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A Subspace Tracking Algorithm Using the
Fast Fourier Transform

James W. Cooley, Fellow, IEEE, Timothy M. Toolan, and Donald W. Tufts, Life Fellow, IEEE

Abstract—At ICASSP ’97 and in the July 1999 IEEE
TRANSACTIONS ON SIGNAL PROCESSING, Real et al. presented an
algorithm for fast tracking of a signal subspace or interference
subspace for application in adaptive detection or estimation. For
cases in which the signal matrix is formed from a single-channel
discrete-time signal, we show how one can further reduce com-
putation in the fast approximate subspace tracking (FAST)
algorithm by using the fast Fourier transform.

Index Terms—Fast approximate subspace tracking (FAST) al-
gorithm, Fourier transform, subspace tracking, singular value de-
composition (SVD).

I. SUBSPACE TRACKING ALGORITHM

AT EACH time step, the fast approximate subspace
tracking (FAST) algorithm [1] computes an approximate

singular value decomposition (SVD) of an signal matrix

(1)

where each is an -element column vector. The approxima-
tion is based on the use of a smaller dimensional subspace that
contains most of the signal. This subspace comes from the pre-
vious iteration, which computed the approximate SVD of the
matrix

(2)

which shares of its columns with .
This note shows how the fast Fourier transform (FFT) algo-

rithm may be used to reduce computation in the FAST algorithm
for the situation in which and are formed from a
single-channel discrete-time signal [2]–[4]. In this case,
and are Hankel-like (Hankel if ) matrices of
the form

...
...

...
(3)

The unique elements of can be written as
the column vector

(4)
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At the beginning of the current iteration, one has principal
left singular vectors of in the columns of the matrix

(5)

as well as the matrix .
Summarizing the FAST algorithm presented in [1, eqs.

(14)–(32)], we calculate a matrix, , which when
premultiplied by , is the projection of onto the
columns of plus the component of orthogonal to

. We form the matrix as follows:

(6)

where the ’s are element vectors

(7)

is the norm of the component of orthogonal to the
columns of , and is that component normalized. They
are computed as follows:

(8)

Instead of computing the SVD [5] of the matrix
, or the SVD of the matrix , we

compute the SVD of the matrix

(9)

where our estimates of the principal left singular vectors
and values of are

(10)

and

(11)

The original contribution of this letter is the demonstration
that the amount of computation in the FAST algorithm can be re-
duced for the case in which the computation of (7) can be written
as a product of a matrix and a Hankel-like matrix as in (13). This
case arises whenever the matrices and are formed
from a single-channel discrete-time signal [2]–[4]. In the last
section, the amount of computational reduction is quantified,
and a formula (24) based on the dimensions of the signal matrix
( and ) is given to determine if this method actually reduces
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computation or not for a given specific interference subspace
dimension .

II. USE OF THE FFT

The suggestion made here is that one make use of the fact that
the ’s are a set of convolutions that can be computed using the
FFT [5], [6]. To display this as a convolution, we write the th
component of as

(12)

or in matrix form

(13)

Note that the elements of in (12) are reversed and conjugated
in the convolution sum, like a cross correlation. This is equiva-
lent to conjugating the DFT of .

To efficiently calculate the ’s, we pad the columns of
with zeros to make them of length and compute their discrete
Fourier transforms (DFTs)

(14)

We then take the DFT of

(15)

Now, the convolution in (12) can be performed by the Hadamard
product of the conjugate transpose of each column of , with
the transpose of .

(16)

Finally, we take the inverse DFT of the rows of , whose first
columns are through .

(17)

III. OPERATIONS COUNT

The two dominant operations in the algorithm are the calcu-
lations of the ’s (7) for small signal subspace dimensions, and
the SVD of (9) for large dimensions. This method addresses
the calculation of the ’s.

For the comparisons, we will estimate the number of
floating-point operations (flops) for each method. We will
assume that both real addition and real multiplication require
one flop, while complex addition requires two flops, and
complex multiplication requires six flops.

The calculation of the ’s using (7) requires

flops (18)

where

flops (19)

Fig. 1. Percentage of all k’s calculated more efficiently using the FFT method
for r and c from 1 to 50.

Fig. 2. Percentage of all k’s calculated more efficiently using the FFT method
for r = c from 1 to 60 and both real and complex data.

when the data are real and

flops (20)

when the data are complex. Remember that and are the di-
mensions of , and is the signal subspace dimension.

When calculating the ’s using (14)–(17), we must first
come up with an approximation of the flop count of an -point
FFT. We take the following as an approximation of the number
of flops for a simple radix 2 FFT:

(21)

when the data is real, and

flops (22)

when the data are complex [7]. A radix 4 algorithm, with a radix
2 step for equal to an odd power of 2, takes 25% fewer flops.
When is not a power of 2 and has large prime factors, the
FFT can take more flops. There are FFTs, so, adding to
the above the flops for the complex multiplication of (16),
we get

flops (23)

For any and , can range from zero to , where
. The transition signal subspace dimension

, where all values of above that value take less flops
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using the FFT method and all values of below that value take
less flops using the direct multiplication method, is

(24)

When , the direct multiplication method is more ef-
ficient for all .

To give an idea of how evaluates for different and ,
we use the radix 2 FFT flop count and assume complex data.
Fig. 1 shows that there is a very steep transition from where all

are more efficiently calculated using the direct multiplication
method to where all are more efficiently calculated using the
FFT method. Given values for and , it is easy to determine
which method to use.

Fig. 2 shows the percentage of signal subspace dimensions ,
where the FFT method is more efficient than the direct multipli-
cation method. In this figure, , and both real and complex
data are shown. It can be seen that for complex matrices with
dimensions greater than 15 (which is often the case) and real
matrices with dimensions greater than 40, one would probably
want to use the FFT method.

IV. SUMMARY

We have established that, for the above signal tracking
method, where the signal matrix is a Hankel-like matrix, the
FFT method may be superior for large and . The above
formulas should enable one to evaluate which method is more
efficient for any given parameters of the problem.
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