote the leaving user’s sibling node to their ©

X Dynamic join tree (DJT) o

parent node’s position, | |- Avatcalupperbouna o o7 .
3. update all keys associated with the nodes on the .l 0o©
path from the leaving user’s grandparent node to the tree °

root. I o
4. if the leaving user’s information is in the leaving I
queue, remove the corresponding information. 0% - T T e
In addition to the above four steps, if a user is leaving 3| T o
from the main tree or the exit tree, some extra operations | .- x
are necessary. .
When the user is leaving from the main tree and there :f ®
are also users in the join tree, the key update for usel ® | | | |
relocation and user departure are performed together ' 10 10’ 1’ 10°
By doing so the time cost for user relocation is further Group size
amortized. After the key update, the join tree capacity iy 7. sequential User Join Average Time Cost
updated according to (7). And the exit tree capacity is
also updated if the value computed from (14) becomes,, Fig.7, we plot the average user join time for

larger than the current user number in the exit tree. sequential user join using TGDH [13] and the proposed
When the user is leaving from the exit tree and th§sT The x-axis indicates the group size, and the y-axis
batch movement condition is satisfied, a batch movemeRticates the average user join time for the corresponding
will be performed according to the batch moveme'léfroup size. It can be seen that our dynamic subtree
strategy in Section Ill. Following the batch movemeng.name achieves the same performance as TGDH when
the join and exit tree capacity are updated in the safig, group size is small, and outperforms TGDH scheme
way as described in the last paragraph. when the group size becomes large. From the figure we
In practice, when the number of users in a group &, see that, when a large group of users is joining
always aroundl’Hicqve, USINg the previous actvationyne communication group, TGDH achieves an average
condition will lead to repeated switching of the key treg . st ofO(log N), and the proposed DST scheme
topology, thus incur a considerable overhead. To stablizgniaves an asymptotic performance@flog (log NV)).

the key tree topology, we propose a delayed switchiRgye gashed line is the theoretic upper bound for the

policy. The leave tree is activated whéf; > 2T'Hiewe ayerage time cost of sequential user join from (8).
and deactivated wheN;; < T Hjeqve- This will improve

the stability of the key tree. B. MBone Data Experiment

From the study of Multicast Backbone (MBone) mul-

V. EXPERIMENTS AND PERFORMANCEANALYSIS ticast sessions, Ammeroth et al. observed that the MBone

In this section, we present three sets of simulationsulticast group size is usually small (typically 100-200),
according to the ways user activity data are acquired. TAed users either stay in the group for a short period of
first set of simulations focuses on group key establistime or a very long time [34] [33].
ment. We consider the scenario of sequential user join.Using our proposed DST scheme, an exit tree will
The second set of simulations is based on user activitgt be activated for a group size smaller tHBH ., ..
data collected from previous MBone multicast sessiokfwever, when a user stays in the group for only a short
[33]. The third set of simulations shows the results fqyeriod of time, it is highly possible that this user joins
a large dynamic group, whose user activity data atiee group in the join tree and leaves from the join tree
randomly generated according to a probabilistic modelithout getting to the main tree. This analysis indicates
In each simulation, the performance of our proposedat our proposed DST scheme should outperform the
scheme is compared with TGDH scheme [13], a typicekisting tree-based schemes for the same user activities
of tree-based key agreement. in MBone multicast sessions.

We chose three user activity log filegrom three
MBone multicast sessions. Two of these three sessions

For sequential user join, the proposed DST protocgle NASA space shuttle coverage and the other one
uses a simple key tree for small group size, and activate

the join tree when the group size is larger than 9. tp://ftp.cc.gatech.edu/people/kevin/release-data

ATCjoin
S
o]
|
1
|

A. Sequential User Join Key Establishment

Group Dynamic Information of the CBC Newsworld On-Line Test on 10/29/1996
T T

TABLE IV
STATISTICAL PARAMETERS FORUSERBAHAVIOR

g duration | 0-199 | 200-499| 500-4499| 4500-5000
o Ai 7 5 2 1
. ‘ ‘ ‘ ‘ ‘ ‘ ‘ 10 2500 500 500 500

0 1000 2000 3000 4000 5000 6000 7000 8000
long stay short stay
TABLE V
‘ SIMULATED DATA EXPERIMENT COMPARISON
o 1000 2000 3000 4000 5000 000 7000 8000 average worst case
20 join leave | join | leave
15F DST 2352 | 8.523| 14 14
Z10p TGDH | 10.825| 9.956 | 12 12

©w & @

Average Join Time

-

°

~ © IS @

Average Leave Time

AN s s P
1000

hand w - AWIA
2000

WAy o MBI AN o
4000 5000
Time (minute)

o
3000

L bl it
6000 7000

Lt 4 I

8000

MBone Session User Activity: CBC News World

Simulation Using MBone Data

1 2

r 1.688

T T 5,651
4.716

1.740

4.961

[DST
1 TGDH

2.056

NASA 1

1 2
T

NASA 2

CBC

3
T

2.730

" 4595

3651 3.665

3.977

i

N

mean arrival rate\; and users’ staying time follows an
exponential distribution with mean valyg. The Poisson
arrival and exponential staying time are suggested in
[33]. The values of\; and u; are listed in Table IV.

The group size is initialized to be 0. In a total time
of 5000 time units, there are 12000 user join events and
10983 user leave events in total. The maximum group
size at any time is about 2800 and the group size at the
end of simulation is about 1100. Each user’s arrival time
is known. And we assume the estimated staying time are
Gaussian distributed with the mean value being actual
staying time, and the standard deviation proportional to
the mean. LetR be the ratio of the standard deviation
and the mean. We simulate the average join and leave
time for differentR values in the range of [0,1].

IH The simulation results in Fig.10 show that, when the
. estimated departure time deviates from the true value
further, the average leave time increases and the average
join time decreases. Meanwhile, the overall average
is CBC News World online test. The user activitieprocessing time of join and leave events increases slowly.
can be shown using a plot along the time line (ihis is because the less accurate the estimated departure
minutes), whereN (¢) is the current number of users irtime is, the more users tend to leave from the main tree.
the multicast group,J(¢) is the number of users joiningRecall that in our protocol when a user leaves from the
the group at this moment, anfl(t) is the number of main tree, users in the join tree are relocated into the
users currently leaving the group. These log files serm®in tree without extra time cost. Hence the user leave
as the user activity input for DST protocol simulationtime is traded for the user join time. Since the increase
Comparing the simulation results of the average tinie the leaving time dominates the tradeoff, the overall
cost for our DST protocol and for TGDH in Fig.9, weaverage processing time increases.
can see that our proposed DST scheme has a#fdt |n Table V we show the average join and leave time
improvement in user join, and abo2®% improvement for our proposed DST whe® = 0.3. We also show
in user leave. the worst case user join and leave time. Here we count
the time cost for relocation or batch movement into the
time cost of the preceding join or leave event. These
In the simulated data experiment, we generate user amrst case operation time remains the same for any
tivities according to a probabilistic model. The duratio® value. Comparing these time cost results with those
of our simulation is 5000 time units and is divided intdor TGDH, we can see that even when the estimated
four non-overlapping segment$; to 7. In each time departure time is inaccurate, our proposed DST scheme
segmenftl;, users’ arrival time is a Poisson process withan still improve the average join and leave time.

o

NASA 1 NASA 2

Fig. 9. Simulation Using MBone Data

C. Simulated Data Experiment

10

Simulated Data Experiment

10 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ In the first scenario, we assume that multicast is
available for group communications. In particular, If

a message needs to be sentntousers, sending one

s 1 multicast message is enough. When the subgroup keys
in the join tree are preserved during relocation (reloca-
tion method 1), the average number of messages for a
o] join event isO©(log(logn)). Otherwise, using relocation
W method 2, the average number of messages needed for
°] a join event is©(logn). For a leave event, the average

—— Average Join Time M
—©- Average Overall Operation Time n u m ber Of messages IS alwaw log n) :

—A— Average Leave Time |
In the second scenario, we assume that multicast is
s] not available. If a message needs to be senttosers,
, ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ m duplicate copies of the same message must be sent.

Tt oo e e e e In this case the average number of messagesis 0t
both user join and leave event.

Average Operation Time

Fig. 10. Simulated Data Experiment 3) Computation Complexitylin the proposed DST
protocol, the total number of exponentiations performed
VI. DISCUSSIONS by all users is Of) during the key update for a join

or leave event. Such a measurement capture the overall
computation load of the entire group.

1) Time Complexity from Other Perspectivés:addi- For a particular user, the average number of exponenti-
tion to the time cost for each join and leave event, whidtions performed by him/her during join and leave events
is ©(log(logn)) on average in our proposed schemégs less or equal to the average number of DH rounds in
it is interesting to examine the amount of time a usefie same scenario. Therefore it isl@(logn)).
would spend on key update during his/her lifetime in the .
group, and the amount of time the whole group woul@- The Group Coordinator
spend on key update during the lifetime of the group As suggested in [12], we prefer to have a group
communications. coordinator in the implementation of our scheme. The

Consider a sequence of join events followed byn role of this group coordinator is to store the current key
leave events. We assume that the first user joining ttiee topology and manage future topological changes,
group is also the last one to leave the group. In the DSTich as determining the join location and organizing the
protocol, this first user will spend the majority of his/hebatch movement. However, the trust in the coordinator
life time in the main tree for key management purposts. limited, since it is not responsible for generating and
On average, this first user will spend 2-round time fatistributing keys. In implementation, the coordinator can
each user join event and 3-round time for each udee either a centralized or distributed third party. It can
leave event, assuming all users report their staying tirakso consists of several or all members in the group.
accurately. Therefore this user has sp@ft) rounds in ~ The time complexity of the algorithms that a group
total on key update during his/her life time. Since thisoordinator needs to perform, such as a priority queue
first user has the longest life-time among all usé€rg;) or some graph algorithms, may seemingly exceed those
is the upper bound for any user’s total key update timengaged in key updates. However, since we use DH
For tree-based key agreement using a simple key tregynd as the time unit for key update, the complexity of
this first user will spend(nlogn) rounds in total on computing modular exponentiation in DH protocol is a
key update. dominating factor. Therefore the algorithmic complexity

From the system perspective, for the same sequeifiee the group coordinator would not be an important
of events described above, the whole group will spefiactor in the overall system time complexity.
©(nlog(logn)) rounds in key update using the proposed

A. Protocol Complexity

DST protocol. If a key agreement using a simple key tree VIlI. CONCLUSIONS
with only a main tree is employed, the time cost will be In this paper, we have applied dynamic amortization
O(nlogn). and scheduling techniques for time-efficient group key

2) Communication Complexityln this part, we dis- agreement and presented a new contributory key agree-
cuss the average number of messages for user join ameht, known as the Dynamic Subtree Group Key Agree-
leave events under two scenarios. ment, for secure group communications. Built upon a

11

tree-based key management framework, our proposed = p1+1 <2 . (llog 2P 4 1)2P +2P> (%)
scheme employs a main tree as well as two subtrees % 2

that serve as temporary buffers for joining and leaving = —log2’*'+1=RHS,

users. The join and exit subtrees help amortize the time _ 2 _ _) _ _
cost for user join and leave events. where §) is obtained by using the induction assumption

Focusing on time efficiency issues in contributor{19)-

key management, our proposed scheme can achieve affeé now prove the inequality for any positive integer
average time cost 0®(log(logn)) for user join and A. Itis obvious to see that inequality is true fdr= 1, 2.
leave events for a group afusers. In addition, our DST By induction, suppose that the inequality is true for all
scheme reduces the total time cost of key update over 4 < 2’ + ¢, and we consider = 2¥ + ¢, where

a user’s lifetime fromO(nlogn) by the prior work to 0 < ¢ < 2.
©(n), and over a system’s life time from(nlogn) to A
O(nlog(logn)). In the mean time, our proposed schemeHS = > r(k)
also achieves low communication and computation over- k=1

|

head. These results suggest substantial savings by our 1 2 El
proposed scheme, especially for large dynamic groups. A Z r(k) + Z(T(k) +1)
. . k=1 k=1
We have shown through analysis that the optimal 171 1
subtree capacity is at the log scale of the group size. < 1 ((2 log 2P 4+ 1)2P + Q(i logg+1) + Q> ()
We have also designed an adaptive algorithm to activate 1(1
the join/exit subtrees when the gain over using main = 3 {A(Zp log 2p+qlogq+2q)} +1, (20)

tree only is substantial. Our experimental results on
both simulated user activities and the real MBone daf{1€re ¢x) is obtained by using the induction assump-
have shown that the proposed scheme outperforms tog-

existing tree-based schemes in the events of group key © Prove that (20 3log A+1is equivalent to prove
establishment, user join and leave by a large margin for op q

large and dynamic groups, and does not sacrifice any Zlog 20+ A
Applying the identitylnk = [Ldz, logk = loge -

time efficiency for small groups.
Ink, (21) can be written as an integration form

log(4q) < log A. (21)

APPENDIX
o T g il A1
In this appendix, we will show that loge {A/z Sdr+ Z/l mdw} < 10g€/1 e
1 & 1 A1 A1 49 1
S r(k) < SlogA+1 (18) @210/ Sdr+ g / —d:c—/ Sdr| >0 (22)
= ow T 1 T 1 T

wherer(1) = 1, 7(2°+q) = 1+r(q), p is a non-negative ~ \We denoteB_: 2P {_:md fixp (henceB is fixed). Thus
integer, and; € [1,2?] is a positive integer. The qualityA = B + ¢. It is straightforward to see that (22) holds

holds whenA is a power of2. whenB + ¢ >4g,0rl1 <g< s _
We first use induction to show that wheh = 2¢, WhenB/3 < ¢ < B, (22) is equivalent to
p=0,1,2,..., the equality holds. op A q g Y1
— — — — _ = — > 0.
WhenA =1, LHS = r:QHS = 1|: s |) A Lo xdx 1 /A xdw >0 (23)
nalr\lnee)it’ we assume the equality holds far = 27, Sincegq is the only variable in (23), lef(q) be the LHS
Y L2) of (23), and considef(¢) as a continuous function af
—> r(k)=-log2” +1. (19) B [B+a1 ¢ a1
24 2 flq) = 7/ —dx — 7/ —dux,
B+qgJB = B+qJBigx
Consider the case of = 2. whereq € [B/3, B]. Taking the derivative off(q), we
LHS = r(k) d B / a1
p+1 —flQ) =5 | —dz<0. 24
23 | dqf(q) Brat)s oM< (24)

1 2P 2P | . .
_ r(k) + r(k) + 1 n previous proof we showed that the equality of
2p+1 (kz::l (k) kz::l((k))> (18) holds whenA is power of 2, i.e.f(B) = 0. We

12

also showed thatf(¢q) > 0 for 1 < g < %. Since [18] S. Banerjee and B. Bhattacharjee, “Scalable secure group
f(B/3) >0, f(B) =0, f(q) is continuous orjB/3, B|

and f'(¢q) < 0, we must havef(¢) > 0 on [B/3, B].
Thus (22) also holds foB3/3 < ¢ < B. This completes [19]
the proof.

(1]

(2]

(3]

(4]
(5]

(6]

(7]

(8]

El
[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES [20]

S. Paul,Multicast on the Internet and its applicationKluwer
academic Publishers, 1998.

L. Eschenauer and V.D. Gligor, “A key-management scheme fl)zrl]
distributed sensor networks,” iRroceedings of the 9th ACM
conference on Computer and communications secu?ip9?2,

pp. 41-47, ACM Press. 22]
M.J. Moyer, J.R. Rao, and P. Rohatgi, “A survey of securit£/
issues in multicast communication$2EE Network pp. 12-23,
Nov./Dec. 1999.

H. Harney and C. Muckenhirn, “Group key managemertES]
protocol (GKMP) architecture,” RFC 2094, July 1997.

P. Judge and M. Ammar, “Gothic: A group access contr(tb4]
architecture for secure multicast and anycast,’Pioceedings

of the IEEE INFOCOM’'022002, pp. 1547-1556.

R. Canetti, J. Garay, G. ltkis, D. Micciancio, M. Naor, and
B. Pinkas, “Multicast security: A taxonomy and some eﬁicien[(%]
constructions,” inProceedings of the IEEE INFOCOM'99
1999, pp. 708-716.

C.K. Wong, M. Gouda, and S.S. Lam, “Secure group commttlze]
nications using key graphslEEE Transactions on Networking

vol. 8, no. 1, pp. 16-30, Feb 2000.

A. Perrig, D. Song, and J.D. Tygar, “ELK, a new protocol for
efficient large-group key distribution,” ifProceedings of the [27]
IEEE Symposium on Security and Priva2p01, pp. 247-262.

H. Harney and C. Muckenhirn, “Group key management
protocol (GKMP) specification,” RFC 2093, July 1997. [28]
D. Wallner, E. Harder, and R. Agee, “Key management for
multicast: Issues and architecture,” Internet-Draft draft-wallner-
key-arch-00.txt, June 1997. [29]
I. Chang, R. Engel, D. Kandlur, D. Pendarakis, and D. Saha,
“Key management for secure internet multicast using boolean
function minimization techniques,” iRroceedings of the IEEE
INFOCOM’'99, 1999, vol. 2, pp. 689—698. [30
M. Steiner, G. Tsudik, and M. Waidner, “CLIQUES: a new
approach to group key agreement,” Bmoceedings of the 18th
International Conference on Distributed Computing Systems
1998, pp. 380-387. [31]
Y. Kim, A. Perrig, and G. Tsudik, “Simple and fault-tolerant key
agreement for dynamic collaborative groups,” Rmoceedings

of the 7th ACM Conference on Computer and Communicatiofg]
Security 2000, pp. 235-244, ACM Press.

L.R. Dondeti and S. Mukherjee, “DISEC: a distributed frame-
work for scalable secure many-to-many communication,” i[83]
Proceedings of the 5th IEEE Symposium on Computers and
Communications2000, pp. 693-698.

Y. Sun, W. Trappe, and K.J.R. Liu, “An efficient key managef34]
ment scheme for secure wireless multicast,Pioceedings of

the IEEE International Conference on Communicatio?802,

vol. 2, pp. 1236-1240.

R. Molva and A. Pannetrat, “Scalable multicast security in
dynamic groups,” inProceedings of the 6th ACM conference
on Computer and communications securit999, pp. 101-112.

S. Mittra, “lolus: a framework for scalable secure multicasting,”

in Proceedings of the ACM SIGCOMM’9T997, pp. 277-288,
ACM Press.

] S.E. Eldridge and C.D. Walter,

communication over IP multicastJEEE Journal on Selected
Areas in Communicationpsol. 20, no. 8, pp. 1511-1527, Oct.
2002.

M. Waldvogel, G. Caronni, D. Sun, N. Weiler, and B. Plattner,
“The VersayKey framework: Versatile group key management,”
IEEE Journal on Selected Areas in Communicatjqgs 1614—
1631, Sept. 1999.

W. Trappe, Y. Wang, and K.J.R. Liu, “Establishment of
conference keys in heterogeneous networksPrioceedings of
the IEEE International Conference on Communicatjo?802,
pp. 1236-1240.

B. Sun, W. Trappe, Y. Sun, and K.J.R. Liu, “A time-efficient
contributory key agreeement scheme for secure group commu-
nications,” inProceedings of the IEEE International Conference
on Communication2002, pp. 1159-1163.

S. Zhu, S. Setia, and S. Jajodia, “Performance optimizations for
group key management schemes,” Hroceedings of the 23rd
International Conference on Distributed Computing Systems
2003, pp. 163-171.

A. Ballardie, “Scalable multicast key distribution,” RFC 1949,
May 1996.

K. Becker and U. Wille, “Communication complexity of group
key distribution,” inProceedings of the 5th ACM conference on
Computer and communications securiy998, pp. 1-6, ACM
Press.

J. Snoeyink, S. Suri, and G. Varghese, “A lower bound
for multicast key distribution,” inProceedings of the IEEE
INFOCOM'01, 2001, vol. 1, pp. 422—-431.

D. Balenson, D. McGrew, and A. Sherman, “Key manage-
ment for large dynamic groups: One-way function trees and
amortized initialization,” IETF Internet draft (work in progress),
August 2000.

W. Diffie and M. Hellman, “New directions in cryptography,”
IEEE Transactions on Information Theogryol. 1T-22, no. 6,
pp. 644-654, November 1976.

I. Ingemarsson, D.T. Tang, and C.K. Wong, “A conference key
distribution system,IEEE Transactions on Information Theory
vol. IT-28, no. 5, pp. 714-720, September 1982.

M. Steiner, G. Tsudik, and M. Waidner, “Diffie-hellman key
distribution extended to group communication,”Rnoceedings

of the 3rd ACM conference on Computer and communications
security 1996, pp. 31-37, ACM Press.

“Hardware implementation
of montgomery’s modular multiplication algorithm,” |IEEE
Transactions on Computersol. 42, no. 6, pp. 693-699, June
1993.

J.L. Hennessy and D.A. Pattersoomputer architecture: a
quantitative approachchapter 5, Morgan Kaufmann publishers,
Inc., second edition, 1996.

T.H. Corman, C.E. Leiserson, and R.L. Rivebtiroduction to
algorithms chapter 7, The MIT Press and McGraw-Hill Book
Company, second edition, 2001.

K.C. Almeroth and M.H. Ammar, “Multicast group behavior
in the Internet’s multicast backbone (MBone)EEE Commu-
nications Magazingpp. 124-129, June 1997.

K.C. Almeroth, “A long-term analysis of growth and usage
patterns in the multicast backbone (MBone),” Pnoceedings

of the IEEE INFOCOM'0Q March 2000, vol. 2, pp. 824-833.

