
ADVANCES IN SLIDING WINDOW SUBSPACE TRACKING

BY

TIMOTHY M. TOOLAN

A DISSERTATION SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

IN

ELECTRICAL ENGINEERING

UNIVERSITY OF RHODE ISLAND

2005

DOCTOR OF PHILOSOPHY DISSERTATION

OF

TIMOTHY M. TOOLAN

APPROVED:

Dissertation Committee:

Major Professor Donald Tufts

James Cooley

Richard Vaccaro

Lewis Pakula

UNIVERSITY OF RHODE ISLAND

2005

ABSTRACT

This dissertation is concerned with the task of efficiently and accurately track-

ing the singular values and left singular vectors of a rapidly changing dominant

column space of a matrix, in which a column of the matrix is replaced each time

step. As part of this task, the dimension of this dominant subspace is determined

automatically for each time step.

Two methods for determining the singular values and left singular vectors of

this dominant columnspace are presented. The first method, which is an exact

method, will update all of the singular values and left singular vectors using the

rank-two secular function. The derivation of this function, and its properties, are

original contributions of this dissertation. This method requires a single O(n3)

matrix product to rotate the singular vectors using direct multiplication, and all

other computation is O(n2). The second method, the Improved Fast Adaptive

Subspace Tracking (IFAST) method, will give accurate approximations of the r

largest singular values and corresponding left singular vectors in O(nr2) time. An

accuracy analysis of the approximation error of the second method, using the rank-

two secular function from the first method, is presented.

The block Hankel matrix structure is presented, which can give improved SNR

for exponential signals in sensor arrays, at the expense of beam-width.

The two rank determination methods of Shah and Tufts, where one is for

time-series (Hankel) data and the other is for unstructured sensor array data, are

combined into a single general method which works with unstructured, Hankel,

and block Hankel matrices. An efficient way to calculate the thresholds used by

this method is presented, allowing use in real-time applications.

ACKNOWLEDGMENTS

I would like to thank the members of my thesis committee. Thank to Dr. Don-

ald Tufts for his guidance and patience over the years. His ability to ask the right

questions greatly improved the quality of this thesis. Thanks to Dr. James Cooley

for taking time out of retirement to meet with me about my work. His ability to

instantly grasp ideas that I have been working on for a long time, then give useful

feedback has been very helpful. Thanks to Dr. Richard Vaccaro for being a good

boss and a good committee member. His knowledge of the singular value decom-

position, and matrix operations in general has helped a lot. Thank to Dr. Lewis

Pakula for giving feedback, even when he felt that the work was not necessarily in

his field. Thanks to Dr. James Baglama for his help with the work on the rank-

two secular equation, even though he is not on the core committee. Thanks to

Dr. G. Faye Boudreaux-Bartels for taking the time to be on the committee, even

though she is busy with her new job as department chair (and thus my new boss).

Thanks to Dr. Orlando Merino for being the outside member at the last minute.

Thanks to the people who worked with me in the department, for picking up

the slack when I was busy working on my research. Thanks to Ashwin Sarma for

some useful and enjoyable discussions.

Thanks to Dr. Norman Owsley for the use of his simulated sonar array data,

which is used in the results section of manuscript 4. Thanks to Don Knuth for TeX,

and Leslie Lamport for LaTeX, without which, writing this dissertation would be

much more difficult.

Finally, I would like to thank both my wife and my parents for supporting

and encouraging me over the years.

iii

To Su

PREFACE

This dissertation is written in manuscript form, and investigates various issues

related to subspace tracking.

Manuscript 1 introduces the IFAST algorithm, which is an accurate O(nr2)

subspace tracking algorithm, for updating the r largest singular values and left

singular vectors when a column is replaced in a matrix. The IFAST-S algorithm is

presented, which allows the algorithm to start without an initial SVD. A compara-

tive analysis of the full dimension secular equation from manuscript 2 is presented,

and shows why the IFAST approximation is accurate. This work is an extension

of the work previously published as

T. M. Toolan and D. W. Tufts, “Improved fast adaptive subspace
tracking,” in Proceedings Thirteenth Adaptive Sensor Array Processing
Workshop (ASAP05), MIT Lincoln Laboratory, Lexington MA, June
2005.

Manuscript 2 introduces a method for calculating the eigendecomposition of

the sum of an n× n diagonal matrix and two rank-one matrices of the form G̃ =

D − aaH + bbH , in O(n2) time. This allows one to update the singular values

and left singular vectors of a matrix where one column has been replaced, with a

single O(n3) matrix product. The rank-two secular equation is presented, whose

roots are the eigenvalues of a matrix of the form of G̃, as well as a non-iterative

method to determine the eigenvectors of G̃. All non-numerical pathological cases

are addressed, which not only are the basis for a practical algorithm, but also give

insight into what is really happening. The rank-two secular equation is used to

analyze the accuracy of the IFAST algorithm in manuscript 1. This work has been

submitted for publication.

The following figure shows the computational savings using the IFAST al-

gorithm from manuscript 1, and the secular update method from manuscript 2,

v

vs. calculating the full singular value decomposition of a 64 × 64 complex matrix

where one column has changed.

10 20 30 40 50 60
0

2

4

6

8

x 106

r, subspace dimension

A
pp

ro
xi

m
at

e
FL

O
P

S
full decomposition

secular update (manuscript 2)

IFAST (manuscript 1)

Manuscript 3 introduces a method for reducing computation of the FAST

algorithm by Real, Tufts, and Cooley when the data matrix is Hankel. This

method is used as the basis for the IFAST-F algorithm in manuscript 1. This

work was previously published as

J. W. Cooley, T. M. Toolan, and D. W. Tufts, “A subspace tracking
algorithm using the Fast Fourier Transform,” IEEE Signal Processing
Letters, vol. 11, no. 1, Jan. 2004.

Manuscript 4 introduces the block Hankel matrix structure, which can give im-

proved SNR for sensor arrays at the expense of beam-width. This manuscript also

combines the two rank determination methods of Shah and Tufts into a single gen-

eral method which works with unstructured, Hankel, and block Hankel matrices.

This rank determination method is based on a threshold test using sums of singular

values, and a method to efficiently calculate the thresholds for use in a real-time

implementation is presented. The key elements of this efficient calculation consist

of using a scaled Chi-Square distribution for a Chi-Square mixture, and using re-

duced dimension, noise only, matrices to determine higher rank thresholds. The

rank determination method presented here is used to determine the signal subspace

vi

dimension in manuscript 1. This work was previously published as

T. M. Toolan and D. W. Tufts, “Detection and estimation in non-
stationary environments,” in Proc. IEEE Asilomar Conference on Sig-
nals, Systems & Computers, Nov. 2003, pp. 797–801.

vii

TABLE OF CONTENTS

ABSTRACT . ii

ACKNOWLEDGMENTS . iii

PREFACE . v

TABLE OF CONTENTS . viii

LIST OF TABLES . xii

LIST OF FIGURES . xiii

MANUSCRIPT

1 The Improved Fast Adaptive Subspace Tracking (IFAST) Al-
gorithm . 1

1.1 Introduction . 1

1.2 The IFAST Algorithm . 2

1.2.1 The Goal of IFAST . 2

1.2.2 The IFAST Approximation 3

1.2.3 Basic Theory . 4

1.2.4 The Steps of the Algorithm 7

1.2.5 Accuracy Example . 10

1.2.6 Starting Without an Initial SVD, the IFAST-S Algorithm 12

1.2.7 Adding More than One Column per Iteration, the IFAST-
M Algorithm . 14

1.2.8 Taking Advantage of Hankel Structure, the IFAST-F Al-
gorithm . 15

1.2.9 General Comments About the Algorithm 16

viii

Page

ix

1.3 Rank-Two Secular Functions . 18

1.3.1 The Full Dimension, M̃ ⇒ G̃ 19

1.3.2 The Principal Subspace, U ′U ′HM̃ ⇒ D̃ 20

1.3.3 The IFAST Subspace, M̃ ′ ⇒ F̃ 20

1.3.4 Secular Function Comparison 22

1.4 The Rank-One Case . 23

1.4.1 Infinite Geometric Series Expansions 24

1.4.2 Separation Into Parts . 26

1.5 The Rank-Two Case . 28

1.6 Additional Comments . 30

List of References . 31

2 Rank-two modification of the symmetric eigenproblem 33

2.1 Abstract . 33

2.2 Introduction . 33

2.3 Defining the Problem . 35

2.4 Sorting and Deflating . 37

2.4.1 Sorting D . 37

2.4.2 Deflating G̃ . 38

2.4.3 Replacing G̃ with the deflated version 40

2.5 The eigenvalues of G̃ . 41

2.5.1 The characteristic polynomial of G̃ 41

2.5.2 The rank-two secular function 43

2.5.3 Bounding the roots of w(λ) 45

Page

x

2.5.4 Calculating the roots of w(λ) 52

2.6 The eigenvectors of G̃ . 53

2.6.1 Eigenvectors of changed, non-duplicate eigenvalues 53

2.6.2 Eigenvectors of unchanged eigenvalues 54

2.6.3 Eigenvectors of duplicate eigenvalues 56

2.6.4 The singular vectors of M̃ 57

2.7 Putting it all together . 57

2.8 Concluding Remarks . 59

2.9 Evaluating the determinant in C(λ) 60

List of References . 62

3 A Subspace Tracking Algorithm Using the Fast Fourier
Transform . 63

3.1 Abstract . 63

3.2 The Subspace Tracking Algorithm 63

3.3 The Use of the FFT . 65

3.4 Operations Count . 66

3.5 Summary . 69

List of References . 69

4 Detection and Estimation in Non-Stationary Environments . 71

4.1 Abstract . 71

4.2 Introduction . 71

4.3 Constructing a Block Hankel Matrix 72

4.4 Estimating the Signal Subspace Rank 74

Page

xi

4.5 Calculating the Threshold Values 75

4.6 Evaluating the Other Thresholds 78

4.7 The Data . 79

List of References . 81

BIBLIOGRAPHY . 88

LIST OF TABLES

Table Page

1 Steps of the IFAST Algorithm 8

2 Steps of the IFAST-S (start-up) Algorithm 13

3 Steps of the IFAST-M (multi-column) Algorithm 15

4 Steps of the IFAST-F Algorithm 17

5 The steps to convert the determinant portion of C = pW to a
bordered diagonal matrix. 43

6 The steps to efficiently sort and deflate G̃ = D − aaH + bbH

prior to determining its eigendecomposition. G̃ consists of the
diagonal matrix D ∈ Rn×n, and the vectors a ∈ Cn and b ∈ Cn. 58

7 The steps to calculate the eigendecomposition of the sorted and
deflated G̃ = D − aaH + bbH . 59

xii

LIST OF FIGURES

Figure Page

1 Comparison of the computation required (smaller is better) for
a single IFAST iteration vs. computing the full SVD of M̃ . For
this figure, n = c = 64 with complex M̃ . The two SVD methods
will produce identical answers, and the two IFAST methods will
produce identical answers. 9

2 Normalized error in dB for the three largest singular values of
M̃ , which are σ̃2

1, σ̃
2
2, and σ̃2

3, along with the estimated signal
subspace rank, and spectrogram of the signal, which is two com-
plex chirps and a finite duration complex exponential. 11

3 An illustration to show how determining the initial Σ′2 and U ′

using the IFAST-S algorithm requires more overall computation,
but has no latency, whereas using the SVD is more computa-
tionally efficient, but has large latency due to the fact that it
cannot start computation until the last column is recieved. . . . 14

4 An example of the rank-two secular functions wg(λ), wd(λ), and
wf (λ), from (33), (39), and (48), vs. λ for n = c = 20, and
principal subspace r = 7. SNR is 4. The poles, σ2

i indicated at
the top of the plot, correspond to the old singular values, and
the roots, σ̃2

i indicated at the bottom of the plot, correspond to
the new singular values. 23

5 log10 of the difference efb
(λ) = wfb

(λ)−wgb
(λ) from (55), along

with the unique parts of efb
(λ) = ufb

(λ)− ugb
(λ) from (74) and

(73). 28

6 A simple example to illustrate the rank-two secular function
and characteristic polynomial of G̃ = D−aaH + bbH . The val-
ues used to create this figure were D = diag(d1, d2, d3, d4, d5) =
diag(1, 2, 3, 4, 5), a = [0.8, 0.26, 0.4, 0.53, 0.67]T , and b =
[0.69, 0.46, 0.23, 0.46, 1]T . The eigenvalues of G̃ are D̃ =
diag(d̃1, d̃2, d̃3, d̃4, d̃5) ' diag(0.81, 2.13, 2.9, 3.94, 5.59). 44

xiii

Figure Page

xiv

7 An example to illustrate the rank-two secular function and
characteristic polynomial of G̃ = D − aaH + bbH , where the
eigenvalue at d3 does not change, but the corresponding eigen-
vector changes. The values used to create this figure were
D = diag(1, 2, 3, 4, 5), a = [0.13, 0.26, 0.4, 0.53, 0.67]T , and
b = [0.66, 0.53, b3, 0.26, 0.19]T , where b3 = 0.39137187095400.
The eigenvalues of G̃ are D̃ ' diag(1.29, 2.28, 3.0, 3.72, 4.71).
Due to the pole and zero of w(λ) at λ = d3, the characteristic
polynomial must be used to determine that the eigenvalue did
not change. 49

8 The secular functions of G̃ = D−aaH+bbH , G̃a = D−aaH , and
G̃b = D+bbH , which illustrate the creation of a duplicate eigen-
value at λ = d̃2 = d̃3 ' 2.68. The values used to generate this
figure wereD = diag(1, 2, 3, 4, 5), a = [0.15, 0.3, 0.45, 0.6, 0.75]T ,
and b = Uab̈, where Ua are the eigenvectors of D − aaH in as-
cending order of eigenvalues, and b̈ = [0.625, b̈2, 0, 0.75, 0.625]T ,
where b̈2 = 1.15485665309790. The eigenvalues of G̃ are D̃ '
diag(1.08, 2.68, 2.68, 4.16, 5.84). Note that the roots of wa(λ),
which are the eigenvalues of G̃a, must be less than the old eigen-
values, while the roots of wb(λ), which are the eigenvalues of G̃b,
must be greater than the old eigenvalues. 51

9 Percentage of all k’s calculated more efficiently using the FFT
method for r and c from 1 to 50. 68

10 Percentage of all k’s calculated more efficiently using the FFT
method for r = c from 1 to 60 and both real and complex data. 69

11 Creating a Hankel matrix from a signal vector 73

12 Creating a Block Hankel matrix from multiple snapshots 74

13 False Alarm Probability vs. Threshold 78

14 Rank estimation for block Hankel matrix structure with eight
sequential snapshots. 83

15 Cosine of the azimuth of the k strongest sinusoids using eight
sequential snapshots and block Hankel matrix structure. 84

16 Cosine of the azimuth of the k strongest sinusoids using 24 se-
quential snapshots and no matrix structure. 85

Figure Page

xv

17 Cosine of the azimuth of the k strongest sinusoids using eight
sequential snapshots and no matrix structure. 86

18 Cosine of the azimuth of the k strongest sinusoids using eight
sequential snapshots and block Hankel matrix structure with
color indicating target strength. 87

MANUSCRIPT 1

The Improved Fast Adaptive Subspace Tracking (IFAST) Algorithm

1.1 Introduction

A new subspace tracking algorithm which gives accurate estimates of the r

largest singular values and corresponding left singular vectors of overlapping rect-

angular matrices is presented. This O(nr2) algorithm, which we will call the Im-

proved Fast Approximate Subspace Tracking (IFAST) algorithm, has evolved from

the Fast Approximate Subspace Tracking (FAST) algorithm by Real, Tufts, and

Cooley [1], but has significantly better accuracy and computational efficiency. Ad-

ditionally, we present techniques for starting without an initial singular value de-

composition (SVD), advancing the rectangular data window more than one column

per iteration, and taking advantage of Hankel structure to reduce computation.

A detailed analytical analysis of the effect that advancing a rectangular data

window by one column has on its full SVD vs. the effect it has on the approximate

SVD which is produced by the IFAST algorithm is presented. This analysis is

based on the rank-two secular equation from manuscript 2, which is closely related

to the characteristic polynomial.

We have been motivated by problems of detection and estimation in a non-

stationary environment. Often the “signal” subspace is really a rapidly varying

subspace of interference or clutter, and we wish to track the subspace in order to

facilitate removal of the interference. Two examples are the rapidly time-and-space

varying clutter in multi-spectral images [2], and Terrain Scattered Interference in

airborne radar [3].

We start with an n×cmatrixM , whose columns consist of sequential complex-

valued samples in time and/or space. For example, each column may be the output

1

of an array of sensors at a given time, or a new column in a Hankel matrix created

from a single sensor. M is of the form

M = S +N (1)

where S is a rank r signal matrix and N is a full rank noise matrix. Our goal

is to efficiently and accurately determine the signal subspace dimension, r, along

with the r largest singular values and corresponding left singular vectors of M .

The problem of determining r when we have the singular values of M has been

addressed in [4] and [5], and generalized in manuscript 4 and [6].

1.2 The IFAST Algorithm

In this section we present the improved fast adaptive subspace tracking (IFAST)

algorithm, and give some examples of its performance.

1.2.1 The Goal of IFAST

Given a sequence of c+ 1, length n, column vectors, xt−c · · ·xt, we can define

the two n× c matrices

M =
[

xt−c xt−c+1 xt−c+2 . . . xt−1

]
, (2)

M̃ =
[

xt−c+1 xt−c+2 . . . xt−1 xt
]
. (3)

The matrix M̃ can be created from the matrixM by discarding its leftmost column,

then appending the vector xt to the right, thus the matrices M and M̃ will have

all but one column in common. We can write the SVD of M as

M = UΣV H =
[
U ′ U⊥] [Σ′ 0

0 Σ⊥

] [
V ′ V ⊥]H , (4)

where Σ′ ∈ Rr×r are the r largest singular values of M , and U ′ ∈ Cn×r are

the corresponding left singular vectors. The superscript H represents conjugate

transpose of a matrix.

2

Assuming we have the r largest singular values and corresponding left singular

vectors of M , we would like to determine the r (or possibly r+ 1) largest singular

values and corresponding left singular vectors of M̃ , without the computation

required to determine a full SVD of M̃ .

1.2.2 The IFAST Approximation

Because M shares all but one column with M̃ , it is reasonable to assume

that the column space spanned by the r largest left singular vectors of M , must

be a reasonable approximation to the column space spanned by the r largest left

singular vectors of M̃ , except possibly for the contribution from the column we are

adding and the column we are discarding. To include the contribution from those

two columns to the column space of U ′, we can augment U ′ by the column space of

xt and xt−c that is orthogonal to U ′ to get an r+ 2 dimensional subspace. Partial

augmentation of U ′ has been used previously in both [1] and [7].

In IFAST, we first use a Gram-Schmidt method to create the matrixQ ∈ Cn×2,

which is an orthonormal basis for the column space defined by the vectors that we

are adding and discarding, that is orthogonal to U ′. We can write the two columns

of Q = [q1 | q2] as

z1 =
(
I − U ′U ′H)xt, q1 = z1/‖z1‖2,

(5)
z2 =

(
I − [U ′ | q1] [U ′ | q1]

H
)

xt−c, q2 = z2/‖z2‖2.

We next define the rank r + 2 matrix, M̃ ′, to be the projection of M̃ into the

column space defined by [U ′ |Q], which we will write as

M̃ ′ = [U ′ |Q][U ′ |Q]HM̃. (6)

The essence of IFAST, is that we assume the singular values and left singular

vectors of M̃ ′ are good approximations to the r + 2 largest singular values and

3

corresponding left singular vectors of M̃ , therefore we substitute the SVD of M̃

with the SVD of M̃ ′. This is the only approximation that takes place in the

algorithm, and is reasonable because it is motivated by the fact that we retain a

Frobenius norm approximation to the signal subspace which is at least as good

as that from our previous iteration [1]. In later sections, we will analyze this

approximation in detail.

1.2.3 Basic Theory

Now that we have decided that we are going to use the SVD of

M̃ ′ = Ũ ′Σ̃′Ṽ ′H , (7)

as our approximation to the SVD of M̃ , we would like to compute it as efficiently

as possible.

The following theorem will show how to replace the SVD of the n× c matrix

M̃ ′ with an equivalent problem that is the eigendecomposition of the much smaller

(r + 2)× (r + 2) matrix F̃ , where

F̃ = [U ′ |Q]HM̃M̃H [U ′ |Q] = Ũf Σ̃f Ũ
H
f . (8)

It will be shown that the singular values and left singular vectors of M̃ ′ will be

Σ̃′ =

√
Σ̃f and Ũ ′ = [U ′ |Q]Ũf . (9)

Theorem 1. Let M ∈ Cn×c be any matrix, and let E ′ ∈ Cn×k have k orthonormal

columns, with k ≤ n. Let M ′ be the projection of M onto the column space of E ′,

M ′ = E ′E ′HM, (10)

and let the SVD of M ′ = U ′Σ′V ′H . If we define the matrix F ∈ Ck×k, along with

its eigendecomposition, as

F = E ′HMMHE ′ = UfΣfU
H
f , (11)

4

then we can write the non-zero singular values, and corresponding left singular

vectors of M ′ as

Σ′ =
√

Σf , U ′ = E ′Uf . (12)

Proof. If we multiply (11) by UH
f E

′HE ′ from the left, and E ′HE ′Uf from the right,

(remember E ′HE ′ = I, and Uf is unitary), we get

UH
f E

′HE ′E ′HMMHE ′E ′HE ′Uf = Σf . (13)

Substituting E ′E ′HM = M ′, we get

UH
f E

′HM ′M ′HE ′Uf = Σf . (14)

If we augment E ′Uf with U⊥ from (4) to create the unitary matrix [E ′Uf | U⊥] ∈

Cn×n , then because the columns of U⊥ must come from the null space of E ′Uf ,

which is (I − E ′E ′H), they will be orthogonal to M ′. This allows us to write

[
E ′Uf U⊥]HM ′M ′H [E ′Uf U⊥] =

[
Σf 0
0 0

]
, (15)

which from Theorem 2.5.2 in [8], is the SVD of M ′M ′H . We can write the SVD of

M ′M ′H as U ′Σ′V ′HV ′Σ′HU ′H = U ′Σ′2U ′H , thus Σf = Σ′2 and E ′Uf = U ′. �

The important point of Theorem 1 is that it applies for any M and E ′, in

which the columns of E ′ are mutually orthonormal. If E ′ were left singular vectors

of M , Theorem 1 would be obvious, but this will not be the case in the IFAST

algorithm, because U ′ will contain approximations to the real singular vectors,

therefore we need Theorem 1.

Now that we have reduced the SVD of M̃ ′ from (6) to the eigendecomposition

of F̃ from (8), we would further like to reduce computation. It can be seen from

(8), that creating the matrix F̃ requires the matrix product of an (r + 2) × n

matrix with an n× c matrix, plus the matrix product of an (r+2)× c matrix with

5

a c× (r+ 2) matrix. These O(ncr) and O(cr2) matrix products will dominate the

computation over the O(r3) SVD of F̃ for most values of r.

We can write F̃ from (8) as the block matrix

F̃ =

[
U ′HM̃M̃HU ′ U ′HM̃M̃HQ

QHM̃M̃HU ′ QHM̃M̃HQ

]
. (16)

The following theorem will show how to replace the upper r × r block of (16),

U ′HM̃M̃HU ′, with the matrix

D̃ = Σ′2 − U ′Hxt−cx
H
t−cU

′ + U ′Hxtx
H
t U

′, (17)

which is the sum of a diagonal matrix and two rank-one matrices, and can be

computed in O(nr). This allows us to write F̃ as

F̃ =

[
D̃ U ′HM̃M̃HQ

QHM̃M̃HU ′ QHM̃M̃HQ

]
. (18)

Theorem 2. Let M ∈ Cn×c be any matrix, and let E ′ ∈ Cn×k have k orthonormal

columns, with k ≤ n. Let M ′ be the projection of M onto the column space of E ′,

M ′ = E ′E ′HM,

and let the SVD of M ′ = U ′Σ′V ′H . Let M̃ ∈ Cn×c be created from M by discarding

its leftmost column, then appending the vector xt to the right, thus

M =
[

xt−c xt−c+1 xt−c+2 · · · xt−1

]
,

M̃ =
[

xt−c+1 xt−c+2 · · · xt−1 xt
]
.

If we define

D̃ = U ′HM̃M̃HU ′, (19)

where U ′ are the left singular vectors of M ′, then D̃ can be written as

D̃ = Σ′2 − U ′Hxt−cx
H
t−cU

′ + U ′Hxtx
H
t U

′, (20)

which is the sum of the diagonal matrix, Σ′2, and two rank-one matrices.

6

Proof. We can write MMH and M̃M̃H as the sum of c outer products [8],

MMH =
t−1∑
i=t−c

xix
H
i , M̃M̃H =

t∑
i=t−c+1

xix
H
i , (21)

thus we can write

M̃M̃H = MMH − xt−cx
H
t−c + xtx

H
t . (22)

Substituting (22) into (19), we get

D̃ = U ′HMMHU ′ − U ′Hxt−cx
H
t−cU

′ + U ′Hxtx
H
t U

′. (23)

From (12), we can write E ′ = U ′UH
f , which combined with (11) gives us

UfU
′HMMHU ′UH

f = UfΣfU
H
f . (24)

Multiplying (24) by UH
f from the left, and Uf from the right, and substituting

Σf = Σ′2 from (12), we get U ′HMMHU ′ = Σ′2, which is a diagonal matrix. �

The important point of Theorem 2 is that it says that the matrix U ′ will

diagonalize MMH , even though the columns of U ′ may or may not be singular

vectors of MMH . To illustrate this point, assume the columns of U ′ are not

singular vectors of MMH . Theorem 2 says U ′H(MMH)U ′ = Σ′2, and this implies

both uH
i (MMH)ui = σ2

i and uH
i (MMH)uj = 0 for i, j = 1, 2, . . . , r, i 6= j, must

be satisfied. What is not satisfied is the eigenequation, thus (MMH)ui 6= σ2
iui.

1.2.4 The Steps of the Algorithm

In this section, we give the steps of the IFAST algorithm, which will calculate

the singular values and left singular vectors of M̃ ′ from (6). The steps of the

algorithm are listed in Table 1. At the beginning of the algorithm, we have our

previous and current data matrices, M and M̃ , along with the r largest singular

values and corresponding left singular vectors of M which were determined in the

7

Table 1. Steps of the IFAST Algorithm

Step Description

1) z1 =
(
I − U ′U ′H)xt

q1 = z1/ ‖z1‖2

z2 =
(
I − [U ′ | q1] [U ′ | q1]H

)
xt−c

q2 = z2/ ‖z2‖2

Q = [q1 | q2]

Use a Gram-Schmidt method
to create the matrix Q ∈ Cn×2,
which is an orthonormal basis
for the column space defined by
the vectors that we are adding
and discarding from M̃ , that is
orthogonal to U ′. See eqn. (5).

2) D̃ = Σ′2 − U ′Hxt−cx
H
t−cU

′ + U ′Hxtx
H
t U

′

F̃ =

[
D̃ U ′HM̃M̃HQ

QHM̃M̃HU ′ QHM̃M̃HQ

] Create the matrix F̃ , whose
eigendecomposition will give us
the SVD of M̃ ′. See eqns. (17)
and (18).

3) Ũf Σ̃f Ũ
H
f = F̃ Calculate the eigendecomposi-

tion of F̃ .

4) Ũ ′ = [U ′ |Q]Ũf
Σ̃′2 = Σ̃f

Determine the singular values
and left singular vectors of M̃ ′.
See eqn. (9).

previous step of the algorithm, Σ′ and U ′. Remember that xt−c, the column that

we are discarding, is the leftmost column of M , and xt, the column that we are

adding, is the rightmost column of M̃ .

Figure 1 shows the computation required to calculate the singular values and

left singular vectors of a 64 × 64 matrix M̃ . The two SVD methods (the purple

and red lines) calculate the full set of singular values and left singular vectors of

M̃ . The two IFAST methods (the blue and green lines) calculate the full set of

singular values and left singular vectors of M̃ ′, which are approximations to the

r+2 largest singular values and left singular vectors of M̃ . The two SVD methods

will produce identical answers, and the two IFAST methods will produce identical

answers.

The purple line represents calculating the full set of singular values and left

8

10 20 30 40 50 60
0

2

4

6

8

x 106

r, subspace dimension

A
pp

ro
xi

m
at

e
FL

O
P

S
SVD of M̃
SVD update of M̃
IFAST, direct F̃
IFAST, F̃ using D̃

Figure 1. Comparison of the computation required (smaller is better) for a single
IFAST iteration vs. computing the full SVD of M̃ . For this figure, n = c = 64
with complex M̃ . The two SVD methods will produce identical answers, and the
two IFAST methods will produce identical answers.

singular vectors of M̃ without using any previous information. The red line rep-

resents calculating the full set of singular values and left singular vectors of M̃ by

updating the singular values and left singular vectors of M using the method from

manuscript 2. Both lines are flat because they are not a function of r. They both

require O(n3) computation for square M̃ , and their computation differs only by a

constant scale factor.

The blue line represents calculating the singular values and left singular vectors

of M̃ ′ using steps 1, 3, and 4 of the IFAST algorithm, but in step 2, F̃ is created

directly using (8), as in F̃ = [U ′ |Q]HM̃M̃H [U ′ |Q]. The green line represents

calculating the singular values and left singular vectors of M̃ ′ using the IFAST

algorithm as shown in Table 1. They both have an O((r + 2)3) SVD of F̃ from

step 3, which dominates for large r. The difference in computation comes from the

9

r× r upper left block of F̃ , which is an O(ncr) +O(cr2) calculation for the direct

method, and an O(nr) calculation when using D̃.

1.2.5 Accuracy Example

The example in Figure 2 illustrates the accuracy of the IFAST algorithm. It

compares the IFAST algorithm (the green line) with the FAST algorithm of Real,

Tufts, and Cooley [1] (the blue line). The red line uses the SVD to produce U ′,

(the singular vectors of M), for each iteration.

In this example, the data are generated from a single sensor, and consist of

the sum of two complex chirps, one rectangularly windowed complex sinusoid, and

complex white noise. The signal is generated from the equation

s(t) = s1(t) + s2(t) + s3(t) + n(t), t = 0, 1, . . . , 449, (25)

where

s1(t) = 1.19ej(2π/3+tπ/2048)t, (26)

s2(t) = 1.1ej(5.5π/5−tπ/2048)t, (27)

s3(t) = 1.23ej(π/3)tu(t− 100)u(349− t), (28)

and n(t) is zero mean, uncorrelated complex Gaussian white noise, with a variance

of 1, (ie. n(t) ∼ CN(0, 1)), and u(t) is the unit step function. The signal, s(t), is

then made into 387 overlapping 32 × 32 Hankel matrices, which are used by the

various algorithms. This signal is similar to that used in experiment 4 from [1],

but with a much lower SNR. The SNR for s1(t)+n(t), s2(t)+n(t), and s3(t)+n(t)

are 1.5, 0.8, and 1.8 respectively. The spectrogram of s(t) is shown in Figure 2e.

Looking at the vertical normalized frequency axis, the signal s1(t) is the increasing

line starting at about 0.33, the signal s2(t) is the decreasing line starting at about

0.55, and the signal s3(t) is the line at 0.17.

10

100 200 300 400

−60

−40

−20

0
10

lo
g

1
0
(|σ̃

2 1
−
σ̃
′2 1
|/
σ̃

2 1
)

t, time

(a)

100 200 300 400

−60

−40

−20

0

10
lo

g
1
0
(|σ̃

2 2
−
σ̃
′2 2
|/
σ̃

2 2
)

t, time

(b)

100 200 300 400

−60

−40

−20

0

10
lo

g
1
0
(|σ̃

2 3
−
σ̃
′2 3
|/
σ̃

2 3
)

t, time

(c)

100 200 300 400
0

1

2

3

4

r,
si
gn

al
su

bs
pa

ce
ra

nk

(d)

t, time

Legend

t, time

N
or

m
al

iz
ed

Fr
eq

ue
nc

y

(e)

100 200 300 400
0

0.2

0.4

0.6

0.8

1

FAST

IFAST

IFAST (exact U ′)

SVD

Figure 2. Normalized error in dB for the three largest singular values of M̃ , which
are σ̃2

1, σ̃
2
2, and σ̃2

3, along with the estimated signal subspace rank, and spectro-
gram of the signal, which is two complex chirps and a finite duration complex
exponential.

11

The method from manuscript 4 and [6] was used to determine the number of

signals present. The confidence level, α, was chosen to be 0.999. Figure 2d shows

the rank estimates for all four methods. The two IFAST methods and the SVD all

produced identical rank estimates, therefore the lines for the IFAST methods are

under the line for the SVD. The rank estimates using the FAST algorithm deviated

from the other methods a few times. The reason that the rank is estimated to be

two instead of three when the chirps cross in frequency, is because the chirps

become almost linearly dependent at that point.

Figure 2, subplots a, b, and c show the normalized error in dB for the first

three singular value estimates (σ̃′1, σ̃
′
2, σ̃

′
3) vs. the true singular values (σ̃1, σ̃2, σ̃3).

One immediate consequence of this, is that if we multiply the normalized error

by 10 and negate it, this gives us the number of correct digits in our estimate.

For instance, at time t = 200, the true value of σ̃2
1 is 1300.916314593100, FAST

estimated it to be 1210.752108327795, which has the first digit correct, IFAST

estimated it to be 1300.793378303474, which has the first four digits correct, and

IFAST using the exact U ′ estimated it to be 1300.915147265195, which has the first

six digits correct. In Figure 2c, all methods do a pretty poor job of estimating the

third largest singular value when we only have two columns in U ′. This estimate

quickly improves when r is at least three, which also means that we have at least

three columns in U ′.

1.2.6 Starting Without an Initial SVD, the IFAST-S Algorithm

The IFAST algorithm is intended to be used iteratively. It uses U ′ and Σ′2

from the previous iteration to determine Ũ ′ and Σ̃′2 for the current iteration. When

the algorithm starts, we will not have U ′ and Σ′2; therefore, we can either perform

a full SVD on our first matrix M , or use a slightly modified version of the IFAST

algorithm to determine the initial U ′ and Σ′2. We will call this modified version of

12

Table 2. Steps of the IFAST-S (start-up) Algorithm

Step

1) z1 =
(
I − U ′U ′H)xt

Q = z1/ ‖z1‖

2) D̃ = Σ′2 + U ′Hxtx
H
t U

′

F̃ =

[
D̃ U ′HM̃M̃HQ

QHM̃M̃HU ′ QHM̃M̃HQ

]

3) Ũf Σ̃f Ũ
H
f = F̃

4) Ũ ′ = [U ′ |Q]Ũf
Σ̃′2 = Σ̃f

the algorithm the IFAST startup algorithm, or the IFAST-S algorithm for short.

To use IFAST-S to determine the initial U ′ and Σ′2, we start with a single

column in M , which will be x0. We can write its singular value and left singular

vector as Σ′ = ‖x0‖ and U ′ = x0/‖x0‖. For each iteration we add a new column

to M , but do not remove any columns until M contains the desired number of

columns. While M is growing, Q from Step 1 of the algorithm will have only one

column, and F̃ will be an r+1×r+1 matrix. The steps of the IFAST-S algorithm

are given in Table 2.

Whether to use an initial SVD or the IFAST-S algorithm depends on how

the IFAST algorithm is being used. The IFAST-S algorithm requires more overall

computation than the SVD, but has no latency. Figure 3 illustrates how using the

two methods differ for a 64× 64 matrix M . We can start IFAST-S computations

right when we get the first column at time t0, and when we receive the 64th column

at time t63, we can determine our estimates of of Σ′2 and U ′ in the time it takes

to do a typical IFAST iteration. The SVD cannot start computations until after

the 64th column is received, therefore it will take more than the typical time for a

13

single IFAST iteration to complete.

t0 t63

SVD Computation

t1 t2 t3 t4 t59 t60 161 t62

t64

c0

t65

c1

t66

c2

c0

c10

c1

c11

c2

c12

IFAST−S Computation IFAST Computations

SVD Data Storage (no computation) IFAST Computations

Figure 3. An illustration to show how determining the initial Σ′2 and U ′ using the
IFAST-S algorithm requires more overall computation, but has no latency, whereas
using the SVD is more computationally efficient, but has large latency due to the
fact that it cannot start computation until the last column is recieved.

Generally, when all the columns are available at once, and the algorithm is

not being implemented on special purpose hardware, it makes sense to use an

initial SVD to determine the initial Σ′2 and U ′, because neither latency nor a large

SVD implementation will be an issue. In a real-time system, where the columns

will often be received one at a time, and possibly special purpose hardware will

be used, the IFAST-S algorithm makes more sense because its implementation is

almost identical to that of IFAST, and it has no latency.

1.2.7 Adding More than One Column per Iteration, the IFAST-M Al-
gorithm

When more than one new column is added and removed each iteration, it is

possible to make a simple modification to the algorithm to account for this. We

will call this modified version of the algorithm the IFAST Multicolumn algorithm,

or the IFAST-M algorithm for short. The orthonormal matrix Q is generated using

a Gram-Schmidt method, and contains the column space spanning the columns we

are adding and the columns that we are removing, that is orthogonal to U ′. In

other words, Q will satisfy [U ′ |Q]H [U ′ |Q] = I, no matter how many columns it

contains, up to n−r columns. If k new columns are being added per iteration, and

14

Table 3. Steps of the IFAST-M (multi-column) Algorithm

Step

1) Q = []

for i = 0 · · · k − 1,

z =
(
I − [U ′ |Q] [U ′ |Q]H

)
xt−i

Q = [Q | z/ ‖z‖]

z =
(
I − [U ′ |Q] [U ′ |Q]H

)
xt−c−i

Q = [Q | z/ ‖z‖]

end

2) D̃ = Σ′2 − U ′Hxt−cx
H
t−cU

′ + U ′Hxtx
H
t U

′

F̃ =

[
D̃ U ′HM̃M̃HQ

QHM̃M̃HU ′ QHM̃M̃HQ

]

3) Ũf Σ̃f Ũ
H
f = F̃

4) Ũ ′ = [U ′ |Q]Ũf
Σ̃′2 = Σ̃f

the number of columns in M is kept the same, the matrix Q will have dimensions

n × 2k, and the matrix F̃ will have dimensions (r + 2k) × (r + 2k). The only

modification to the IFAST algorithm is in Step 1 of Table 1, where Q will now

contain one column for each column being added, and one column for each column

being discarded. The steps of the IFAST-M algorithm are given in Table 3. It will

become more efficient to perform a full SVD on M̃ when (r + 2k) approaches n.

1.2.8 Taking Advantage of Hankel Structure, the IFAST-F Algorithm

When the matrix M has Hankel structure, and c � n, the calculations re-

quired to construct F̃ can be further reduced using the Fast Fourier Transform

[9, 10]. This has been presented for the original version of FAST in manuscript 3

and [11], and can easily be applied to the IFAST algorithm. We will call this modi-

15

fied version of the algorithm the IFAST FFT algorithm, or the IFAST-F algorithm

for short.

The steps of the algorithm are presented in Table 4. The only step that differs

from the IFAST algorithm is Step 2, which is the construction of F̃ . The matrix

Υ is an N̂ × (r + 2) matrix, where N̂ = n + c − 1. The matrix dt is a length N̂

column vector consisting of the unique elements that were used to construct the

Hankel matrix M̃ . The “�” operator is the Hadamard product, meaning element

by element multiplication of the matrices. After taking the inverse FFT of E, we

only keep the first c columns, leaving the (r + 2)× c matrix Ẽ. The O(c(r + 2)2)

matrix product ẼẼH , will be the dominant computation, therefore c will be what

determines whether the IFAST or the IFAST-S algorithm is more efficient.

1.2.9 General Comments About the Algorithm

The IFAST-M algorithm and the IFAST-F algorithm can easily be merged

to create an algorithm which can be used when adding and removing multiple

columns of a Hankel matrix per iteration. This combined algorithm will only be

more efficient than the IFAST-M algorithm when c � n though. The IFAST-S

algorithm can easily be modified to be a startup algorithm for any of the other

algorithms.

In the introduction, we mentioned that IFAST is more computationally effi-

cient that the FAST algorithm. The computation required for the FAST algorithm

is very close to the blue curve in Figure 1. The computational efficiency in IFAST

comes from creating the matrix F̃ , by first creating the matrix D̃ as the sum of

the old singular values and two rank-one matrices. This technique can be applied

to the FAST algorithm, but it is more complex because D̃ would be the sum of

the old singular values and five rank one matrices due to the forced zeros in the

matrix (r + 1)th column, even though there is only one column in Q.

16

Table 4. Steps of the IFAST-F Algorithm

Step Description

1) z1 =
(
I − U ′U ′H)xt

q1 = z1/ ‖z1‖

z2 =
(
I − [U ′ | q1] [U ′ | q1]H

)
xt−c

q2 = z2/ ‖z2‖

Q = [q1 | q2]

Identical to Step 1 of IFAST.

2)
Υ

FFT←−→
[
U ′ Q

0

]
δ

FFT←−→ dt

E = ΥH � [δ · · · δ]T[
Ẽ ẽc+1 · · · ẽN

] IFFT←−−→ E

F̃ = ẼẼH

Take the FFT of each column
of
[
U ′ Q
0 0

]
create to Υ, and take

the FFT of dt to create δ. Cre-
ate E by taking the Hadamard
product of ΥH and δT repli-
cated r+ 2 times. Create Ẽ by
taking the first c columns of the
inverse FFT of E. Create F̃ by
multiplying Ẽ by ẼH .

3) Ũf Σ̃f Ũ
H
f = F̃ Identical to Step 3 of IFAST.

4) Ũ ′ = [U ′ |Q]Ũf
Σ̃′2 = Σ̃f

Identical to Step 4 of IFAST.

The eigendecomposition of F̃ in Step 3 of the IFAST algorithm is generally

the most computationally dominant step. When there are hardware limitations

that only allow an SVD of a certain size, say rmax, the algorithm will still work.

What will happen, is that while the signal subspace rank is greater than rmax, the

algorithm will produce rmax singular value and singular vector estimates. Because

we are not able to track part of the signal subspace, that part will end up in

the noise subspace, and effectively decrease the SNR. When the signal subspace

returns below rmax, the algorithm will again track the full signal subspace.

The matrix Q is not unique, and in Step 1 of IFAST, we could have created q1

using xt−c and q2 using xt instead. In fact, we can see from (6) that any rotation

17

of Q by a 2 × 2 unitary matrix will have no effect on the algorithm, because the

[U ′ |Q][U ′ |Q]H term will multiply this 2 × 2 unitary matrix by its Hermitian,

giving a 2× 2 identity matrix.

It should be noted that the order of evaluation is important in efficiently

performing the calculations, for example z1 in step one of the IFAST algorithm

might be evaluated as z1 = xt − U ′(U ′Hxt).

It should be noted that the IFAST algorithm works for both complex and real

data, whereas the rank tracking method from manuscript 4 and [6] is designed for

complex data only. The IFAST algorithm is designed to update the singular values

and singular vectors of M ; thus, it is independent of the rank tracking algorithm.

Therefore, any rank tracking method can be used.

1.3 Rank-Two Secular Functions

In this section, we will rewrite the SVD of M̃ and the SVD of M̃ ′, as equivalent

problems which are the eigendecomposition of a diagonal matrix plus two rank-

one matrices. This allows us to analyze them using the rank-two secular function,

whose roots are the eigenvalues of the matrix. The rank-two secular function is

presented in manuscript 2.

When a matrix can be written in the form D − aaH + bbH , where D is a

diagonal matrix, and a and b are vectors, the eigenvalues of this matrix are the

roots of the rank-two secular function. The secular function [12] is closely related

to the characteristic polynomial [13], but has some qualities which make it more

useful for analysis.

18

1.3.1 The Full Dimension, M̃ ⇒ G̃

We will start off with the two n× c overlapping matrices from (2) and (3),

M =
[

xt−c xt−c+1 xt−c+2 · · · xt−1

]
,

M̃ =
[

xt−c+1 xt−c+2 · · · xt−1 xt
]
,

along with the SVD of M = UΣV H , where U ∈ Cn×n and Σ ∈ Rn×c. If we define

G̃ as UHM̃M̃HU , then from (22), we can write

G̃ = UHMMHU − UHxt−cx
H
t−cU + UHxtx

H
t U. (29)

If we define the two, length n, column vectors

a = UHxt−c and b = UHxt, (30)

and zero pad Σ so that we can write Σ2 ∈ Rn×n, then we can write (29) as

G̃ = Σ2 − aaH + bbH , (31)

which is a diagonal matrix plus two rank one matrices. If we write the eigende-

composition of G̃ as UgΛgU
H
g , then from Theorem 1, we can write the singular

values and left singular vectors of M̃ as

Σ̃ =
√

Λg and Ũ = UUg. (32)

What this means, is that we can analyze the singular values and left singular

vectors of M̃ by analyzing the eigendecomposition of G̃.

The eigenvalues of G̃ are the roots of the rank-two secular equation

wg(λ) =

(
1−

n∑
j=1

|aj|2

σ2
j − λ

)(
1 +

n∑
j=1

|bj|2

σ2
j − λ

)
+

∣∣∣∣∣
n∑
j=1

a∗jbj

σ2
j − λ

∣∣∣∣∣
2

, (33)

wg(λ) = wga(λ)wgb
(λ) + |wgx(λ)|2, (34)

where wga(λ) is the rank-one secular equation for Σ2 − aaH , and wgb
(λ) is the

rank-one secular equation for Σ2 + bbH , [12, 14], and wgx(λ) contains the cross

terms.

19

1.3.2 The Principal Subspace, U ′U ′HM̃ ⇒ D̃

If we separate M into a strong r dimensional principal subspace, and an n− r

dimensional weak orthogonal subspace, we can write the SVD of M as

M =
[
U ′ U⊥] [Σ′ 0

0 Σ⊥

] [
V ′ V ⊥]H , (35)

where Σ′ ∈ Rr×r contains the r largest singular values of M , and U ′ ∈ Cn×r

contains the first r columns of U . We now want to analyze the SVD of

M̃ ‡ = U ′U ′HM̃ = Ũ ‡Σ̃‡Ṽ ‡H . (36)

If we define D̃ to be U ′HM̃M̃HU ′, then from (17), we can write D̃ as

D̃ = Σ′2 − a′a′H + b′b′H , (37)

where a′ and b′ are length r vectors that are just the first r elements of a and

b, respectively. If we write the eigendecomposition of D̃ as UdΛdU
H
d , then from

Theorem 1 we can write the singular values and left singular vectors of M̃ ‡ as

Σ̃‡ =
√

Λd and Ũ ‡ = U ′Ud. (38)

What this means, is that we can analyze the singular values and left singular

vectors of M̃ ‡ by analyzing the the eigendecomposition of D̃.

The eigenvalues of D̃ are the roots of the rank-two secular equation

wd(λ) =

(
1−

r∑
j=1

|aj|2

σ2
j − λ

)(
1 +

r∑
j=1

|bj|2

σ2
j − λ

)
+

∣∣∣∣∣
r∑
j=1

a∗jbj

σ2
j − λ

∣∣∣∣∣
2

. (39)

Note that (39) differs from (33) only by the upper limit of the summation.

1.3.3 The IFAST Subspace, M̃ ′ ⇒ F̃

We now want to analyze the SVD of the IFAST approximation from (6),

M̃ ′ = [U ′ |Q][U ′ |Q]HM̃ = Ũ ′Σ̃′Ṽ ′H . (40)

20

In this section, we will put an additional constraint on Q, such that QHMMHQ

is diagonal. It was shown in section 1.2.9 that multiplying Q by a unitary 2 × 2

matrix has no effect on the algorithm. If we create an initial Q using (5), which

we will call Qi, then take the SVD of the 2× 2 matrix QH
i MMHQi = ÛΣ̂ÛH , we

can define Q = QiÛ . This will give us

Σ̂ = QHMMHQ, (41)

which is a diagonal matrix. We can now write the lower right 2 × 2 block of F̃

from (18) as a diagonal matrix plus two rank one matrices of the form

QHM̃M̃HQ = Σ̂− ââH + b̂b̂
H
, (42)

where

â = QHxt−c and b̂ = QHxt. (43)

Combining eqns. (18), (37), (42), and (22), we can write

F̃ =

[
Σ′2 U ′HMMHQ

QHMMHU ′ Σ̂

]
−

[
a′

â

][
a′

â

]H
+

[
b′

b̂

][
b′

b̂

]H
. (44)

Because we are assuming U ′ consists of the r true left singular vectors of M

(as opposed to approximate left singular vectors), then from (35), we can write

MMH = U ′Σ′2U ′H +U⊥Σ⊥2U⊥H , which when substituted into QHMMHU ′, gives

us

QHMMHU ′ = QH
(
U ′Σ′2U ′H + U⊥Σ⊥2U⊥H)U ′. (45)

The first term is zero because QHU ′ = 0, and the second term is zero because

U⊥HU ′ = 0. This allows us to write F̃ as a diagonal matrix plus two rank one

matrices of the form,

F̃ =

[
Σ′2 0

0 Σ̂

]
−

[
a′

â

][
a′

â

]H
+

[
b′

b̂

][
b′

b̂

]H
. (46)

21

If we write the eigendecomposition of F̃ as UfΛfU
H
f , then from Theorem 1, we can

write the singular values and left singular vectors of M̃ ′ as

Σ̃′ =
√

Λf and Ũ ′ = [U ′ |Q]Uf . (47)

What this means, is that we can analyze the singular values and left singular

vectors of M̃ ′ by analyzing the eigendecomposition of F̃ .

The eigenvalues of F̃ are the roots of the rank-two secular equation

wf (λ) =

(
1−

r∑
j=1

|aj|2

σ2
j − λ

−
2∑
j=1

|âj|2

σ̂j − λ

)(
1 +

r∑
j=1

|bj|2

σ2
j − λ

+
2∑
j=1

|b̂j|2

σ̂j − λ

)

+

∣∣∣∣∣
r∑
j=1

a∗jbj

σ2
j − λ

+
2∑
j=1

â∗j b̂j

σ̂j − λ

∣∣∣∣∣
2

, (48)

wf (λ) = wfa(λ)wfb
(λ) + |wfx(λ)|2, (49)

where σ̂j comes from the diagonal of Σ̂ in (41), and âi and b̂i are the i elements of

â and b̂ respectively.

1.3.4 Secular Function Comparison

Figure 4 shows an example of the rank-two secular functions for G̃, D̃, and

F̃ , for (31), (37), and (46) respectively. The roots of the secular function are

the eigenvalues of the respective matrix, G̃, D̃, or F̃ , which are the squares of the

singular values of the matrices M̃ , M̃ ‡, or M̃ ′. The poles of the secular function are

the eigenvalues of the original unperturbed matrix, which is the diagonal matrix

in G̃, D̃, or F̃ . Here it is assumed that n = c = 20, r = 7, and the SNR=4. The

function wg(λ) has 20 poles at σ2
1 · · ·σ2

20, and 20 roots at σ̃2
1 · · · σ̃2

20. The function

wd(λ) has 7 poles at σ2
1 · · ·σ2

7, and 7 roots at σ̃‡21 · · · σ̃
‡2
7 . The function wf (λ) has 9

poles at σ2
1 · · ·σ2

7, σ̂1 and σ̂2, and 9 roots at σ̃′21 · · · σ̃′29 . Note that σ2
1 through σ2

7 are

poles for all three secular functions, and since wf (λ) was plotted last in Figure 4,

we see red vertical lines at these points.

22

σ2
1

σ̃2
1

σ2
2

σ̃2
2

σ2
3

σ̃2
3

σ2
4

σ̃2
4

σ2
5

σ̃2
5

σ2
6

σ̃2
6

σ2
r

σ̃2
r

σ̂1σ̂2

wg(λ)

wd(λ)

wf (λ)

Figure 4. An example of the rank-two secular functions wg(λ), wd(λ), and wf (λ),
from (33), (39), and (48), vs. λ for n = c = 20, and principal subspace r = 7. SNR
is 4. The poles, σ2

i indicated at the top of the plot, correspond to the old singular
values, and the roots, σ̃2

i indicated at the bottom of the plot, correspond to the
new singular values.

The reason that wg(λ) is not visible for λ > σ̃2
r , is because it is concealed

by wf (λ) in that region. For λ < σ̃2
r , there are 2 roots and poles for wf (λ), and

n− r = 13 roots and poles for wg(λ), which correspond to the rest of the singular

values of M and M̃ .

The only difference between wg(λ) and wd(λ) is the upper limit of their sum-

mations. This means that terms for the contribution for the r largest singular

values are represented exactly, while the terms for the smaller singular values are

completely unrepresented. The function wf (λ) tries to represent the n−r smallest

poles of wg(λ) by the two poles σ̂1 and σ̂2.

1.4 The Rank-One Case

Our goal is to analyze the difference between the eigendecomposition of G̃,

which will give us the true SVD of M̃ , and the eigendecomposition of F̃ , which

23

will give us the IFAST approximation to the SVD of M̃ , which is the true SVD

of M̃ ′. The rank two modification of the diagonal matrix in G̃ and F̃ can be

analyzed as two sequential rank one modifications. Because the math is easier

to follow using the rank-one secular equation, we will first analyze the rank one

modification which comes from the column we are adding to M , that is, xt. We

can write this modification as

G̃b = Σ2 + bbH , (50)

F̃b =

[
Σ′2 0

0 Σ̂

]
+

[
b′

b̂

][
b′

b̂

]H
. (51)

Their rank-one secular functions from (34) and (49), whose roots are the eigenval-

ues of G̃b and F̃b, are

wgb
(λ) = 1 +

n∑
j=1

|bj|2

σ2
j − λ

, (52)

wfb
(λ) = 1 +

r∑
j=1

|bj|2

σ2
j − λ

+
2∑
j=1

|b̂j|2

σ̂j − λ
. (53)

Since roots of wgb
(λ) will give us the true singular values of the first rank-one update

of M̃ , we can think of wfb
(λ) as equal to wgb

(λ) plus an error term. Therefore, we

can write

wfb
(λ) = wgb

(λ) + efb
(λ), (54)

where efb
(λ) is the error term. From (52) and (53), we can write

efb
(λ) = wfb

(λ)− wgb
(λ) =

2∑
j=1

|b̂j|2

σ̂j − λ
−

n∑
j=r+1

|bj|2

σ2
j − λ

. (55)

1.4.1 Infinite Geometric Series Expansions

We will now perform infinite geometric series expansions on the two summa-

tions in (55) to show that the first two terms in both expansions are identical. For

λ greater than max(σr+1, σ̂1), we can use an infinite geometric series expansion to

24

write

n∑
j=r+1

|bj|2

σ2
j − λ

= −
n∑

j=r+1

|bj|2

λ

(
1

1− σ2
j/λ

)
= −

n∑
j=r+1

|bj|2

λ

∞∑
i=0

(
σ2
j

λ

)i
(56)

and
2∑
j=1

|b̂j|2

σ̂j − λ
= −

2∑
j=1

|b̂j|2

λ

(
1

1− σ̂j/λ

)
= −

2∑
j=1

|b̂j|2

λ

∞∑
i=0

(
σ̂j
λ

)i
. (57)

For both of the series expansions, we will move the first two terms of the sum over

i out front, to get

−1

λ

(
n∑

j=r+1

|bj|2
)
− 1

λ2

(
n∑

j=r+1

|bj|2 σ2
j

)
−

(
n∑

j=r+1

|bj|2

λ

∞∑
i=2

(
σ2
j

λ

)i)
(58)

and

−1

λ

(
2∑
j=1

|b̂j|2
)
− 1

λ2

(
2∑
j=1

|b̂j|2σ̂j

)
−

(
2∑
j=1

|b̂j|2

λ

∞∑
i=2

(
σ̂j
λ

)i)
. (59)

The first term from the series expansion in (58) can be written as

n∑
j=r+1

|bj|2 =
n∑

j=r+1

xHt uju
H
j xt = xHt U

⊥U⊥Hxt. (60)

Because of the way Q was constructed, QQHxt = (I − U ′U ′H)xt = U⊥U⊥Hxt.

Therefore, (60) can be written as xHt QQ
Hxt, which is identical to the first term

of (59),
∑2

j=1 |b̂j|2.

The second term from the series expansion in (58) can be written as

n∑
j=r+1

|bj|2 σ2
j =

n∑
j=r+1

xHt ujσ
2
ju

H
j xt = xHt U

⊥Σ⊥2U⊥Hxt. (61)

We can insert the identity matrix, U⊥HU⊥, into (61) to get

xHt U
⊥U⊥HU⊥Σ⊥2U⊥HU⊥U⊥Hxt. (62)

Substituting QQHxt = U⊥U⊥Hxt, we get

xHt QQ
HU⊥Σ⊥2U⊥HQQHxt, (63)

25

which is equal to

xHt QQ
H(U ′Σ′2U ′H + U⊥Σ⊥2U⊥H)QQHxt = xHt QQ

HUΣ2UHQQHxt (64)

because Q is orthogonal to the columns of U ′. This can be written as

xHt QQ
HMMHQQHxt. (65)

Finally, since QHMMHQ = Σ̂, we get

xHt QΣ̂QHxt, (66)

which is the same as the second term from (59),
∑2

j=1 |b̂j|2σ̂j.

Combining (58) and (59) into (55), we get

efb
(λ) =

n∑
j=r+1

|bj|2

λ

∞∑
i=2

(
σ2
j

λ

)i
−

2∑
j=1

|b̂j|2

λ

∞∑
i=2

(
σ̂j
λ

)i
, (67)

which can be written in terms of powers of singular values as

efb
(λ) =

∞∑
i=2

xHt Q

(
Σ̂i −QHU⊥Σ⊥2iU⊥HQ

λi+1

)
QHxt, (68)

or in terms of powers of M as

efb
(λ) =

∞∑
i=2

xHt Q

(
(QHMMHQ)i −QH(MMH)iQ

λi+1

)
QHxt. (69)

What we see is that the IFAST approximation uses the only Q matrix that

exactly cancels the first two terms of the infinite geometric series expansion.

1.4.2 Separation Into Parts

Now that we have a term for the difference between wgb
(λ) and wfb

(λ), we

will now define the common and unique parts of each function. We will write

wgb
(λ) = cb(λ) + ugb

(λ), (70)

wfb
(λ) = cb(λ) + ufb

(λ), (71)

26

where cb(λ) is the part of wgb
(λ) and wfb

(λ) that is common to both, ugb
(λ) is the

part of wgb
(λ) that unique to it, and ufb

(λ) is the part of wfb
(λ) that is unique to

it.

We know from (52) and (53) both wgb
(λ) and wfb

(λ) contain the term 1 +∑r
j=1

|bj |2

σ2
j−λ

. Therefore, if we add the two terms from (58) and (59) that are equal,

we come up with

cb(λ) = 1 +
r∑
j=1

|bj|2

σ2
j − λ

−
2∑
j=1

|b̂j|2

λ

(
1 +

σ̂j
λ

)
. (72)

We used the terms as they are written in (59) because they are available to us in

the algorithm, but we could have used the terms from (58) instead. The part that

is unique to each function are the components of efb
(λ); Therefore, from (67) we

can write

ugb
(λ) = −

n∑
j=r+1

|bj|2

λ

∞∑
i=2

(
σ2
j

λ

)i
, (73)

ufb
(λ) = −

2∑
j=1

|b̂j|2

λ

∞∑
i=2

(
σ̂j
λ

)i
. (74)

Looking at ugb
(λ), we see that it contains an infinite sum over (σ2

j/λ)i, which

starts at i = 2. Because we are only tracking the r largest eigenvalues, we know

that (σ2
j/λ) < 1, and as the SNR goes up, this term will get smaller. There is also

an additional 1/λ term as well which will reduce the unique parts.

Figure 5 shows the difference term efb
(λ), along with ugb

(λ) and ugb
(λ). Notice

that all three curves are around the same magnitude for λ > σ2
r . This means that

ugb
(λ), which can easily be calculated in the IFAST algorithm, can be used as an

indicator of the error efb
(λ). The plot is in log10 because the differences are so

small.

27

−6

−5

−4

−3

−2

−1

0

1

2
σ2

1

σ̃2
1

σ2
2

σ̃2
2

σ2
3

σ̃2
3

σ2
4

σ̃2
4

σ2
5

σ̃2
5

σ2
6

σ̃2
6

σ2
r

σ̃2
r

σ2
r+1σ̂1σ̂2

log10(|efb(λ)|)
log10(|ugb(λ)|)
log10(|ufb(λ)|)

Figure 5. log10 of the difference efb
(λ) = wfb

(λ)−wgb
(λ) from (55), along with the

unique parts of efb
(λ) = ufb

(λ)− ugb
(λ) from (74) and (73).

1.5 The Rank-Two Case

Looking at (34) and (49), we see that they each consist of three terms. We

separated wgb
(λ) and wfb

(λ) into common and unique parts in the previous section.

We will now do the same for wga(λ) and wfa(λ), as well as wgx(λ) and wfx(λ) in

this section.

For wga(λ) in (34) and wfa(λ) in (49), we can write

wga(λ) = ca(λ) + uga(λ), (75)

wfa(λ) = ca(λ) + ufa(λ), (76)

where the common part is

ca(λ) = 1−
r∑
j=1

|aj|2

σ2
j − λ

+
2∑
j=1

|âj|2

λ

(
1 +

σ̂j
λ

)
, (77)

28

and the two unique parts are

uga(λ) =
n∑

j=r+1

|aj|2

λ

∞∑
i=2

(
σ2
j

λ

)i
, (78)

ufa(λ) =
2∑
j=1

|âj|2

λ

∞∑
i=2

(
σ̂j
λ

)i
. (79)

For wgx(λ) in (34) and wfx(λ) in (49), we can write

wgx(λ) = cx(λ) + ugx(λ), (80)

wfx(λ) = cx(λ) + ufx(λ), (81)

where the common part is

cx(λ) =
r∑
j=1

a∗jbj

σ2
j − λ

−
2∑
j=1

â∗j b̂j

λ

(
1 +

σ̂j
λ

)
, (82)

and the two unique parts are

ugx(λ) = −
n∑

j=r+1

a∗jbj

λ

∞∑
i=2

(
σ2
j

λ

)i
, (83)

ufx(λ) = −
2∑
j=1

â∗j b̂j

λ

∞∑
i=2

(
σ̂j
λ

)i
. (84)

Finally, for the full rank two secular functions, wg(λ) in (33) and wf (λ) in

(48), we can write

wg(λ) = c(λ) + ug(λ), (85)

wf (λ) = c(λ) + uf (λ), (86)

where the common part is

c(λ) = ca(λ)cb(λ) + |cx(λ)|2, (87)

and the two unique parts are

ug(λ) = caugb
+ cbuga + 2Re {c∗xugx}+ ugaugb

+ |ugx|2, (88)

uf (λ) = caufb
+ cbufa + 2Re {c∗xufx}+ ufaufb

+ |ufx|2. (89)

29

It is interesting to note that common part of the rank-two secular functions of wg(λ)

and wf (λ), from (87), has the same form as the full rank-two secular functions from

(34) and (49). All of the terms that differ contain at least one instance of the unique

functions, u(λ), and we saw from the previous section that these functions are very

small in the region where λ > σ̃2
r . This means that the offset of the roots of the

secular equation, and thus the approximation error, will be small.

Now that we have determined all of the components of wg(λ) and wf (λ), we

can write the error in the two-rank two secular function for F̃ , (similar to the

rank-one version from (55)), as

ef (λ) = wf (λ)− wg(λ) = uf (λ)− ug(λ) (90)

ef (λ) = ca(λ) (ufb
(λ)− ugb

(λ)) + cb(λ) (ufa(λ)− uga(λ))

+ 2Re {c∗x(λ) (ufx(λ)− ugx(λ))}

+ ufa(λ)ufb
(λ)− uga(λ)ugb

(λ) + |ufx(λ)|2 − |ugx(λ)|2. (91)

1.6 Additional Comments

The eigendecomposition of F̃ in Step 3 of the IFAST algorithm tends to domi-

nate the computation for large r. From (44), we can see that any F̃ can be written

as the sum of a diagonal matrix, two rank-one matrices and a rank-four matrix

which contains all zero values except the lower left 2 × r block, and the upper

right r × 2 block. It may be possible to take advantage of this structure by using

the method from manuscript 2 to determine the eigendecomposition of F̃ more

efficiently.

The inclusion of any reasonable approximation of the missing error term,

ef (λ), should only increase the accuracy of the computation, but its impact on the

algorithm as a whole would need to be examined. It could lead to a more accurate

algorithm.

30

List of References

[1] E. C. Real, D. W. Tufts, and J. W. Cooley, “Two algorithms for fast ap-
proximate subspace tracking,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 47, no. 7, pp. 1036–1045, July 1999.

[2] E. C. Real, R. M. Yannone, and D. W. Tufts, “Comparison of two meth-
ods for multispectral 3-D detection of single pixel features in strong textured
clutter,” in Proceedings Image and Multidimensional Digital Signal Processing
Conference (IMDSP), Alpbach, Austria, July 1998.

[3] D. W. Tufts, “Keynote address,” in MIT Lincoln Laboratory Adaptive Array
Signal Processing (ASAP) Conference, Lexington, MA, Mar. 2001.

[4] A. A. Shah and D. W. Tufts, “Determination of the dimension of a signal
subspace from short data records,” IEEE Transactions on Signal Processing,
vol. 42, no. 9, pp. 2531–2535, Sept. 1994.

[5] D. W. Tufts and A. A. Shah, “Rank determination in time-series analysis,” in
Proceedings IEEE International Conference on Acoustics, Speech, and Signal
Processing, (ICASSP), Apr. 1994, pp. IV–21–IV–24.

[6] T. M. Toolan and D. W. Tufts, “Detection and estimation in non-stationary
environments,” in Proceedings IEEE Asilomar Conference on Signals, Systems
& Computers, Nov. 2003, pp. 797–801.

[7] I. Karasalo, “Estimating the covariance matrix by signal subspace averaging,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-
34, no. 1, pp. 8–12, Feb. 1986.

[8] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed. Baltimore,
MD: Johns Hopkins Univ. Press, 1996.

[9] J. W. Cooley, P. A. Lewis, and P. D. Welch, “The Fast Fourier Transform algo-
rithm and its applications,” IBM Watson Research Center, Yorktown Heights,
NY, Tech. Rep. RC-1743, Feb. 1967.

[10] J. W. Cooley and J. W. Tukey, “An algorithm for the machine computation of
complex Fourier series,” Mathematics of Computation, vol. 19, pp. 297–301,
Apr. 1965.

[11] J. W. Cooley, T. M. Toolan, and D. W. Tufts, “A subspace tracking algorithm
using the Fast Fourier Transform,” IEEE Signal Processing Letters, vol. 11,
no. 1, pp. 30–32, Jan. 2004.

[12] G. H. Golub, “Some modified matrix eigenvalue problems,” SIAM Review,
vol. 15, no. 2, pp. 318–334, Apr. 1973.

31

[13] J. H. Wilkinson, The Algebraic Eigenvalue Problem. London, UK: Oxford
Univ. Press, 1965.

[14] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, “Rank-one modification of
the symmetric eigenproblem,” Numerische Mathematik, vol. 31, pp. 31–48,
1978.

32

MANUSCRIPT 2

Rank-two modification of the symmetric eigenproblem

2.1 Abstract

A method is presented for efficiently computing the eigenvalues and eigen-

vectors of the sum of a diagonal matrix, D, and two rank one matrices of the

form G̃ = D − aaH + bbH . The rank-two secular function, the roots of which

are the eigenvalues of G̃, is derived, along with a simple way to determine disjoint

intervals which bound each root. A non-iterative method to calculate all n of the

eigenvectors of G̃ ∈ Cn×n in O(n2) time is also presented.

The above problem is closely related to updating the singular value decompo-

sition (SVD) of a matrix where one row or column has been replaced. A method

for determining this update is presented, in which a single O(n3) matrix product

is required to calculate the new right or left singular vectors.

All non-numerical pathological cases are addressed, including creating a du-

plicate eigenvalue, unchanged eigenvalues, and having duplicate eigenvalues in the

original matrix. These pathological cases give insight into higher order perturba-

tions, as well as more numerically stable implementations.

2.2 Introduction

Using the secular equation to update the eigenvalues of a rank-one modifi-

cation to a diagonal matrix, as in D − aaH , has been analyzed by Wilkinson [1]

and Golub [2]. A non-iterative method to determine the eigenvectors, along with a

more numerically robust method to determine eigenvalues was described by Bunch,

Nielsen, and Sorensen [3]. Analysis and improvement of the numerical properties,

especially of the eigenvectors, has been addressed more recently by Gu and Eisen-

stat [4, 5]. One important property of this method is that it can determine both

33

the eigenvalues and eigenvectors of a rank-one modification to a diagonal matrix

in O(n2) time. This allows one to update the eigendecomposition of a rank-one

modification to any symmetric matrix with known eigendecomposition with only

a single O(n3) matrix product.

In this manuscript, we present a method to determine the eigenvalues and

eigenvectors of two simultaneous rank-one modifications to a diagonal matrix, as in

D−aaH+bbH , in O(n2) time. This allows one to update the eigendecomposition of

a rank-two modification to any symmetric matrix with known eigendecomposition

with only a single O(n3) matrix product, just like in the rank-one case. A common

place where a problem of this form appears is when we have a matrix where we

simultaneously remove and add a column (or modify a single column), and want

to update the singular value decomposition of the new matrix.

As an algorithm, the method presented in this manuscript can be more efficient

in updating an eigendecomposition than using the rank-one method twice because

the O(n3) rotation of the eigenvectors is the dominant computation. As an analysis

tool, having a formula which directly calculates the eigenvalues of the rank-two

modification can be more revealing than two sequential rank-one calculations with

a rotation in the middle.

The organization of this manuscript is as follows. Section 2.3 introduces the

basic notation, and provides an example of the applicability of this method. Section

2.4 shows how to deflate the problem to exclude eigenvalues whose eigenvectors

don’t change, and to exclude some multiple eigenvalues. Section 2.5 derives the

rank-two secular function, the roots of which are the eigenvalues of D−aaH+bbH ,

and shows how to find disjoint intervals which bound each root. Section 2.6 shows

how to determine the eigenvectors using a non-iterative method. Section 2.7 gives

a summary of the necessary steps required to perform the method described in this

34

manuscript.

2.3 Defining the Problem

Our new formulas and method for computing the eigenvalues and eigenvectors

of a rank-two modification of a diagonal matrix have wider applicability than one

might infer from the introduction. As long as we can convert a given problem into

a rank-two modification of a diagonal matrix of the form D − aaH + bbH , the

method is applicable.

In this section, we show that the problem of updating the SVD of a rectangular

matrix where one column has been replaced can be recast into the form of D −

aaH + bbH . We start with the matrix M ∈ Cr×c, along with its SVD,

M = UMΣMV
H
M . (92)

If we define n = min(r, c) to be the smaller dimension of M , then UM ∈ Cr×n and

VM ∈ Cc×n are matrices with orthogonal and normal columns, where UH
MUM = I

and V H
M VM = I. The matrix ΣM ∈ Rn×n is diagonal, with descending non-negative

values on the diagonal. We can write M as c, length r, column vectors,

M =
[

m1 m2 m3 · · · mc−1 mc

]
. (93)

We then create the matrix M̃ ∈ Cr×c, by shifting the c−1 rightmost columns of M

one column to the left, discarding the leftmost column, and adding a new column

on the right,

M̃ =
[

m2 m3 · · · mc−1 mc mc+1

]
. (94)

We would like to calculate the SVD of M̃ by taking advantage of the fact that it

shares all but one column with M , whose SVD we already have.

We can write M̃ as

M̃ =
(
M −m1e

T
1

)
P + mc+1e

T
c (95)

35

where e1 and ec are the 1st and cth length c canonical vectors, respectively, and

P is a c× c matrix of these length c canonical vectors,

e1 =

1
0
...
0
0

 , ec =

0
0
...
0
1

 , P =

0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 . (96)

Note that the ith length c canonical vector, ei, is the ith column of a c× c identity

matrix. Multiplying M̃ as defined in (95) by its conjugate transpose, we get

M̃M̃H = MMH −m1m
H
1 + mc+1m

H
c+1. (97)

Multiplying (97) by UH
M on the left and UM on the right, we get

UH
MM̃M̃HUM = Σ2

M − UH
Mm1m

H
1 UM + UH

Mmc+1m
H
c+1UM , (98)

where the Σ2
M term comes from UH

MMMHUM . Next, we define the diagonal matrix

D ∈ Rn×n, and the column vectors a ∈ Cn and b ∈ Cn as

D = Σ2
M , a = UH

Mm1, b = UH
Mmc+1. (99)

Thus, a is a rotated version of the column we are discarding, and b is a rotated

version of the column we are adding. The ith element on the diagonal of D will

be di, and the ith element of a and b will be ai = uH
i,Mm1 and bi = uH

i,Mmc+1,

respectively, where ui,M is the ith left singular vector of M , which is the ith column

of UM . If we write

G̃ = D − aaH + bbH , (100)

it is obvious that G̃ is a diagonal matrix plus two rank-one matrices. From (98),

we see G̃ = UH
MM̃M̃HUM . Writing the eigendecomposition of G̃ as

G̃ = ŨD̃ŨH , (101)

36

then multiplying (101) by UM and UH
M , we get

M̃M̃H = UM ŨD̃Ũ
HUH

M = (UM Ũ)D̃(UM Ũ)H . (102)

This means the eigenvalues of G̃ are the squares of the singular values of M̃ , and

the eigenvectors of G̃, rotated by UM , are the left singular vectors of M̃ . Thus the

singular values and left singular vectors of M̃ can be written as

Σ̃M =
√
D̃, ŨM = UM Ũ . (103)

The right singular vectors of M̃ can be calculated as ṼM = M̃HŨM Σ̃−1
M . Thus, we

can update the SVD of M̃ by determining the eigendecomposition of G̃.

2.4 Sorting and Deflating

Before we start calculating the eigendecomposition of G̃, we must first sort the

elements on the diagonal of D in ascending order (which is the reverse of the SVD),

deflate any duplicate eigenvalues to a multiplicity of at most two, and remove any

eigenvalues whose corresponding eigenvectors don’t change.

2.4.1 Sorting D

The old eigenvalues, which are the elements on the diagonal of D, must be

sorted in ascending order to determine the bounds for the new eigenvalues. This

can be done by creating a permutation matrix, Is, which is just an n × n iden-

tity matrix with the columns reordered in the same order as required to sort the

elements on the diagonal of D. If D is already sorted in ascending order, Is will

be the identity matrix, if D is sorted in descending order, as with the SVD, Is

will be an anti-diagonal matrix with ones on the anti-diagonal. If we then define

D′ = IHs DIs, a′ = IHs a, and b′ = IHs b, then D′ will have its diagonal sorted in

ascending order. If we then determine the eigendecomposition of the sorted matrix

G̃′ = D′ − a′a′H + b′b′H = Ũ ′D̃′Ũ ′H , (104)

37

the eigendecomposition of G̃ can be written as D̃ = D̃′, and Ũ = IsŨ
′. Note that

multiplying by Is from the left is just a reordering of rows, and multiplying by Is

from the right is just a reordering of columns, and neither actually requires any

computation.

2.4.2 Deflating G̃

If ai = bi = 0 for a given value of i, then neither the ith eigenvalue nor the ith

eigenvector will change, therefore we can remove these elements from G̃. Before

we do that, we will rotate the eigenvectors that correspond to eigenvalues with a

multiplicity greater than one so that we can produce more elements of a and b

that meet the condition ai = bi = 0.

Rotating multiple eigenvalues

If there are any eigenvalues with multiplicity greater than two, (including

multiple zeros), we must reduce them to a multiplicity of at most two. Whenever

a matrix has an eigenvalue of multiplicity k, where k > 1, the corresponding

eigenvectors are confined to a k dimensional subspace of arbitrary rotation. This

means that any rotation of those k eigenvectors by a unitary matrix will still be

eigenvectors of that matrix. If there are k identical eigenvalues at di through

di+k−1, and we define the matrix Y ∈ Ck×2 to contain the elements from a and b

which correspond to the duplicate eigenvalue,

Y =

[
ai ai+1 ai+2 · · · ai+k−1

bi bi+1 bi+2 · · · bi+k−1

]T
, (105)

and take its QR factorization as Y = QR, then Q will be a unitary matrix, and R

will be a k × 2 upper triangular matrix with at most three nonzero elements.

To illustrate how we take advantage of this, we define the matrix IY to be

an n× n identity matrix with the k × k matrix Q inserted on the diagonal in the

location of the duplicated eigenvalue. This block will be at the intersection of the

38

ith through (i+ k)th rows and columns of IY . We can then rewrite (100) as

G̃ = IY
(
D − IHY aaHIY + IHY bbHIY

)
IHY . (106)

The reason the D term does not change is because D = IHY DIY . The term IHY a is

the same as a in all elements except the ith through the (i+ k)th, where it equals

the first column of R, and similarly IHY b is the same as b in all elements except

the ith through the (i+ k)th, where it equals the second column of R,

IHY a =
[
a1 · · · ai−1 | r1,1 0 0 · · · 0 | ai+k · · · an

]T
IHY b =

[
b1 · · · bi−1 | r1,2 r2,2 0 · · · 0 | bi+k · · · bn

]T
.

(107)

This means that if we calculate the eigendecomposition of the expression inside

the parenthesis of (106), we will have inserted at least k − 2 elements into a and

b where ai = bi = 0. If the two columns of Y are linearly dependent, r2,2 will be

zero, and we will be able to remove an additional eigenvalue.

If all of ai through ai+k−1 are zero, r1,1 will be zero, and we can deflate all but

one of the identical eigenvalues in this case.

To apply this for all eigenvalues with multiplicity of two or more, we start

with an n × n identity matrix, which we will call Ir. Find all eigenvalues on the

diagonal of D′ (the sorted version of D) with a multiplicity greater than or equal to

two, calculate the QR factorization of the portion of a′ and b′ which corresponds

to the duplicate eigenvalue, and insert this Q into Ir on the diagonal as was done

in the above example with IY . If we define ȧ = IHr a′ and ḃ = IHr b′, then ȧ and ḃ

will be a′ and b′ with values from the R matrices of the QR factorizations inserted

in a similar fashion as (107).

Removing the unchanged eigenvalues

Now that all of the rotations are done, we have the matrix Ir ∈ Cn×n, which

if there were no duplicate eigenvalues is just the identity matrix, and if there were

39

duplicate eigenvalues, will have some Q blocks on the diagonal. The final step is

to remove the unchanged eigenvalues.

We start with a matrix Id, which we will initially set to Ir. Using ȧ and ḃ, find

each i where ȧi = ḃi = 0. For each of these values of i, remove the ith column from

Id, and place it in a matrix called Ũd. If nd is the number of values that satisfy

ȧi = ḃi = 0, we will end up with the two matrices Id ∈ Cn×n−nd and Ũd ∈ Cn×nd .

We can then write the deflated terms as

D′′ = IHd I
H
s DIsId, a′′ = IHd I

H
s a, b′′ = IHd I

H
s b. (108)

If we determine the eigendecomposition of the deflated matrix

G̃′′ = D′′ − a′′a′′H + b′′b′′H = Ũ ′′D̃′′Ũ ′′H , (109)

then the eigendecomposition of G̃ can be written as

D̃ =

[
D̃d 0

0 D̃′′

]
, Ũ = Is

[
Ũd IdŨ

′′
]
, (110)

where D̃d = ŨH
d I

H
s DIsŨd is the nd×nd matrix of eigenvalues that did not change.

2.4.3 Replacing G̃ with the deflated version

It is important to note that there is almost no computation required to do

the actual deflation. Although this section has been written using many matrix

products, in practice almost none of them actually need be performed. The only

computations required are calculating the QR factorization of a k × 2 matrix for

each duplicate eigenvalue, which even for large values of k is negligible, and the

product IdŨ
′′, which is also negligible because Id is mostly columns from an identity

matrix, with small blocks that contain at most two columns of Q from each QR

factorization.

From this point on in the manuscript, we will assume G̃ has been sorted and

deflated as described in this section, and when we refer to G̃, D, a, b, and n, we

really mean the sorted and deflated versions, G̃′′, D′′, a′′, b′′, and (n− nd).

40

2.5 The eigenvalues of G̃

In this section, we will derive the equivalent of the secular equation [2] for G̃,

which we will call the rank-two secular equation, then show how to bound each

root in disjoint intervals which can be used to calculate the eigenvalues of G̃. The

secular equation has the same roots as the characteristic equation, but has some

better properties for finding the roots [1, 2].

2.5.1 The characteristic polynomial of G̃

The characteristic polynomial of a matrix, whose roots are the eigenvalues of

that matrix, is the determinant of that matrix minus λ times the identity matrix.

The characteristic polynomial of G̃ is

C(λ) = det
[
D − aaH + bbH − λI

]
. (111)

We will define the diagonal matrix

Tλ = (D − λI), (112)

whose ith diagonal element is ti = (di − λ). Expanding (111) in terms of ti and

the elements of a and b, we get

C(λ) = det

b1b

∗
1 − a1a

∗
1 + t1 b1b

∗
2 − a1a

∗
2 · · · b1b

∗
n − a1a

∗
n

b2b
∗
1 − a2a

∗
1 b2b

∗
2 − a2a

∗
2 + t2 · · · b2b

∗
n − a2a

∗
n

...
...

. . .
...

bnb
∗
1 − ana∗1 bnb

∗
2 − ana∗2 · · · bnb

∗
n − ana∗n + tn

 .
(113)

Using the determinant properties that:

• a scalar can be factored out of any row or column, and

• any two rows or columns can be added together without changing the deter-

minant,

41

we can rewrite (113) as the determinant of a matrix which has nonzero values only

on the diagonal and the first two rows and columns, and simple values everywhere

except the upper left 2× 2 block. To do this, we start by setting W equal to C(λ)

as it appears in (113), and p = 1, which will be used to collect the row and column

scale factors. Thus, we can write

C(λ) = pW. (114)

We next apply the above two determinant properties to W and p successively as

shown in Table 5 to change the form of C(λ) to that of (115). The notation used

for the rows and columns of W in Table 5 are Wi,: for the ith row of W , and W:,i

for the ith column of W .

C(λ) = t1t2 det

a∗1b1
t1

+
a∗2b2
t2

a1a∗1
t1

+
a2a∗2
t2
− 1 a∗3 a∗4 a∗5 · · · a∗n

b1b∗1
t1

+
b2b∗2
t2

+ 1
a1b∗1
t1

+
a2b∗2
t2

b∗3 b∗4 b∗5 · · · b∗n
−b3 −a3 t3 0 0 · · · 0
−b4 −a4 0 t4 0 · · · 0
−b5 −a5 0 0 t5 · · · 0

...
...

...
...

...
. . .

...
−bn −an 0 0 0 · · · tn

.

(115)

Now that the determinant portion of C(λ) is primarily zeros, we can evaluate

it much more efficiently. Looking ahead, section 2.9 gives a closed form for the

determinant of a matrix of the form of (115). Plugging the elements from (115)

into (160), re-substituting ti = (di − λ), and doing some algebraic manipulation,

we get a closed form for the characteristic polynomial of G̃,

C(λ) =

(
n∏
i=1

(di − λ)

)(
1−

n∑
j=1

|aj|2

dj − λ
+

n∑
j=1

|bj|2

dj − λ
(116)

−

(
n∑
j=1

|aj|2

dj − λ

)(
n∑
l=1

|bl|2

dl − λ

)
+

(
n∑
j=1

ajb
∗
j

dj − λ

)(
n∑
l=1

a∗l bl
dl − λ

))
,

42

Table 5. The steps to convert the determinant portion of C = pW to a bordered
diagonal matrix.

Step Modifications to p Modifications to W Range for i

1) p = pb∗i W:,i = W:,i/b
∗
i i = 1 · · ·n

2) W:,i = W:,i −W:,1 i = 2 · · ·n
3) W:,i = W:,i −W:,2 i = 3 · · ·n
4) p = pai Wi,: = Wi,:/ai i = 1 · · ·n
5)† p = pW1,i W:,i = W:,i/W1,i i = 3 · · ·n
6) Wi,: = Wi,: −W1,: i = 2 · · ·n
7) p = p/(a∗i − a∗2b∗i /b∗2) W:,i = W:,i(a

∗
i − a∗2b∗i /b∗2) i = 3 · · ·n

8) p = −p/(1 + b1b
∗
1/t1) W:,2 = −W:,2(1 + b1b

∗
1/t1)

9) W:,1 = W:,1 −W:,2

10) p = −p(t1/b∗1 + b1)/a1 W:,2 = −W:,2a1/(t1/b
∗
1 + b1)

11) p = −pt2/(a2a
∗
2) W2,: = −W2,:a2a

∗
2/t2

12) W1,: = W1,: −W2,:

13) p = −p/ai Wi,: = −Wi,:ai i = 3 · · ·n
14) p = −pa∗2/b∗2 W2,: = −W2,:b

∗
2/a

∗
2

† p must be calculated before W1,i is modified

which when factored gives us

C(λ) =

(
n∏
i=1

(di − λ)

)(1−
n∑
j=1

|aj|2

dj − λ

)(
1 +

n∑
j=1

|bj|2

dj − λ

)
+

∣∣∣∣∣
n∑
j=1

ajb
∗
j

dj − λ

∣∣∣∣∣
2
 .

(117)

2.5.2 The rank-two secular function

Since we are only interested in the roots of the characteristic polynomial, we

can divide both sides of (117) by
∏n

i=1(di−λ) to get the rank-two secular function,

w(λ) =

(
1−

n∑
j=1

|aj|2

dj − λ

)(
1 +

n∑
j=1

|bj|2

dj − λ

)
+

∣∣∣∣∣
n∑
j=1

ajb
∗
j

dj − λ

∣∣∣∣∣
2

. (118)

This function will have the same roots as C(λ), but will have poles at the original

eigenvalues, which are the elements on the diagonal of D.

43

−4

−3

−2

−1

0

1

2

3

4
d1 d2 d3 d4 d5

d̃1 d̃2 d̃3 d̃4 d̃5

C(λ)
w(λ)

Figure 6. A simple example to illustrate the rank-two secular function and
characteristic polynomial of G̃ = D − aaH + bbH . The values used to
create this figure were D = diag(d1, d2, d3, d4, d5) = diag(1, 2, 3, 4, 5), a =
[0.8, 0.26, 0.4, 0.53, 0.67]T , and b = [0.69, 0.46, 0.23, 0.46, 1]T . The eigenvalues of
G̃ are D̃ = diag(d̃1, d̃2, d̃3, d̃4, d̃5) ' diag(0.81, 2.13, 2.9, 3.94, 5.59).

Figure 6 shows an example of the rank-two secular function and the character-

istic polynomial for a 5×5 matrix. Unlike the rank-one secular function, which can

have only one root in the interval between adjacent eigenvalues of D, the rank-two

secular function can have zero, one, or two roots between adjacent old eigenvalues.

If we define the three terms,

wa(λ) = 1−
n∑
j=1

|aj|2

dj − λ
, wb(λ) = 1+

n∑
j=1

|bj|2

dj − λ
, wab(λ) =

n∑
j=1

a∗jbj

dj − λ
,

(119)

where wa(λ) is the secular function for D−aaH , and wb(λ) is the secular function

for D + bbH [1], we can write the rank-two secular function as

w(λ) = wa(λ)wb(λ) + |wab(λ)|2. (120)

From (120) it can be seen that the rank-two secular function is the product of two

rank-one secular functions plus a positive cross term. The reader can substitute

44

special cases, such as a = 0, or the case when a and b are linearly dependent, to

show that (118) will reduce to the case of a rank-one modification of D. Using the

diagonal matrix Tλ from (112), we can write (119) in matrix form as

wa(λ) = 1− aHT−1
λ a, wb(λ) = 1 + bHT−1

λ b, wab(λ) = aHT−1
λ b. (121)

2.5.3 Bounding the roots of w(λ)

Now that we have the rank-two secular function of G̃, we would like to deter-

mine disjoint intervals that bound each root of w(λ).

Determining overlapping intervals

We have, by the eigenvalue separation theorem [1] (p. 96), bounds for the case

of a rank-one perturbation of a matrix. Therefore we will apply that theorem twice

to get overlapping intervals for the rank-two case.

We first look at the effect of subtracting the rank-one matrix aaH from D. If

we define a matrix Ġ = D−aaH , then by the separation theorem, the eigenvalues

of Ġ, which we will call ḋi, are bounded by

d0 ≤ ḋ1 ≤ d1 ≤ ḋ2 ≤ d2 ≤ · · · ≤ dn−1 ≤ ḋn ≤ dn, (122)

where d0 = d1−‖a‖22 is the lower bound. Next, we will look at the effect of adding

bbH to Ġ. We know that G̃ = Ġ+bbH ; therefore, the eigenvalues of G̃ are bounded

by

ḋ1 ≤ d̃1 ≤ ḋ2 ≤ d̃2 ≤ ḋ3 ≤ · · · ≤ ḋn ≤ d̃n ≤ ḋn+1, (123)

where ḋn+1 = ḋn + ‖b‖22 is the upper bound.

Combining (122) and (123), we get overlapping intervals for the eigenvalues

of G̃ with respect to the eigenvalues of D,

di−1 ≤ d̃i ≤ di+1, i = 1, · · · , n, (124)

where d0 = d1 − ‖a‖22 and dn+1 = dn + ‖b‖22.

45

Creating open intervals

We will now show that the intervals in (124) are really open intervals; thus,

if the characteristic polynomial, C(λ), equals zero when evaluated at the ith old

eigenvalue, it will be a single root, and the ith new eigenvalue will equal the ith

old eigenvalue.

The only way that the smallest eigenvalue can meet the lower bound of d̃1 = d0,

is if all but the first element of a are zero, while the first element of b is zero. If

this is the case, the eigendecomposition of D − aaH is exactly the same as the

eigendecomposition of D except the smallest eigenvalue is now d1 − ‖a‖22. This

means we can modify d1 to be d1 − ‖a‖22, and calculate the rank one modification

of D + bbH . Thus, we can ignore the equality in d0 ≤ d̃1 in (124). Similarly, the

only way that the largest eigenvalue can meet the upper bound of d̃n = dn+1, is

if all except the nth element of b are zero, while the nth element of a is zero. If

this is the case, the eigendecomposition of D + bbH is exactly the same as the

eigendecomposition of D, except that the largest eigenvalue is now dn + ‖b‖22.

Therefore, we can ignore the equality in d̃n ≤ dn+1 in (124).

When the ith and (i+ 1)th eigenvalues are the same, the characteristic poly-

nomial, C(λ), evaluated at the duplicate eigenvalue simplifies to

C(di) =

 n∏
j=1

j 6=i,i+1

(dj − di)

(− |ai|2 |bi+1|2 − |ai+1|2 |bi|2 + 2Re
{
aib

∗
i a

∗
i+1bi+1

})
.

(125)

Because ai, bi, ai+1, and bi+1 come from the 2 × 2 upper triangular part of the

matrix R from a QR factorization, ai and bi+1 are nonzero, whereas ai+1 is zero;

therefore, both |ai+1|2|bi|2 and Re{aib∗i a∗i+1bi+1} from (125) are zero. Because the

eigenvalues are sorted, the sign of (dj − di) is just the sign of (j− i); therefore, the

sign of the product over j in the beginning of (125) simplifies to (−1)i−1, giving

46

us an expression for the sign of C(λ) at the duplicate eigenvalue as

sd(i) = (−1)i. (126)

Because (126) cannot equal zero, both eigenvalues at λ = di must change, and

because (126) is only a function of i, this tells us that one of the eigenvalues must

increase, while the other decreases.

If all of the elements of a are nonzero, we can replace all of the “≤” relations

in (122) with “<” [1] (p. 96, eq. 39.8). When (122) is combined with (123), there

will be no equality in the bounds. We can make a similar argument with b.

When the ith element of a is zero, we get the two bounds, di−1 < ḋi+1 < di+1

and di−1 < ḋi = di < di+1, which when combined and sorted can be written as

di−1 < ḋi ≤ di ≤ ḋi+1 < di+1. (127)

Equation (127) shows why the equality is needed in (122). What we mean by

sorting, is that before sorting, ḋi+1 can be less than, greater than, or equal to di,

but if ḋi+1 < di we will swap both ḋi+1 with ḋi as well as u̇i+1 with u̇i, where u̇i

is the eigenvector of D − aaH corresponding to the eigenvalue ḋi. The problem

with (127) is that it does not indicate that either ḋi or ḋi+1 must equal di, while

the other may or may not equal di, which is actually the case.

Because of deflation, if ai equals zero, then bi cannot be zero. This means that

if ḋi = di = ḋi+1, then one of the eigenvalues at di will increase, while the other

will remain the same, but no other eigenvalues can move past or onto di. If only

one of ḋi or ḋi+1 equals di, then the eigenvalue at di will increase, and no other

eigenvalues can move past or onto di.

What all of this means, is that there can only be a single root of C(λ) at di,

and it must be the ith root of C(λ). This allows us to write (124) as

di−1 < d̃i < di+1, i = 1, · · · , n. (128)

47

Separating the intervals

From (128), we can see that each eigenvalue is bounded by the next smaller

and next larger corresponding old eigenvalue. We will now divide each interval by

determining if the new eigenvalue, d̃i, is greater than, less than, or equal to the

corresponding old eigenvalue, di.

When C(λ) is evaluated at the non duplicate old eigenvalues, it simplifies to

C(di) =

 n∏
j=1
j 6=i

(dj − di)

|bi|2 − |ai|2 − n∑

j=1
j 6=i

|aibj − ajbi|2

(dj − di)

 . (129)

Because the eigenvalues are sorted, the sign of (dj − di) is just the sign of (j − i).

Therefore, the sign of the product over j in the beginning of (129) simplifies to

(−1)i−1. This gives us an expression for the sign of C(di),

se(i) = (−1)i−1sgn

|bi|2 − |ai|2 − n∑
j=1
j 6=i

|aibj − ajbi|2

(dj − di)

 , (130)

where sgn is the signum function. If se(i) evaluates to zero, that means the ith

eigenvalue will not change, and d̃i = di.

Because d̃i is the only new eigenvalue that can be either greater than or less

than di, and since d̃i is the ith root of C(λ), we can say that if the sign of C(λ)

evaluated at di (the ith old eigenvalue) is the same as the sign of the slope of C(λ)

evaluated at d̃i (the ith root of C(λ)), then d̃i is less than di, otherwise it is greater

than di. In other words, if the slope of C(λ) at d̃i is positive, then because C(λ)

has no roots between d̃i and di, C(di) must be less than zero if d̃i > di, and C(di)

must be greater than zero if d̃i < di. Alternately, if the slope of C(λ) at d̃i is

negative, C(di) must be greater than zero if d̃i > di, and C(di) must be less than

zero if d̃i < di. Figure 7 illustrates this, along with an eigenvalue which remains

unchanged at λ = d3.

48

−3

−2

−1

0

1

2

3
d1 d2 d3 d4 d5

d̃1 d̃2 d̃3 d̃4 d̃5

C(λ)
w(λ)

Figure 7. An example to illustrate the rank-two secular function and charac-
teristic polynomial of G̃ = D − aaH + bbH , where the eigenvalue at d3 does
not change, but the corresponding eigenvector changes. The values used to cre-
ate this figure were D = diag(1, 2, 3, 4, 5), a = [0.13, 0.26, 0.4, 0.53, 0.67]T , and
b = [0.66, 0.53, b3, 0.26, 0.19]T , where b3 = 0.39137187095400. The eigenvalues of
G̃ are D̃ ' diag(1.29, 2.28, 3.0, 3.72, 4.71). Due to the pole and zero of w(λ) at
λ = d3, the characteristic polynomial must be used to determine that the eigen-
value did not change.

It can be seen from (117) that C(−∞) = +∞, which means that the slope

of C(λ) at d̃1 (the smallest root) must be negative. Since we know that we have

exactly n real roots, and that the sign of the slope of C(λ) must alternate at each

root, the sign of the slope of C(d̃i) will be

sr(i) = (−1)i. (131)

When we multiply sr(i) by se(i) and negate the result, we get

sp(i) = sgn

|bi|2 − |ai|2 − n∑
j=1
j 6=i

|aibj − ajbi|2

(dj − di)

 , (132)

which will evaluate to 1 when d̃i is greater than di, 0 when d̃i equals di, and -1

49

when d̃i is less than di. To take into account duplicate eigenvalues, we define

st(i) =

−1, if di = di+1

1, if di = di−1

sp(i), if di−1 6= di 6= di+1

, (133)

where the terms for the duplicate eigenvalues are based on (126). If we define the

binary value sb(i) = (st(i) + 1)/2, which will evaluate to 1 when d̃i > di, and 0

when d̃i < di, we can shrink the intervals for eigenvalues that have changed to be

di−1+sb(i) < d̃i < di+sb(i), i = 1 · · ·n, (134)

which is a bound between two adjacent old eigenvalues.

Splitting the shared intervals

Now that we have separated the roots into intervals of adjacent old eigenvalues,

a few of these intervals may have two roots. This will happen whenever the ith

root is greater than di and the (i+1)th root is less than di+1. An easy way to test

for this condition is to check if sb(i) − sb(i + 1) is equal to 1. When we find an

interval that contains two roots, we need to determine if the root is a multiple root

or two separate roots. If it is two separate roots, we need to separate the interval

into two disjoint intervals containing one root each by finding any point between

the two roots. Figure 6 shows two roots in the interval between d2 and d3.

From (120), we know that the rank-two secular equation is just the product of

two rank-one secular equations of opposite slope, plus a positive term. The product

of the two rank-one secular equations will be positive in the interval between their

roots because they will have the same sign in that interval, and negative outside

of that interval because their signs will differ. Since the term |wab(λ)|2 from (120)

is positive for all λ, the rank-two secular equation will be positive between its two

roots, and negative outside. If we can find any λ between di and di+1 that makes

w(λ) evaluate to a non-negative value, this point will separate the two roots.

50

−3

−2

−1

0

1

2

3
d1 d2 d3 d4 d5

d̃1 d̃2, d̃3 d̃4 d̃5

w(λ)
wa(λ)
wb(λ)

Figure 8. The secular functions of G̃ = D − aaH + bbH , G̃a = D − aaH , and
G̃b = D + bbH , which illustrate the creation of a duplicate eigenvalue at λ = d̃2 =
d̃3 ' 2.68. The values used to generate this figure were D = diag(1, 2, 3, 4, 5), a =
[0.15, 0.3, 0.45, 0.6, 0.75]T , and b = Uab̈, where Ua are the eigenvectors of D−aaH

in ascending order of eigenvalues, and b̈ = [0.625, b̈2, 0, 0.75, 0.625]T , where b̈2 =
1.15485665309790. The eigenvalues of G̃ are D̃ ' diag(1.08, 2.68, 2.68, 4.16, 5.84).
Note that the roots of wa(λ), which are the eigenvalues of G̃a, must be less than
the old eigenvalues, while the roots of wb(λ), which are the eigenvalues of G̃b, must
be greater than the old eigenvalues.

The only way to have a multiple root at d̃i and d̃i+1, is if the ith root of the

secular equation for D + bbH , which is wb(λ), is the same as the (i+ 1)th root of

the secular equation for D−aaH , which is wa(λ), because their product will have

no effect on the location of their root in (120). Because the term |wab(λ)|2 from

(120) is non-negative for all λ, and the slope of w(λ) is non-negative at the smaller

of the two roots and negative at the larger of the two roots, the only effect that

adding |wab(λ)|2 can have is to separate the two roots further, therefore wab(λ)

must equal zero at the multiple root. Figure 8 shows the creation of a multiple

root at λ = d̃2 = d̃3.

Because of the effect of adding |wab(λ)|2, both the ith root of wb(λ) and the

(i+ 1)th root of wa(λ) must be between the two roots of w(λ) when they are not

51

identical. Since we only need to find any point between the two roots of w(λ) to

separate them, we can converge towards either of these roots, and stop when w(λ)

evaluates to a non-negative value. A good method to converge towards these roots

is given in [3]. If the roots are not too close, we should find a non-negative value

with few, if any iterations. If the roots are identical, we will have converged on

the actual duplicate root of w(λ).

2.5.4 Calculating the roots of w(λ)

Now that we have unique bounds for each root of w(λ), we need to find those

roots. This can be done using Newton’s method with protection by bisection.

There are three cases where bisection will be needed. First, when there is

only one root in an interval between two adjacent old eigenvalues, it is possible

that there is a local minima, which can cause Newton’s method to move in the

wrong direction. Second, when there are two roots in an interval between two

adjacent old eigenvalues, one of the new intervals may contain both positive and

negative slopes. Third, when Newton’s method produces a new estimate outside

the interval.

To use bisection effectively, we need to know the sign of the slope of w(λ) at

the root, so we can shrink the bounds as we converge on the root. The sign of the

slope of w(λ) at its roots is the same as the sign of the slope of C(λ) at its roots,

except the sign is inverted at every old eigenvalue. We already have term for this,

and it is st(i) from (133).

Since the roots of w(λ) are just the squares of the singular values of M̃ , we

now effectively have Σ̃M .

52

2.6 The eigenvectors of G̃

Now that we have the eigenvalues of G̃, we will now determine the correspond-

ing eigenvectors. The eigenvectors which correspond to eigenvalues that have not

changed and eigenvectors which correspond to duplicate eigenvalues must be cal-

culated differently from the other eigenvectors.

2.6.1 Eigenvectors of changed, non-duplicate eigenvalues

The method presented in this section for calculating eigenvectors for the rank

two case uses the basic idea from [3] for calculating the eigenvectors for the rank-

one case.

If xi is the ith right eigenvector of G̃ = D − aaH + bbH , multiplied by a real

or complex scalar value, and d̃i is the corresponding ith eigenvalue, where d̃i 6= di,

then from the definition of a right eigenvector [6], we can say(
D − aaH + bbH

)
xi = d̃ixi. (135)

Rearranging some terms, and substituting Td̃i
= (D − d̃iI) from (112), we get

Td̃i
xi =

(
aaH − bbH

)
xi. (136)

We know that Td̃i
is invertible, because in this section we are only calculating

eigenvectors that correspond to changed eigenvalues. Multiplying both sides of

(136) by the inverse of Td̃i
, we get

xi = T−1

d̃i

(
aaH − bbH

)
xi. (137)

If we define the two scalar values c1 = aHxi and c2 = −bHxi, we can write (137)

as a linear combination of a and b

xi = T−1

d̃i
(c1a + c2b) . (138)

If we multiply both sides of (138) by aH from the left, we get

aHxi = aHT−1

d̃i
(c1a + c2b) , (139)

53

where aHxi on the left side is c1. Solving for c2 we get

c2 = c1
1− aHT−1

d̃i
a

aHT−1

d̃i
b

= c1
wa(d̃i)

wab(d̃i)
, (140)

where wa(d̃i) and wab(d̃i) are from (121). Plugging (140) into (138) we get

xi
c1

= T−1

d̃i

(
a +

1− aHT−1

d̃i
a

aHT−1

d̃i
b

b

)
= T−1

d̃i

(
a +

wa(d̃i)

wab(d̃i)
b

)
. (141)

Now at this point we have xi/c1, which is a vector that points in the same direction

as the ith new eigenvector, but is not unit length, therefore if we divide it by its

norm, we have our eigenvector,

ũi =
xi/c1
‖xi/c1‖

=
T−1

d̃i

(
a + wa(d̃i)

wab(d̃i)
b
)

∥∥∥T−1

d̃i

(
a + wa(d̃i)

wab(d̃i)
b
)∥∥∥ . (142)

Note that we could have solved for c2 instead of c1 by multiplying both sides of

(138) by bH instead of aH .

2.6.2 Eigenvectors of unchanged eigenvalues

When d̃i equals di, (remember both ai and bi are not zero because we already

removed that case when we deflated), the matrix Td̃i
from (142) is not invertible

because it will have a zero on the diagonal. Therefore, we must use an alternative

method to calculate the eigenvector. We will start from (136), where xi is again

the ith right eigenvector multiplied by a real or complex scalar value. If we look

at the ith element from each side of (136), which corresponds to the unchanged

eigenvalue, we get (
di − d̃i

)
xi,i =

(
aia

H − bibH
)
xi, (143)

where xj,i is the jth element of xi. Since the ith eigenvalue is unchanged, di = d̃i;

therefore, the left side is zero, and we can write

bHxi =
ai
bi

aHxi. (144)

54

Combining (136) and (144) we get

Td̃i
xi =

(
a− ai

bi
b

)
aHxi, (145)

If we remove the ith element of a, b, and xi, and the ith row and column of Td̃i
,

and call these ȧ, ḃ, ẋi, and Ṫd̃i
respectively, (145) can be rewritten as

Ṫd̃i
ẋi =

(
ȧ− ai

bi
ḃ

)
aHxi. (146)

Because we removed the zero from the diagonal of Td̃i
when we created Ṫd̃i

, we

can now invert Ṫd̃i
. Multiplying (146) by the inverse of Ṫd̃i

, and defining the scalar

value c1 = aHxi, we get

ẋi
c1

= Ṫ−1

d̃i

(
ȧ− ai

bi
ḃ

)
, (147)

which gives us all of the elements of xi/c1 except the ith element.

Next, we need to calculate xi,i/c1. Rewriting (144) as bib
Hxi = aia

Hxi, then

expanding the vector product as a summation, we get

bi

n∑
j=1

b∗jxj,i = ai

n∑
j=1

a∗jxj,i. (148)

Dividing both sides of (148) by c1 and moving the ith element out of both sum-

mations, we get

bib
∗
i

xi,i
c1

+ bi

n∑
j=1
j 6=i

b∗j
xj,i
c1

= aia
∗
i

xi,i
c1

+ ai

n∑
j=1
j 6=i

a∗j
xj,i
c1
. (149)

Solving for xi,i/c1, we get

xi,i
c1

=
1

aia∗i − bib∗i

bi n∑
j=1
j 6=i

b∗j
xj,i
c1
− ai

n∑
j=1
j 6=i

a∗j
xj,i
c1

 , (150)

which can be written as

xi,i
c1

=
biḃ

H
ẋi/c1 − aiȧHẋi/c1
|ai|2 − |bi|2

=

(
biḃ

H − aiȧH

|ai|2 − |bi|2

)
ẋi
c1
. (151)

55

Inserting xi,i/c1 from (151) into the ith position of ẋi/ci from (147), we get xi/c1,

which is a vector that points in the same direction as the ith new eigenvector, but

is not unit length. If we divide it by its norm, we have our eigenvector,

ũi =
xi/c1
‖xi/c1‖

. (152)

2.6.3 Eigenvectors of duplicate eigenvalues

When the ith new eigenvalue, d̃i, is the same as the (i+ 1)th new eigenvalue,

d̃i+1, section 2.5.3 shows us that the terms wa(λ), wb(λ), and wab(λ) from (119)

must all be zero at these eigenvalues. This prevents us from using (142) because

of the wa(d̃i)/wab(d̃i) term.

Eq. (127) shows that the only way to create a duplicate eigenvalue in a rank-

one perturbation is to have an element of a or b that is zero. This means that to

create a duplicate eigenvalue in the deflated rank-two case, there must be a zero in

the second (rotated) rank one modification. Figure 8 illustrates what is happening

when a duplicate eigenvalue is created for d̃2 = d̃3 in a rank-two modification.

Because of the zero in the (i+ 1)th element of b̈ = UH
a b, the (i+ 1)th eigen-

value and eigenvector of D − aaH will not change during the second rank one

modification. There will also be a zero in the ith element of ä = UH
b a, which will

cause the ith eigenvalue and eigenvector of D + bbH to remain unchanged during

the second rank-one modification when the rank-one modifications are done in the

reverse order. This means that we can use the rank-one formula from [3] to deter-

mine two non-orthogonal, non-normal eigenvectors, xi = T−1

d̃i
a and xi+1 = T−1

d̃i
b.

In section 2.4.2 we showed that when there are duplicate eigenvalues in a matrix,

the corresponding eigenvectors are contained in a subspace of arbitrary rotation.

Therefore, if we define our eigenvectors as

ũi =
T−1

d̃i
a

‖T−1

d̃i
a‖
, ũi+1 =

(
I − ũiũ

H
i

)
T−1

d̃i
b∥∥∥(I − ũiũ

H
i

)
T−1

d̃i
b
∥∥∥ , (153)

56

they will be orthogonal and normalized.

2.6.4 The singular vectors of M̃

After calculating ui for i = 1 · · ·n, we have the matrix of eigenvectors of G̃,

Ũ =
[

ũ1 ũ2 ũ3 · · · ũn−1 ũn

]
. (154)

Using (103), we can get the left singular vectors of M̃ as ŨM = UM Ũ .

2.7 Putting it all together

In this section, we list the specific steps required to calculate the eigendecom-

position of the matrix G̃ = D − aaH + bbH using the method presented in this

manuscript. In Table 6 we show how to efficiently sort and deflate G̃ as described

in section 2.4, which is necessary before beginning the eigendecomposition. In

Table 7, we list the specific steps required to calculate the eigendecomposition of

the sorted and deflated version of the matrix G̃. These steps can be thought of as

summary of the results presented in this manuscript minus the theory.

When using this method to update the SVD of a matrix in which one column

has been replaced, we start with the singular values, ΣM , and left singular vectors,

UM , of the original matrix, along with the column we are discarding, m1, and the

column we are adding mc+1. We set

D = Σ2
M , a = UH

Mm1, b = UH
Mmc+1,

then calculate the eigendecomposition of G̃ = D−aaH + bbH = ŨD̃ŨH using the

steps in Tables 6 and 7. Our new singular values and left singular vectors are then

Σ̃M =
√
D̃, ŨM = UM Ũ ,

respectively. The new right singular vectors can be calculated as ṼM = M̃HŨM Σ̃−1
M

if needed.

57

Table 6. The steps to efficiently sort and deflate G̃ = D − aaH + bbH prior to
determining its eigendecomposition. G̃ consists of the diagonal matrix D ∈ Rn×n,
and the vectors a ∈ Cn and b ∈ Cn.

1) Create D′ by sorting the elements on the diagonal of D in ascending
order. Create a length n vector s, that contains the indices of the sorted
elements of D, such that d′i = dsi

. Create a′ and b′ by setting a′i = asi

and b′i = bsi
for each i.

2) Create an n×n matrix Ir, and initialize it to the identity matrix. Create
the vectors ȧ and ḃ, and initialize them to a′ and b′. For each set of
duplicate eigenvalues, d′i through d′i+k−1, take the QR factorization of

QR =
[

a′i a′i+1 a′i+2 · · · a′i+k−1

b′i b′i+1 b′i+2 · · · b′i+k−1

]T

.

Insert the first column of R into ȧi through ȧi+k−1, the second column of
R into ḃi through ḃi+k−1, and Q into Ir at the i, i through i+k−1, i+k−1
block.

3) Create the length n vector z, and initialize it to zi = i. Find each i, where
ȧi = ḃi = 0, then for each of these i, remove the ith element of z, and
append it to the vector z̃. If we found nd values of i where ȧi = ḃi = 0,
z will now be length n− nd, and z̃ will now be length nd.

4) Create the n × nd matrix Ũd by selecting the columns of Ir which cor-
respond to the values in z̃. Create the nd × nd diagonal matrix D̃d by
selecting the elements on the diagonal of D′ which correspond to the
values in z̃.

5) Create the n × n − nd matrix Id, by selecting the columns of Ir which
correspond to the values in z.

6) Create the n−nd×n−nd diagonal matrix D′′, by selecting the elements
on the diagonal of D′ which correspond to the values in z. Create the
length n − nd vectors a′′ and b′′ by selecting the elements of ȧ and ḃ
which correspond to the values in z.

7) Calculate the eigendecomposition, Ũ ′′D̃′′Ũ ′′H = D′′ − a′′a′′H + b′′b′′H ,
using the steps in table 7.

8) Create the matrix Ũ ′ = [Ũd | IdŨ
′′]. Note that each row of IdŨ

′′ is either
all zeros, a row directly transfered from Ũ ′′, or in the case of duplicate
old eigenvalues, a linear combination of up to two rows of Ũ ′′.

9) Define a vector s̃, whose elements are s̃si
= i. Undo the sorting from

step 1 by setting the ith row of Ũ to the s̃ith row of Ũ ′, and we have our
eigenvectors.

10) Create the matrix D̃ by concatenating the diagonal matrices D̃d and D̃′′

as in (110), and we have our eigenvalues.

58

Table 7. The steps to calculate the eigendecomposition of the sorted and deflated
G̃ = D − aaH + bbH .

1) Calculate st(i) for i = 1 · · ·n using (132) and (133). For any i, where
st(i) = 0, set d̃i = di, because that eigenvalue doesn’t change.

2) Calculate sb(i) = (st(i) + 1)/2, for i = 1 · · ·n.

3) Set the bounds for each new root to (di−1+sb(i) < d̃i < di+sb(i)) from
(134), where d0 = d1 − ‖a‖22 and dn+1 = dn + ‖b‖22.

4) Find each i where sb(i) − sb(i + 1) is equal to 1. These i will have two
roots between di and di+1 which we will need to separate. For these values
of i, find a value of λ between di and di+1 where w(λ) is positive. Start
with the midpoint, λ = (di+di+1)/2, and use Newton’s method protected
by bisection on wa(λ) from (119) to determine new values for λ. If we
converge to the root of wa(λ) without w(λ) evaluating to a positive value,
then we have a duplicate root at d̃i = d̃i+1 = λ. At any time that w(λ)
evaluates to a positive value, change the upper bound of the ith root and
the lower bound of the (i + 1)th root to λ, because that λ separates the
two roots.

5) For each of the eigenvalues of G̃ that we haven’t found yet (we found the
unchanged ones in step 2, and the duplicate ones in step 5), calculate the
bounded root of w(λ) using Newton’s method with protection by bisection
as described in §2.5.4.

6) For each of the eigenvalues that changed, and are not duplicate, calculate
the corresponding eigenvector using (142).

7) For each pair of duplicate eigenvalues, calculate the corresponding two
eigenvectors using (153).

8) For each eigenvalue that didn’t change, calculate the corresponding eigen-
vector using (147), (151), and (152).

2.8 Concluding Remarks

The method presented in this manuscript is intended to show how the eigen-

decomposition of a rank-two modification to a diagonal matrix can be computed

directly in O(n2) time. As an algorithm, there are numerical stability issues for

closely spaced eigenvalues, similar to those in the rank-one case, which need to be

addressed before this algorithm can be used as a robust method for calculating the

eigendecomposition in all cases. We have not spent much time looking into numer-

ical roundoff issues related to this algorithm, as the basic theory as presented in

this manuscript is more understandable in a theoretical sense. It is possibly more

59

efficient and/or accurate to use the rank-one method from [3] twice, then calculate

the eigenvectors using the method described in section 2.6. The method from [4, 5]

might be able to be adapted to the calculation of the eigenvectors from section 2.6.

As an analysis tool, the rank-two secular function gives insight into what

happens to the eigenspace of a matrix when a column is replaced, and this is the

reason that the authors developed this method in the first place. The relation

of the rank-two secular function to the rank-one secular function is interesting,

although not surprising.

2.9 Evaluating the determinant in C(λ)

In this section, we give the details for writing C(λ) from (115) in the simple

closed form of (116). We will start by using the fact that the determinant of an

n× n matrix can be written as the sum of n, (n− 1)× (n− 1) determinants,

|A| =
n∑
j=1

(−1)j+1a1,j |A1,j| , (155)

where A1,j is an (n − 1) × (n − 1) matrix obtained by deleting the first row and

jth column of A [6]. The properties of determinants that will be used here are

• the determinant of a matrix which has a row or column consisting of all zeros

is zero,

• the determinant of a matrix which can be written as either an upper or lower

triangular matrix is the product of the diagonal terms,

• swapping any two rows or columns in the matrix changes the sign of the

determinant, and

• the transpose of a matrix has the same determinant as the original matrix.

Using (155), we can write the determinant of an n×nmatrix with nonzero elements

only on the diagonal, the first row, and the first column, as the scaled sum of the

60

determinants of n, (n − 1) × (n − 1) triangular matrices. The determinant of a

matrix of this form can be written as

A1 =

∣∣∣∣∣∣∣∣∣∣∣

w1 z2 z3 · · · zn
y2 x2 0 · · · 0
y3 0 x3 · · · 0
...

...
...

. . .
...

yn 0 0 · · · xn

∣∣∣∣∣∣∣∣∣∣∣
= w1

n∏
i=2

xi −
n∑
j=2

yjzj

 n∏
i=2
i6=j

xi

 . (156)

The reason there is no alternating sign in the sum is due to row swapping to make

the sub-matrices triangular. Also using (155) we can show that a matrix with

nonzero elements only on the diagonal, the first row, and the first two columns can

be written as the scaled sum of determinants of one matrix of the form of (156)

plus n − 1 triangular matrices. The determinant of a matrix of this form can be

written as

A2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

w1,1 w1,2 z3 z4 · · · zn
w2,1 w2,2 0 0 · · · 0
y3 u3 x3 0 · · · 0
y4 u4 0 x4 · · · 0
...

...
...

...
. . .

...
yn un 0 0 · · · xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (157)

A2 = w1,1w2,2

(
n∏
i=3

xi

)
− w1,2w2,1

(
n∏
i=3

xi

)
(158)

+ w2,1

n∑
j=3

ujzj

 n∏
i=3
i6=j

xi

− w2,2

n∑
j=3

yjzj

 n∏
i=3
i6=j

xi

 .

Finally, when we have a matrix with nonzero elements only on the diagonal, the

first two rows, and the first two columns, the determinant can be written as the

scaled sum of determinants of two matrices of the form of (156) plus n−2 matrices

61

of the form of (157). The determinant of a matrix of this form can be written as

A3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

w1,1 w1,2 z3 z4 · · · zn
w2,1 w2,2 v3 v4 · · · vn
y3 u3 x3 0 · · · 0
y4 u4 0 x4 · · · 0
...

...
...

...
. . .

...
yn un 0 0 · · · xn

∣∣∣∣∣∣∣∣∣∣∣∣∣
, (159)

A3 =

(
n∏
i=3

xi

)(
w1,1w2,2 − w1,2w2,1 +

n∑
j=3

vj
xj

(yjw1,2 − w1,1uj)

(160)

+
n∑
j=3

zj
xj

(w2,1uj − yjw2,2) +
n∑
j=3

vj
xj

n∑
l=3

zl
xl

(yluj − yjul)

)
.

Since (115) has the same form as (159), we can just plug the values into (160).

The wi,j terms in (160) are not special, but just an artifact from converting (113)

to (115), so after some algebraic manipulation we get (116).

List of References

[1] J. H. Wilkinson, The Algebraic Eigenvalue Problem. London, UK: Oxford
Univ. Press, 1965.

[2] G. H. Golub, “Some modified matrix eigenvalue problems,” SIAM Review,
vol. 15, no. 2, pp. 318–334, Apr. 1973.

[3] J. R. Bunch, C. P. Nielsen, and D. C. Sorensen, “Rank-one modification of the
symmetric eigenproblem,” Numerische Mathematik, vol. 31, pp. 31–48, 1978.

[4] M. Gu and S. C. Eisenstat, “A stable and efficient algorithm for the rank-
one modification of the symmetric eigenproblem,” SIAM Journal on Matrix
Analysis and Applications, vol. 15, no. 4, pp. 1266–1276, Oct. 1994.

[5] M. Gu and S. C. Eisenstat, “Downdating the singular value decomposition,”
SIAM Journal on Matrix Analysis and Applications, vol. 16, no. 3, pp. 793–810,
July 1995.

[6] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed. Baltimore,
MD: Johns Hopkins Univ. Press, 1996.

62

MANUSCRIPT 3

A Subspace Tracking Algorithm Using the Fast Fourier Transform

3.1 Abstract

At ICASSP ’97 and in the July 1999 IEEE Transactions on Signal Processing

Real, Tufts, and Cooley presented an algorithm for fast tracking of a signal sub-

space or interference subspace for application in adaptive detection or estimation.

For cases in which the signal matrix is formed from a single-channel discrete-time

signal, we show how one can further reduce computation in the FAST algorithm

by using the fast Fourier transform (FFT).

3.2 The Subspace Tracking Algorithm

At each time step, the FAST algorithm [1] computes an approximate singular

value decomposition (SVD) of an r × c signal matrix,

Mnew =
[

m2 m3 · · · mc+1

]
, (161)

where each mj is an r-element column vector. The approximation is based on

the use of a smaller dimensional subspace that contains most of the signal. This

subspace comes from the previous iteration, which computed the approximate SVD

of the matrix

M old =
[

m1 m2 · · · mc

]
, (162)

which shares c− 1 of its c columns with Mnew.

This note shows how the FFT algorithm may be used to reduce computation

in the FAST algorithm for the situation in which M old and Mnew are formed from

a single-channel discrete-time signal [2, 3, 4]. In this case M old and Mnew are r×c

63

Hankel-like (Hankel if r = c) matrices of the form,

Mnew =

d2 d3 · · · dc+1

d3 d4 · · · dc+2
...

...
...

dr+1 dr+2 · · · dr+c

 . (163)

The N = r + c− 1 unique elements of Mnew can be written as the N × 1 column

vector

dnew =
[
d2 d3 · · · dN+1

]T
. (164)

At the beginning of the current iteration, one has k principal left singular

vectors of M old in the columns of the matrix

U old =
[

u1 u2 · · · uk

]
, (165)

as well as the matrix Mnew.

Summarizing the Fast Approximate Subspace Tracking (FAST) algorithm pre-

sented in [1], specifically equations 14 through 32, we calculate a k+ 1× c matrix,

E, which when premultiplied by [U old q], is the projection of Mnew onto the

columns of U old plus the component of mc+1 orthogonal to U old. We form the

matrix E as follows:

E =

[
a2 a3 · · · ac ac+1

0 0 · · · 0 | b

]
, (166)

where the aj ’s are k element vectors,

aj = UH
oldmj, j = 2, 3, ..., c+ 1, (167)

b is the norm of the component of mc+1 orthogonal to the columns of U old, and q

is that component normalized. They are computed as follows:

z = (I −U oldU
H
old)mc+1, b = ‖z‖, q = z/b. (168)

64

Instead of computing the O(rc2) SVD [5] of the r× c matrix A = [U old | q]E,

or the O((k+ 1)c2) SVD of the matrix E, we compute the O((k+ 1)3) SVD of the

(k + 1)× (k + 1) matrix

F = EEH = UFΣFUH
F , (169)

where our estimates of the k+1 principal left singular vectors and values of Mnew

are

Unew = [U old | q]UF (170)

and

Σnew =
√

ΣF . (171)

The original contribution of this paper is the demonstration that the amount

of computation in the FAST algorithm can be reduced for the case in which the

computation of (eq. 167) can be written as a product of a matrix and a Hankel-like

matrix as in (eq. 173). This case arises whenever the matrices M old and Mnew

are formed from a single-channel discrete-time signal [2, 3, 4]. In the last section,

the amount of computational reduction is quantified, and a formula (eq. 184)

based on the dimensions of the signal matrix (r and c) is given to determine if

this method actually reduces computation or not for a given specific interference

subspace dimension (k).

3.3 The Use of the FFT

The suggestion made here is that one make use of the fact that the aj’s are a

set of convolutions that can be computed using the FFT [5, 6]. To display this as

a convolution, we write the ith component of aj as

aij =
r∑
l=1

u∗li dl+j−1, j = 2, ...c+ 1, (172)

or in matrix form

A = UH
oldMnew (173)

65

Note that the elements of ui in (eq. 172) are reversed and conjugated in the

correlation sum. This is equivalent to conjugating the DFT of ui.

To efficiently calculate the aij’s, we pad the columns of U old with zeros, to

make them of length N , and compute the DFT’s of the columns.

Ū
FFT←→

[
U old

0

]
. (174)

We then take the DFT of dnew

d̄
FFT←→ dnew. (175)

Now, the convolution in (eq. 172) can be performed by the Hadamard product of

the conjugate transpose of each column of Ū , with the transpose of d̄.

Ā = Ū
H � [d̄ | · · · | d̄]T , (176)

Finally we take the inverse DFT of the rows of Ā, whose first c columns are a2

through ac+1. [
a2 a3 · · · ac+1 · · ·

] IFFT←→ Ā. (177)

3.4 Operations Count

The two dominant operations in the algorithm are the calculations of the aj’s

(eq. 167) for small signal subspace dimensions, and the SVD of F (eq. 169) for

large dimensions. This method addresses the calculation of the aj’s.

For the comparisons, we will estimate the number of floating point operations

(flops) for each method. We will assume that both real addition and real multi-

plication require one flop, while complex addition requires two flops and complex

multiplication requires six flops.

The calculation of the aj’s using equation (167) requires

NAdir = kNDIR flops, (178)

66

where

NDIR = 2rc flops (179)

when the data are real, and

NDIR = 8rc flops (180)

when the data are complex. Remember that r and c are the dimensions of Mnew,

and k is the signal subspace dimension.

When calculating the aj’s using equations (174) through (177) we must first

come up with an approximation of the flop count of an N point FFT. We take, as

an approximation of the number of flops for a simple radix 2 FFT,

NFFT = 5/2N log2(N)−N/2 flops (181)

when the data are real, and

NFFT = 5N log2(N)− 3N flops (182)

when the data are complex [7]. A radix 4 algorithm, with a radix 2 step for N

equal to an odd power of 2, takes 25% fewer flops. When N is not a power of 2 and

N has large prime factors the FFT can take more flops. There are 2k + 1 FFT’s,

so, adding to the above the 6Nk flops for the complex multiplication of equation

(176), we get

NAfft = (2k + 1)NFFT + 6Nk flops. (183)

For any r and c, k can range from 0 to kmax, where kmax = min(r, c). The

transition signal subspace dimension, ktrans, where all values of k above that value

take less flops using the FFT method, and all values of k below that value take

less flops using the direct multiplication method is

ktrans =
NFFT

NDIR − 2NFFT − 6N
. (184)

67

When ktrans < 0 the direct multiplication method is more efficient for all k.

To give an idea of how ktrans evaluates for different r and c, we use the radix

2 FFT flop count and assume complex data. Figure 9 shows that there is a very

steep transition from where all k are more efficiently calculated using the direct

multiplication method to where all k are more efficiently calculated using the FFT

method. Given values for r and c it is easy to determine which method to use.

0

20

40

60

80

100

c

r

10 20 30 40 50

10

20

30

40

50

Figure 9. Percentage of all k’s calculated more efficiently using the FFT method
for r and c from 1 to 50.

Figure 10 shows the percentage of signal subspace dimensions, k, where the

FFT method is more efficient than the direct multiplication method. In this figure,

r = c, and both real and complex data are shown. It can be seen that for complex

matrices with dimensions greater than 15 (which is often the case) and real matrices

with dimensions greater than 40, one would probably want to use the FFT method.

68

0 10 20 30 40 50 60
0

20

40

60

80

100

r = c

pe
rc

en
ta

ge
 o

f k
real data
complex data

Figure 10. Percentage of all k’s calculated more efficiently using the FFT method
for r = c from 1 to 60 and both real and complex data.

3.5 Summary

We have established that, for the above signal tracking method, where the

signal matrix is a Hankel-like matrix, the FFT method may be superior for large

r and c. The above formulas should enable one to evaluate which method is more

efficient for any given parameters of the problem.

List of References

[1] E. C. Real, D. W. Tufts, and J. W. Cooley, “Two algorithms for fast approxi-
mate subspace tracking,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 47, no. 7, pp. 1036–1045, July 1999.

[2] D. W. Tufts, R. Kumaresan, and I. Kirsteins, “Data adaptive signal estimation
by singular value decomposition of data matrix,” Proceedings of the IEEE,
vol. 70, no. 6, pp. 684–685, June 1982.

[3] D. W. Tufts and R. Kumaresan, “Singular value decomposition and improved
frequency estimation using linear prediction,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, vol. ASSP-30, no. 4, pp. 671–675, Aug. 1982.

69

[4] L. L. Scharf and D. W. Tufts, “Rank reduction for modeling stationary signals,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-35,
no. 3, pp. 350–355, Mar. 1987.

[5] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed. Baltimore,
MD: Johns Hopkins Univ. Press, 1996.

[6] T. Kailath and A. H. Sayed, Fast Reliable Algorithms for Matrices with Struc-
ture. Philadelphia, PA: Society for Industrial and Applied Mathematics, 1999.

[7] J. W. Cooley, P. A. Lewis, and P. D. Welch, “The Fast Fourier Transform algo-
rithm and its applications,” IBM Watson Research Center, Yorktown Heights,
NY, Tech. Rep. RC-1743, Feb. 1967.

70

MANUSCRIPT 4

Detection and Estimation in Non-Stationary Environments

4.1 Abstract

In this manuscript, we describe a matrix based method for estimating both

a signal subspace dimension as well as signal parameters, when one has an ar-

ray of sensors, multiple exponential signals, and significant signal changes after a

small number of snapshots. This method combines the technique of creating Han-

kel or Toeplitz matrices from single-channel data with methods for sensor-array

processing using multiple array snapshots.

4.2 Introduction

In this manuscript, we describe a matrix based method for estimating a signal

subspace dimension while controlling the probability of false alarm as well as a

method for estimating parameters of that subspace. A common scenario where

this method applies is when the data comes from an array of sensors, where each

array snapshot consists of multiple exponential signals, but significant changes

occur in the exponential signals after a small number of snapshots.

In estimation, these exponentials are signals which have parameter values,

such as arrival angles, which we wish to estimate. In detection, these exponentials

are components of interference which we temporarily treat as “signals” to be en-

hanced, prior to subtraction. In both cases, reduced-rank approximation to a data

matrix is used to improve the signal-to-noise ratio of the exponential components,

prior to subsequent signal processing.

We discuss a data matrix structure, which we call the block Hankel structure,

that combines the benefits of creating a Hankel matrix for single-channel data

with the advantages of multiple channels without changing the signal subspace

71

dimension.

Next, we present a method for estimating the dimension of the signal subspace

while controlling the probability of false alarms. If we estimate that the dimension

of the signal subspace is larger than the correct dimension, we say that a false

alarm has occurred. This method is an extension of the method of Tufts and

Shah [1] which applies to Hankel matrices. We then introduce an approximation

to this matrix rank tracking method that reduces the computation significantly,

while maintaining performance.

A major motivation for us is widening the applicability of the FAST algo-

rithm [2, 3] for subspace tracking. Rank tracking, implemented using the tests of

Frobenius-norm “energy” of subspace matrices is described in section 4.4 below.

This is an important part of FAST. However, until now, the rank-tracking in FAST

could not be applied to block Hankel structure matrices.

Finally, we present some results of applying this method to some simulated

sonar array data which was generated by Norman Owsley. Here we estimate the

number of sinusoids, their amplitudes, and their spatial frequencies for each snap-

shot.

4.3 Constructing a Block Hankel Matrix

It is well known [4, 5, 6] that a length N single-channel signal vector st, which

is a linear combination of k complex exponentials can be made into an rH × cH

Hankel or Toeplitz matrix which will have rank k, if min(rH , cH) ≥ k. The vector

st can be written as

st =
k∑
l=1

cl,tzl, (185)

where each discrete exponential signal has the form

zl = [1 Z1
l Z2

l · · · ZN−1
l]T , (186)

72

in which Zl is a complex number and the cl,t are the complex scale factors. The

creation of a Hankel matrix is shown pictorially in Figure 11. Note that N =

rH + cH − 1.

When we have c different signal vectors, s1, s2 · · · sc, with kc different complex

scale factors cl,t, but the same k exponentials, zl, we can create a block Hankel

matrix by forming an rH × cH Hankel matrix from each N × 1 signal vector, st,

then concatenating them together to form an rH×cHc matrix which will have rank

k, if min(rH , cHc) ≥ k.

Given an N × c data matrix M , consisting of c snapshots of signal plus noise,

M = [s1 s2 · · · sc] + [n1 n2 · · · nc], (187)

we can create an rH × cHc block Hankel matrix B. This is shown pictorially in

Figure 12. We often refer to a column of the original data matrix as a snapshot.

The noise component of M will increase its dimension when we create the

Hankel blocks, and should continue to fill the full vector space of M . As an

example of how the block Hankel structure benefits us, if we have four snapshots

of length 39 which contain eight complex exponentials, we can create four 32 × 8

Hankel blocks, which will give us a 32×32 block Hankel matrix in which the signal

component is contained in an eight dimensional subspace, but the noise will span

Hr

cH1
2
3
4
5
6

N

1
2

2

3
3

3

4
4

4

5
5
6

Figure 11. Creating a Hankel matrix from a signal vector

73

rH

cHcc

N B=M=

1
2

2

3
3

4
4

5
5
6

1
2

2

3
3

4
4

5
5
6

1
2

2

3
3

4
4

5
5
6

1
2
3
4
5
6

1
2
3
4
5
6

1
2
3
4
5
6

Figure 12. Creating a Block Hankel matrix from multiple snapshots

the full 32 dimensional vector space.

It should also be noted that when Zl = ejwl in (186), we can create a forward-

backward matrix [7] where the backward matrix is created by conjugating and

reversing the elements of M along the columns. The results in this manuscript are

only shown for the forward matrix, but can be easily extended to contain both the

forward and backward matrices.

4.4 Estimating the Signal Subspace Rank

To estimate the rank of the signal subspace, we take the SVD of B = UΣV H ,

and define the energy in the subspace which is orthogonal to the hypothesized

signal subspace

Sk+1 =

rH∑
l=k+1

σ2
l = ‖(I − UkUH

k)B‖2F (188)

where Sk+1 is the sum of the squares of the singular values of B less the k largest.

In (188) σ2
l is the square of the lth largest singular value of B, and Uk is a matrix

of the k leftmost columns of U .

Using the SVD of the matrix B, we ask questions based on current hypotheses

about the rank of the signal subspace. The zeroth hypothesis, H0, is that the rank

of the signal subspace, the signal portion of the matrix B, is at least zero. If the

signal portion of the matrix B has exactly rank zero, then there is no signal and

74

the matrix B consists entirely of noise values. The kth hypothesis, Hk, is that the

rank of the signal portion of the matrix B is at least k.

The question that we ask at the kth stage (if we get that far) is “Given Hk,

that we have found out that the signal rank is at least k, can we now say that

Hk+1 is true?” To do this, we test whether or not the sum Sk+1, the energy in the

orthogonal subspace, is greater than a prescribed threshold value Tk. If sk+1 < Tk,

we say that the signal rank is k and stop our tests. If Sk+1 > Tk we say that Hk+1

is true and continue our tests. The behavior of this sequence of tests is controlled

by choosing each threshold value so that the associated probability of false alarm

is a value α which we choose.

We choose a false alarm probability, α, and compute the threshold values, Tk,

for each k

P (Sk+1 > Tk|H̄k+1) = α, 0 ≤ k ≤ rH (189)

where H̄k+1 is the complimentary hypothesis that Hk+1 is not true, and the value

of Sk+1 is produced only by noise. Note that α should be the same for all k.

Finally, we find the largest k such that Sk+1 is greater than Tk, and our rank

is that k. This is a simple iterative step that is trivial to implement in practice.

These steps for estimating the rank apply for any matrix, structured or not,

because the original matrix M is a block Hankel matrix with rH = N and cH = 1,

while a Hankel matrix is a block Hankel matrix with c = 1 and cH > 1.

4.5 Calculating the Threshold Values

The threshold values are chosen to control the probability of false alarm at

each stage. Therefore, the pertinent probability density is that of the noise alone

in the orthogonal subspace.

A method for calculating the thresholds Tk for an unstructured matrix, such

as M , is presented in [8], and a method for calculating the thresholds in the Hankel

75

case, which is easily extended to the Block Hankel case, is presented in [1].

The difficulty with the method in [1] is that it requires the partial fraction

expansion of a polynomial with root multiplicity of 2c. For the case of a Hankel

matrix this is not a big problem because c = 1, but for the Block Hankel case

this not only requires a lot of computation, but also generally requires variable

precision arithmetic.

Here we present a method to approximate the threshold values which can

easily be implemented in a practical system. They are only a function of α, σ2,

and the matrix dimensions, rH , cH , and c. The values are compared with the

results using the extension of the method in [1] as well as experimental results.

We now assume that the noise is distributed complex normal, nt ∼

CN (0, Iσ2), with zero mean and variance σ2. For the case H0 (no signal present)

the expected value, µB, and variance, σ2
B, of the squared Frobenius norm of B are

µB = E
[
‖B‖2F

]
= σ2rmcmc (190)

and

σ2
B = Var

(
‖B‖2F

)
= σ4c(dr2

m + 2
rm−1∑
i=1

i2), (191)

where rm = min(rH , cH) is the smaller dimension of a single Hankel block, cm =

max(rH , cH) is the longer dimension of a single block, and d = |rH − cH |+ 1 is the

number of full diagonals in a single block.

The distribution of ‖B‖2F is Chi-Square mixture, which is approximately a

scaled Chi-Square with n degrees of freedom and scale factor 1/sB. Therefore,

because we know the formula for the mean and variance of any Chi-Square variable,

we can say

n = E

[
‖B‖2F
sB

]
=

1

sB
E
[
‖B‖2F

]
(192)

76

and

2n = Var

(
‖B‖2F
sB

)
=

1

s2
B

Var
(
‖B‖2F

)
. (193)

Combining equations (190), (191), (192), and (193), rearranging some terms, and

solving for n and sB we get

n =
2µ2

B

σ2
B

=
6cc2m

3cm − (rm − 1/rm)
(194)

and

sB =
σ2
B

2µB
= σ2 rmcmc

n
. (195)

It should be noted that n will generally not be an integer, but that is not a problem

because the Chi-Square distribution can be evaluated for all real n.

For a given value of α, we can find T0/sB by evaluating the quantile (the

inverse cumulative distribution function) of the Chi-Square distribution at 1−α.

T0

sB
= F−1

n (1− α) (196)

Since the quantile is only a function of α and n, and n depends only on the matrix

dimensions rm, cm, and c, we can calculate T0/sB before we know the variance of

the noise, σ2. If we then define

T̂0 = σ2 T0

sB
, (197)

which is essentially T0 with the noise variance in sB canceled out, then when we

do get our estimate of the noise variance we can easily determine T0 as

T0 =
T̂0

σ2
. (198)

In Figure 13, we show how well the Chi-Square approximation compares to

the actual distribution which is a Chi-Square mixture.

77

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

χ2
n
 approximation

5000 sorted trials
exact distribution

70 80 90 100 110 120
0

0.02

0.04

0.06

0.08

0.1

90 95 100 105 110 115 120
0

0.002

0.004

0.006

0.008

0.01

=7 cH=7 c σ=1 2=1

S

H

0
T 0

H
0

P(
>

|
)=

α

T0

r

Figure 13. False Alarm Probability vs. Threshold

4.6 Evaluating the Other Thresholds

Now that we have a method to calculate T0, we need to be able to calculate

the other thresholds Tk, for k = 1, · · · , rH . Here, we assume that if there are

signals present in the data, the SNR is assumed to be above threshold [9]. That is,

the probability of subspace swap is negligibly small and the signal singular vectors

are independent of the noise.

We assume that, to a good approximation, the mean and variance of the

energy in the orthogonal subspace do not depend on the choice of signal subspace.

Therefore, for convenience we replace Uk by the first k canonical vectors,

Ûk = [e1, e2, · · · , ek], (199)

where the kth canonical vector ek is a length rH column vector consisting of all

zeros except a single one in the kth position,

ek = [0, · · · , 0︸ ︷︷ ︸
k−1

, 1, 0, · · · , 0︸ ︷︷ ︸
rH−k

]T , (200)

78

we can use the method from Section 4.5 for calculating T0 to calculate Tk by

replacing rH by rH − k.

We see that when we take the product (I−Û ÛH)B, we zero out the first k rows

of B but leave the rest of the matrix unchanged. This means that if hypothesis Hk

applies, we can use our mean and variance calculations from the previous section

along with our Chi-Square approximation. The mean estimate using Ûk will be

identical to the estimate using Uk, but the variance will not be correct because

‖(I − UUH)B‖2F will actually be a Chi-Square mixture plus a Gaussian product

mixture.

The reason for this approximation is to permit the thresholds to be calculated

independently of the data.

4.7 The Data

In this section, we present some results using the techniques introduced in

this manuscript on simulated data. We make the following assumptions about the

data used in this section.

Each length 48 array snapshot mt, is a sum of k scaled complex sinusoids

with fixed frequencies fk, and random complex scale factors ck,t = Ake
jψk , plus

complex white noise nt

mt = nt +
k∑
l=1

ck,tzk (201)

where from (186), Zk = e−j2πfkfs with fs = 0.4, and the random components have

distributions

nt ∼ CN (0, Iσ2), Ak ∼ N (0, σ2
k), ψk ∼ U(0, 2π). (202)

All three of nt, Ak and ψk are different for each t.

Because we know exactly how the simulated data were generated, we also

know that these assumptions are simplifications of the actual data, and do not

79

truly reflect the far more complex model used for generating the data. In actuality,

the zks are not truly sinusoidal (which is why we didn’t use forward-backward block

Hankel matrices), the fks are slowly changing between snapshots at different rates,

and the ck,t have a much more complicated distribution.

The steps that we use to come up with the results in this section are as follow.

• Determine c, the number of sequential snapshots to use. This will depend
on the stationarity of the signal subspace.

• Determine rH and cH , the dimensions of the Hankel blocks. This will depend
on the rank of the signal subspace as well as other factors related to the
method of parameter estimation that is used.

• Determine α, the probability of false alarm, then calculate the thresholds Tk
or T̂k for each k.

• Create the block Hankel matrix B, and take its SVD.

• Estimate k, the signal subspace rank by comparing the sums of the squares
of singular values of B to the thresholds.

• Estimate the possible target azimuths.

• Find the k azimuths corresponding to the signal subspace, and determine
their signal level.

To estimate the possible target azimuths, we take the polynomial roots of

the rHth left singular vector which will be orthogonal to the signal subspace. We

know that it will have zeros corresponding to the frequencies of the sinusoids in

the signal subspace [5] (as well as many other zeros).

To determine which k of the rH − 1 possible azimuths correspond to the k

sinusoids, we beamform the k largest left singular vectors toward all of the possible

azimuths, then pick the azimuth which has the largest beamformed value for a given

singular vector. Once we have picked an azimuth which corresponds to a singular

vector, we say the energy at that azimuth is the singular value which goes with

that singular vector.

80

Figure 14 shows the rank estimates for 1800 snapshots using a block Hankel

matrix with dimensions c = 8, rH = 33, and cH = 16. These are the number of

azimuth estimates that are plotted in Fig. 15 and Fig. 18.

Figure 15 shows the cosine of azimuth estimates using eight sequential snap-

shots and a block Hankel structure with c = 8, rH = 33, and cH = 16. Fig. 17

shows the cosine of azimuth estimates using the same eight sequential snapshots

and no matrix structure with c = 8, rH = 48, and cH = 1. Fig. 16 shows the cosine

of azimuth estimates using 24 sequential snapshots and no matrix structure with

c = 24, rH = 48, and cH = 1.

The two tracks of most interest are the one that is leftmost between 500 and

1600 and the one that is rightmost between 800 and 1400 in Fig. 15. These two

tracks are about five orders of magnitude below the stronger tracks and very near

the noise level. They do not even show up Fig. 17 and are not very clear in Fig. 16

which uses three times the amount of data.

Figure 18 is the same as Fig. 15 but with target strength indicated by a color.

The colorbar in the figure shows the strength of the target in decibels.

List of References

[1] D. W. Tufts and A. A. Shah, “Rank determination in time-series analysis,” in
Proceedings IEEE International Conference on Acoustics, Speech, and Signal
Processing, (ICASSP), Apr. 1994, pp. IV–21–IV–24.

[2] E. C. Real, D. W. Tufts, and J. W. Cooley, “Two algorithms for fast approxi-
mate subspace tracking,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, vol. 47, no. 7, pp. 1036–1045, July 1999.

[3] J. W. Cooley, T. M. Toolan, and D. W. Tufts, “A subspace tracking algorithm
using the Fast Fourier Transform,” IEEE Signal Processing Letters, vol. 11,
no. 1, pp. 30–32, Jan. 2004.

[4] J. Makhoul, “Linear prediction: A tutorial review,” Proceedings of the IEEE,
vol. 63, no. 4, pp. 561–580, Apr. 1975.

81

[5] R. Kumaresan and D. W. Tufts, “Estimating the parameters of exponentially
damped sinusoids and pole-zero modeling in noise,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 30, no. 6, pp. 833–840, Dec.
1982.

[6] G. H. Golub and C. F. van Loan, Matrix Computations, 3rd ed. Baltimore,
MD: Johns Hopkins Univ. Press, 1996.

[7] D. W. Tufts and R. Kumaresan, “Estimation of frequencies of multiple sinu-
soids: Making linear prediction perform like maximum likelihood,” Proceedings
of the IEEE, vol. 70, no. 9, pp. 975–989, Sept. 1982.

[8] A. A. Shah and D. W. Tufts, “Determination of the dimension of a signal
subspace from short data records,” IEEE Transactions on Signal Processing,
vol. 42, no. 9, pp. 2531–2535, Sept. 1994.

[9] D. W. Tufts, A. C. Kot, and R. J. Vaccaro, “The threshold analysis of SVD-
based algorithms,” in Proceedings IEEE International Conference on Acoustics,
Speech, and Signal Processing, (ICASSP), Apr. 1988, pp. 2416–2419.

82

4 5 6 7 8 9 10 11

0

200

400

600

800

1000

1200

1400

1600

1800

sn
ap

sh
ot

 n
um

be
r

signal rank

M (r=48 x c=8) block (r
H
=33 x c

H
=16) B (33x128)

Figure 14. Rank estimation for block Hankel matrix structure with eight sequential
snapshots.

83

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

200

400

600

800

1000

1200

1400

1600

sn
ap

sh
ot

 n
um

be
r

cosine azimuth

M (r=48 x c=8) block (r
H
=33 x c

H
=16) B (33x128)

Figure 15. Cosine of the azimuth of the k strongest sinusoids using eight sequential
snapshots and block Hankel matrix structure.

84

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

200

400

600

800

1000

1200

1400

1600

sn
ap

sh
ot

 n
um

be
r

cosine azimuth

M (r=48 x c=24) block (r
H
=48 x c

H
=1) B (48x24)

Figure 16. Cosine of the azimuth of the k strongest sinusoids using 24 sequential
snapshots and no matrix structure.

85

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

200

400

600

800

1000

1200

1400

1600

sn
ap

sh
ot

 n
um

be
r

cosine azimuth

M (r=48 x c=8) block (r
H
=48 x c

H
=1) B (48x8)

Figure 17. Cosine of the azimuth of the k strongest sinusoids using eight sequential
snapshots and no matrix structure.

86

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

200

400

600

800

1000

1200

1400

1600

cosine azimuth

sn
ap

sh
ot

 n
um

be
r

M (r=48 x c=8) block (r
H
=33 x c

H
=16) B (33x128)

90

100

110

120

130

140

Figure 18. Cosine of the azimuth of the k strongest sinusoids using eight sequential
snapshots and block Hankel matrix structure with color indicating target strength.

87

BIBLIOGRAPHY

Bunch, J. R., Nielsen, C. P., and Sorensen, D. C., “Rank-one modification of the
symmetric eigenproblem,” Numerische Mathematik, vol. 31, pp. 31–48, 1978.

Cooley, J. W., Lewis, P. A., and Welch, P. D., “The Fast Fourier Transform
algorithm and its applications,” IBM Watson Research Center, Yorktown
Heights, NY, Tech. Rep. RC-1743, Feb. 1967.

Cooley, J. W., Toolan, T. M., and Tufts, D. W., “A subspace tracking algorithm
using the Fast Fourier Transform,” IEEE Signal Processing Letters, vol. 11,
no. 1, pp. 30–32, Jan. 2004.

Cooley, J. W. and Tukey, J. W., “An algorithm for the machine computation of
complex Fourier series,” Mathematics of Computation, vol. 19, pp. 297–301,
Apr. 1965.

Demmel, J. W., Applied Numerical Linear Algebra. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 1997.

Gantmacher, F. R., Matrix Theory. New York, NY: Chelsea Publishing Com-
pany, 1959.

Golub, G. H., “Some modified matrix eigenvalue problems,” SIAM Review,
vol. 15, no. 2, pp. 318–334, Apr. 1973.

Golub, G. H. and van Loan, C. F., Matrix Computations, 3rd ed. Baltimore,
MD: Johns Hopkins Univ. Press, 1996.

Gu, M. and Eisenstat, S. C., “A stable and efficient algorithm for the rank-
one modification of the symmetric eigenproblem,” SIAM Journal on Matrix
Analysis and Applications, vol. 15, no. 4, pp. 1266–1276, Oct. 1994.

Gu, M. and Eisenstat, S. C., “Downdating the singular value decomposition,”
SIAM Journal on Matrix Analysis and Applications, vol. 16, no. 3, pp. 793–
810, July 1995.

Kailath, T. and Sayed, A. H., Fast Reliable Algorithms for Matrices with Struc-
ture. Philadelphia, PA: Society for Industrial and Applied Mathematics,
1999.

Karasalo, I., “Estimating the covariance matrix by signal subspace averaging,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-
34, no. 1, pp. 8–12, Feb. 1986.

88

Kumaresan, R. and Tufts, D. W., “Estimating the parameters of exponentially
damped sinusoids and pole-zero modeling in noise,” IEEE Transactions on
Acoustics, Speech, and Signal Processing, vol. 30, no. 6, pp. 833–840, Dec.
1982.

Makhoul, J., “Linear prediction: A tutorial review,” Proceedings of the IEEE,
vol. 63, no. 4, pp. 561–580, Apr. 1975.

Real, E. C., Tufts, D. W., and Cooley, J. W., “Two algorithms for fast ap-
proximate subspace tracking,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, vol. 47, no. 7, pp. 1036–1045, July 1999.

Real, E. C., Yannone, R. M., and Tufts, D. W., “Comparison of two methods for
multispectral 3-D detection of single pixel features in strong textured clut-
ter,” in Proceedings Image and Multidimensional Digital Signal Processing
Conference (IMDSP), Alpbach, Austria, July 1998.

Scharf, L. L. and Tufts, D. W., “Rank reduction for modeling stationary signals,”
IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. ASSP-
35, no. 3, pp. 350–355, Mar. 1987.

Shah, A. A. and Tufts, D. W., “Determination of the dimension of a signal sub-
space from short data records,” IEEE Transactions on Signal Processing,
vol. 42, no. 9, pp. 2531–2535, Sept. 1994.

Toolan, T. M. and Tufts, D. W., “Detection and estimation in non-stationary en-
vironments,” in Proceedings IEEE Asilomar Conference on Signals, Systems
& Computers, Nov. 2003, pp. 797–801.

Toolan, T. M. and Tufts, D. W., “Improved fast adaptive subspace track-
ing,” in Proceedings Thirteenth Adaptive Sensor Array Processing Workshop
(ASAP05), MIT Lincoln Laboratory, Lexington MA, June 2005.

Tufts, D. W., “Keynote address,” in MIT Lincoln Laboratory Adaptive Array
Signal Processing (ASAP) Conference, Lexington, MA, Mar. 2001.

Tufts, D. W., Kot, A. C., and Vaccaro, R. J., “The threshold analysis of SVD-
based algorithms,” in Proceedings IEEE International Conference on Acous-
tics, Speech, and Signal Processing, (ICASSP), Apr. 1988, pp. 2416–2419.

Tufts, D. W. and Kumaresan, R., “Estimation of frequencies of multiple sinusoids:
Making linear prediction perform like maximum likelihood,” Proceedings of
the IEEE, vol. 70, no. 9, pp. 975–989, Sept. 1982.

Tufts, D. W. and Kumaresan, R., “Singular value decomposition and improved
frequency estimation using linear prediction,” IEEE Transactions on Acous-
tics, Speech, and Signal Processing, vol. ASSP-30, no. 4, pp. 671–675, Aug.
1982.

89

Tufts, D. W., Kumaresan, R., and Kirsteins, I., “Data adaptive signal estimation
by singular value decomposition of data matrix,” Proceedings of the IEEE,
vol. 70, no. 6, pp. 684–685, June 1982.

Tufts, D. W. and Shah, A. A., “Rank determination in time-series analysis,” in
Proceedings IEEE International Conference on Acoustics, Speech, and Signal
Processing, (ICASSP), Apr. 1994, pp. IV–21–IV–24.

Wilkinson, J. H., The Algebraic Eigenvalue Problem. London, UK: Oxford Univ.
Press, 1965.

90

	ABSTRACT
	ACKNOWLEDGMENTS
	PREFACE
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	The Improved Fast Adaptive Subspace Tracking (IFAST) Algorithm
	Introduction
	The IFAST Algorithm
	The Goal of IFAST
	The IFAST Approximation
	Basic Theory
	The Steps of the Algorithm
	Accuracy Example
	Starting Without an Initial SVD, the IFAST-S Algorithm
	Adding More than One Column per Iteration, the IFAST-M Algorithm
	Taking Advantage of Hankel Structure, the IFAST-F Algorithm
	General Comments About the Algorithm

	Rank-Two Secular Functions
	The Full Dimension,
	The Principal Subspace, U'U'H
	The IFAST Subspace, '
	Secular Function Comparison

	The Rank-One Case
	Infinite Geometric Series Expansions
	Separation Into Parts

	The Rank-Two Case
	Additional Comments
	List of References

	Rank-two modification of the symmetric eigenproblem
	Abstract
	Introduction
	Defining the Problem
	Sorting and Deflating
	Sorting D
	Deflating
	Replacing with the deflated version

	The eigenvalues of
	The characteristic polynomial of
	The rank-two secular function
	Bounding the roots of w()
	Calculating the roots of w()

	The eigenvectors of
	Eigenvectors of changed, non-duplicate eigenvalues
	Eigenvectors of unchanged eigenvalues
	Eigenvectors of duplicate eigenvalues
	The singular vectors of

	Putting it all together
	Concluding Remarks
	Evaluating the determinant in C()
	List of References

	A Subspace Tracking Algorithm Using the Fast Fourier Transform
	Abstract
	The Subspace Tracking Algorithm
	The Use of the FFT
	Operations Count
	Summary
	List of References

	Detection and Estimation in Non-Stationary Environments
	Abstract
	Introduction
	Constructing a Block Hankel Matrix
	Estimating the Signal Subspace Rank
	Calculating the Threshold Values
	Evaluating the Other Thresholds
	The Data
	List of References

	BIBLIOGRAPHY

