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Abstract 
 
 iSCSI is a newly emerging protocol with 
the goal of implementing the storage area 
network (SAN) technology over TCP/IP, 
which brings economy and convenience 
whereas it also raises performance and 
reliability issues. This paper identifies the 
performance bottleneck of iSCSI, and then 
proposes a distributed iSCSI RAID to 
improve the performance by stripping data 
among iSCSI targets (S-iRAID) and 
improve the reliability by using rotated 
parity for data blocks (P-iRAID). Numerical 
results using popular benchmark have 
shown dramatic performance gain. S-iRAID 
improves the average throughput from 
11.7MB/s to 46.1MB/s by striping data 
among only three iSCSI targets. S-iRAID 
and P-iRAID can speed up the iSCSI 
performance by a factor of up to 6.6 and 
2.17, respectively.   

1. Introduction 
 
iSCSI [1,15,18,19] is a newly emerging 
technology with the goal of implementing 
the storage area networks (SAN) [9,21] 
technology over Internet infrastructure, 
which brings economy and convenience 
whereas it also raises performance and 
reliability issues. On a typical software 
iSCSI implementation [11], we have 
observed one iSCSI target is not enough to 
saturate the network and the iSCSI initiator. 
We also notice that for each iSCSI 
operation, there will be at least 4 socket 

communications between the iSCSI initiator 
and target [8]. All these socket 
communications may cause much overhead 
which limits the iSCSI performance. In 
addition to the performance issue, 
researchers also concern the data reliability 
on the iSCSI targets.  
 
RAID (Redundant Array of Independent 
Disks) [9] is a known, mature technique to 
improve performance and reliability of disk 
I/O through parallism and redundancy.  This 
paper introduces a technique to stripe data 
among several iSCSI targets in a similar 
way to RAID. Since it’s a distributed RAID 
[2,20] across several nodes (iSCSI targets), 
we name it iSCSI RAID, or iRAID for short.  
The difference between iRAID and 
traditional RAID is that in traditional RAID, 
disk is the unit, while in iRAID each iSCSI 
target is a unit. Similar to traditional RAID, 
we may have different layouts/RAID levels. 
In this paper we only focus on two layouts: 
striping (S-iRAID) and rotated parity (P-
iRAID). By striping data among several 
iSCSI targets, S-iRAID improves the 
read/write performance of iSCSI 
dramatically. Our experiments show that the 
average throughput is improved from 
11.7MB/s to 46.1MB/s by striping data 
among only three iSCSI targets using 
Gigabit Ethernet.  S-iRAID improves the 
performance but also worsen reliability. By 
striping data among several iSCSI targets, 
any single target failure will cause the entire 
data loss. To address this problem, in P-
iRAID, a rotated parity block is used to 
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every data stripe. In case one iSCSI target 
fails, data can be reconstructed from other 
n-1 iSCSI targets.  
 
To quantitatively evaluate the performance 
potential of iRAID in real world network 
environment, we have implemented the 
prototype of iRAID under the Linux OS 
based on current iSCSI code [11] and Linux 
software RAID. We have used Iozone 
benchmark [12] to measure system 
performance. Extensive measurement 
results show that S-iRAID and P-iRAID can 
speed up the iSCSI performance by a factor 
of up to 6.6 and 2.17, respectively.  
 
The rest of the paper is organized as follows. 
Next section presents the design and 
implementation of iRAID including S-
iRAID and P-iRAID, followed by our 
performance evaluation. We discuss the 
related research work in Section 4 and 
conclude our paper in Section 5. 

2. Design of iSCSI RAID (iRAID) 

We introduce iSCSI RAID, or iRAID, to 
solve the performance and reliability 
problems of iSCSI storage systems. The 
basic idea of iRAID is to organize the iSCSI 
storage targets similar to RAID by using 
striping and rotated parity techniques. In 
iRAID, each iSCSI storage target is a basic 
storage unit in the array, and it serves as a 
storage node as shown in Figure 1. All the 
nodes in the array are connected to each 
other through a high-speed switch to form a 
local area network.  iRAID provides a direct 
and immediate solution to boost iSCSI 
performance and improve reliability. 
Parallelism in iRAID leads to performance 
gain while using the RAID parity technique 
improves the reliability. This paper focuses 
on two iRAID configurations: striped iRAID 
(S-iRAID) and rotated parity iRAID (P-
iRAID). 
 

Figure 1: iRAID architecture. Data are striped over 
N iSCSI targets. 

 
2.1 S-iRAID 
In the striped iRAID (S-iRAID), all data are 
striped and distributed uniformly among all 
the iRAID nodes, which is illustrated in 
Figure 2. It borrows the concept from RAID 
level 0. Figure 2 shows the data 
organization of each iRAID node for a S-
iRAID system consisting of n iSCSI targets, 
where Dij indicates that data block i on 
iSCSI target j.    
 

 
Figure 2: Data organization of S-iRAID. 

 
 
2.2 P-iRAID 
 
The S-iRAID increases the performance of 
iSCSI through parallism and also increases 
the security since S-iRAID splits data into 
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stripes and stores stripes in different nodes, 
which could be in different places over the 
network. But S-iRAID does not improve the 
reliability because failure of any single node 
will cause the data loss. To improve the 
reliability as well as performance, we 
introduce parity iRAID (P-iRAID) where in 
addition to data being striped and 
distributed among the iSCSI targets, a parity 
code for each data stripe is calculated and 
stored in an iRAID node. The parity block is 
rotated among the n iSCSI targets as shown 
in Figure 3, where the shadowed blocks are 
parity blocks, and others are data blocks. 
Each bit in a parity block is the XOR 
operation on the corresponding bits of the 
rest data blocks in each stripe. For example, 

1,112111 −⊗⋅⋅⋅⊗= nDDDP . 
 

Figure 3: Data organization of P-iRAID. 
 

3. Performance Evaluations 
3.1 Experimental Setup 
 
For the purpose of performance evaluation, 
we have implemented iRAID prototype (for 
both S-iRAID and P-iRAID) based on Linux 
software RAID and Intel iSCSI code [11]. 
Our experimental settings are shown in 
Figure 4. Six PCs are involved in our 
experiments, namely STAR1 through STAR6. 
STAR1 serves as the iSCSI initiator, and 
START2-5 are four iSCSI targets, which are 
organized as our iRAID. The data block size 
is set to 64KB, which is the default chunk 

size of Linux software RAID. All these 
machines are interconnected through a 
DELL PowerConnect 5012, 10-ports 
managed Gigabit Ethernet switch to form an 
isolated LAN. Each machine is running 
Linux kernel 2.4.18 with a 3COM 3C996B-
T server network interface card (NIC) and 
an Adaptec 39160 high performance SCSI 
adaptor. STAR6 is used to monitor the 
network traffic over the switch. The 
configurations of these machines are 
described in Table 1 and the characteristics 
of the disks are summarized in Table 2. 
 

 
Figure 4: iRAID, where data are striped and 
distributed across the n iSCSI targets (S-iRAID) or 
n-1 iSCSI targets (P-iRAID). 
 
 
We use the popular file system benchmark 
tool, Iozone [12], to measure the 
performance. The benchmark tests file I/O 
performance for a wide range of operations. 
We will focus on performance of sequential 
read/write, random read/write because those 
are generally the primary concerns for any 
storage systems. The average throughput 
listed here is the arithmetic average of 
above four I/O operations. We run Iozone 
for different request size and data sets under 
various scenarios as follows:  
Iozone –Ra –S dataset size –r request size 
–P –i0 –i1 –I 2 –f /mnt/iRAID/test 
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Where dataset size and request size are 
configurable. We reboot all machines after 
each round of test.  

 
Figure 5: Average throughput 

(4 targets, Gbps network, 1 GB data set) 
 
3.2 Numerical Results 

3.2.1 Throughput 
Our first experiment is to use Iozone to 
measure the I/O throughput for iSCSI, S-
iRAID, and P-iRAID using 4 targets under 
Gigabit Ethernet. The data set is 1G bytes 
and I/O request sizes range from 4KB to 
64KB. Figure 5 shows the average 
throughputs. Both S-iRAID and P-iRAID 
improve the iSCSI performance 
dramatically. The performance 
improvement over iSCSI is consistent 
across different request sizes for both S-
iRAID and P-iRAID. S-iRAID outperforms 
iSCSI by a factor of up to 6.6, and P-iRAID 
outperforms iSCSI by a factor of 2.17. It’s 

obvious that by striping data from the iSCSI 
initiator among different iSCSI targets, S-
iRAID and P-iRAID show great 
performance gains. P-iRAID calculates 
parity for each data stripe and uses one of 
the 4 iSCSI targets to store parity blocks. 
That’s why S-iRAID performs much better 
than P-iRAID. The average performance 
gains of S-iRAID and P-iRAID over the 
iSCSI are a factor of 5.34 and 1.71, 
respectively. 

3.2.2 Identifying the bottlenecks 
 
Figure 5 shows that iSCSI performance is 
pretty low. Readers may ask what’s the 
bottleneck. Is it the iSCSI initiator, network 
speed, or iSCSI target? To answer this 
question, we perform the following 
experiments.   
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Figure 6: Average throughput  

(4 targets, 1 GB data set, 64KB request size) 
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Table 1: Machines configurations 
Machines Processor RAM IDE disk SCSI Controller SCSI disk 
STAR-1 PIII 1.4GHZ/512K Cache 1024MB N/A Adaptec 39160, Dell 

PERC RAID controller 
4x Seagate 
ST318406LC 

STAR2…5 P4 2.4GHZ/512K Cache 256MB WDC WB400BB Adaptec 39160 IBM Ultrastar 73LZX 
STAR6 P4 2.4GHZ/512K Cache 256MB WDC WB400BB N/A N/A 

 
Table 2: Disk parameters 

Disk Model Interface Capacity Data 
buffer 

RPM Latency 
(ms) 

Transfer rate 
(MB/s) 

Average Seek 
time (ms) 

ST318406LC Ultra 160 SCSI 18GB 4MB 10000 2.99 63.2 5.6 
Ultrastar 73LZX Ultra 160 SCSI 18GB 4MB 10000 3 29.2-57.0 4.9 
WB400BB Ultra ATA 40GB 2MB 7200 4.2 33.3 9.9 
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First, we change the network speed by 
setting the switch to different modes: 
10Mbps, 100Mbps, and 1Gbps.  Figure 6 
shows the results for S-iRAID, P-iRAID, 
and iSCSI under different networks. It is 
clear that they perform similarly under a 
slow network (10Mbps). When the network 
speeds up, the S-iRAID performs much 
better than iSCSI, while P-iRAID show a 
smaller performance gain because of parity 
computation and less degree of parallism 
than S-iRAID. 
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Figure 7: Network utilization  

(4 targets, 1 GB data set, 64KB request size) 
 
It seems that network bandwidth is the 
bottleneck for iSCSI using slow speed 
networks. To verify this, we monitored the 
network traffic over the switch. Figure 7 
shows the network utilization for S-iRAID. 
We found that the network utilization is 
over 72% (which is very high for a network 
load!) using 10Mbps while only 12% using 
1Gbps network. That means, if we use a 
slow speed network (10Mbps) for iSCSI, 
even we add more iSCSI targets, the 
performance will not increase too much 
because the network is the bottleneck. Our 
next experiment (where different number of 
iSCSI targets are used for different 
networks) further confirms our conclusion. 
Figure 8 shows the results, where we 
noticed that performance is consistent for 
10Mbps network even we increase the 

number of iSCSI targets. For 100Mbps and 
1Gbps networks, performance increases 
steadily with the increasing number of 
iSCSI targets. 
 
Figure 8 also shows that for high-speed 
network, iSCSI targets may become the new 
bottleneck, that’s why we can use more 
iSCSI targets in iRAID to improve the 
iSCSI performance. Figure 9 shows the 
results for S-iRAID using different number 
of iSCSI targets for different request sizes. 
The performance improvements are 
consistent across all the different request 
sizes. S-iRAID improves the iSCSI 
performance from 11.7MB/s to 46.1MB/s 
only using 3 iSCSI targets for 64KB request 
size. 
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Figure 8: Average throughput  
(1 GB data set, 64KB request size) 
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Figure 9: Average throughput  

(1 GB data set, 1Gbps network) 
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Network Utilization (1Gbps network)
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Figure 10: Network utilization for different number 
of iSCSI targets (1 GB data set, 64KB request size) 

 
 
Both Figure 8 and 9 also unveil a fact: when 
the number of iSCSI targets exceed a 
threshold (3 in our experiment), the 
performance will not increase even we add 
more iSCSI targets. That means in our 
environment, 3 iSCSI targets is enough to 
saturate the 1Gbps network. iSCSI targets 
are not the bottleneck anymore when we use 
more than 3 iSCSI targets. So where is the 
bottleneck now? Is it the network? Probably 
not! Because we measured the network 
traffic and found that the network utilization 
is just 12% even using 4 iSCSI targets 
(Figure 10). Since now the bottleneck is 
neither the iSCSI targets not the network, 
we can conservatively assume the 
bottleneck is the iSCSI initiator! This 
problem is addressed by iCache [7], a cache 
scheme to improve the initiator performance. 

3.3 Reliability analysis 
As we mentioned above, P-iRAID improves 
the reliability by using rotated parity. The 
parity block is rotated among the n iSCSI 
targets. Each bit in a parity block is the 
XOR operation on the corresponding bits of 
the rest data blocks in each stripe. For 
example in an n iSCSI targets P-iRAID, in 
case of the failure of any single iSCSI target 
i, data on iSCSI target i can be recovered 

through the rest of n-1 iSCSI targets by 
performing XOR operations.  
 
To verify the reliability of our P-iRAID, we 
performed a simple experiment as follows.  
1) We mounted our 4-target P-iRAID as a 

local drive (/mnt/p-iRAID) on the 
initiator; 

2) Copied the Linux source tree (/usr/src) 
to this P-iRAID drive; 

3) Rebooted all those machines (initiator 
and targets), and formatted one of the 
iSCSI target drive (this will erase all 
data on it) to emulate one target failure; 

4) We mounted the 4-target P-iRAID as a 
local drive (/mnt/p-iRAID) on the 
initiator again; 

5) We compiled the Linux source tree 
/mnt/p-iRAID/usr/src successfully. That 
means our P-iRAID does improve the 
reliability and is safe from single iSCSI 
target failure. 

 

4. Related Work 
 
RAID is a mature technology developed to 
improve I/O performance and/or reliability. 
Distributed RAID concept was originally 
presented by Stonebraker and Schloss [20] 
in 1990. Since then several distributed 
RAID techniques are used in cluster 
computing or direct attached storage 
systems. RAID-x [10] makes use of 
orthogonal striping and mirroring technique 
in a serverless cluster to improve the 
aggregate I/O bandwidth for parallel writes. 
TickerTAIP [2] offers a parallel RAID 
architecture for supporting parallel disk I/O 
with multiple controllers. However, the 
TickerTAIP was implemented as a 
centralized I/O subsystem. MAID [3] builds 
a mass storage utilizing idle disk resources. 
Prototyping of distributed RAID started 
with the Swift/RAID [14] and Petal [13]. 
Swift/RAID provides fault tolerance in the 
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distributed environment in the manner as 
RAID level 4 and 5. Petal uses a collection 
of NAS-like storage servers interconnected 
using specially customized LAN to form a 
unified virtual disk space to clients at block 
level.  
 
NAS [5] and SAN [6] are two major 
solutions to deploy storage over the network. 
The NAS technology provides direct 
network connection for hosts to access 
through network interfaces. It also provides 
file system functionality. NAS-based 
storage appliances range from terabyte 
servers to a simple disk with Ethernet plug. 
The main difference between NAS and 
SAN is that NAS provides storages at file 
system level while SAN provides storages 
at block device level. Another difference is 
that NAS is attached to the same LAN as 
the one connecting servers accessing 
storages, while SAN has a dedicated 
network connecting storage devices without 
competing for network bandwidth with the 
servers. Recently emerged iSCSI (Internet 
SCSI) [19] provides an ideal alternative to 
Petal’s customized LAN-based SAN 
protocol. Taking advantage of existing 
Internet protocols and media, it is a natural 
way for storage to make use of TCP/IP as 
demonstrated by earlier research work 
(VISA [16] by Meter et al. of USC) to 
transfer SCSI commands and data using IP 
protocol. iSCSI protocol is a mapping of the 
SCSI remote procedure invocation model 
over the TCP/IP protocol [19].  Gabber et al 
propose StarFish [4] to improve availability 
for IP-based block storage using replicas. 
 
iRAID provides a solution to deploy SAN 
using iSCSI over the existing and mature 
Ethernet protocol. While many existing 
techniques such as striping and rotated 
parity [17] may be borrowed for the iRAID 
and iCache implementations, the novelty of 

our work is the new concept of applying 
array technique to iSCSI storage systems. 

5. Conclusions 
 
In this paper, we have identified the iSCSI 
performance bottlenecks under different 
situations. For low-speed networks, the 
network bandwidth is the main factor to 
limit the performance. For high-speed 
networks, both iSCSI target and initiator 
could be the bottleneck. We have 
introduced S-iRAID to improve the 
performance by striping data among several 
iSCSI targets, and introduced P-iRAID to 
improve the reliability and performance by 
striping data and rotating parity over several 
iSCSI targets. We have carried out 
prototype implementations of S-iRAID and 
P-iRAID under the Linux operating system. 
Extensive measurement results using Iozone 
have shown that S-iRAID and P-iRAID can 
speed up the iSCSI performance by a factor 
of up to 6.6 and 2.17 in terms of average 
throughput.  
 
 
Acknowledgements 

This research is partially supported by the 
Center for Manufacturing Research at 
Tennessee Technological University. 
 

References 
 
[1] S. Aiken, D. Grunwald, A. Pleszkun, and J. 

Willeke, “A Performance Analysis of the 
iSCSI Protocol,” 20th IEEE Conference on 
Mass storage Systems and Technologies, 
2003. 

[2] P. Cao, S. B. Lim, S. Venkataraman, J. 
Wilkes. “The TickerTAIP Parallel RAID 
Architecture,” ACM Transactions on 
Computer Systems 12(3): 236-269 (1994). 

[3] D. Colarelli and D. Grunwald, “Massive 
Arrays of Idle Disks For Storage 
Archives,” Proceedings of Super 



 

 8

Computing (SC’2002), Baltimore, MD, 
November 2002.  

[4] E. Gabber, et al., “StarFish: highly-
available block storage,” Proceedings of 
the FREENIX track of the 2003 USENIX 
Annual Technical Conference, San 
Antonio, TX, June 9--14, 2003, pp. 151-
163. 

[5] G. Gibson, R. Meter, “Network Attached 
Storage Architecture,” Communications of 
the ACM, Vol. 43, No 11, pp.37-45, 
November 2000. 

[6] M. Gupta, Storage Area Network 
Fundamentals, Cisco Press, ISBN: 1-
58705-065-x, 2002. 

[7] X. He, et al., “A Caching Strategy to 
Improve iSCSI Performance,” IEEE 
Annual Conference on Local Computer 
Networks, Nov. 6-8,2002. 

[8] X. He, Q. Yang, and M. Zhang, 
“Introducing SCSI-To-IP Cache for 
Storage Area Networks,” in 2002 
International Conference on Parallel 
Processing (ICPP’2002), Vancouver, 
Canada, August 18-21, 2002. 

[9] R. W. Horst, D. Garcia, “ServerNet SAN 
I/O Architecture,” Hot Interconnects V, 
1997. 

[10] K. Hwang, H. Jin, and R. S. Ho, 
“Orthogonal Striping amd Mirroring in 
Distributed RAID for I/O-Centric Cluster 
Computing”, IEEE-Trans. on Parallel and 
Distributed Systems, 2001. 

[11] Intel iSCSI project, URL: 
http://sourceforge.net/projects/intel-iscsi, 
Jan. 2003.  

[12] Iozone file system benchmark, URL: 
http://www.iozone.org. 

[13] E. K. Lee, C. A. Thekkath. “Petal: 
Distributed Virtual Disks.” Proceedings of 
the 7th International Conference on 
Architectural Support for Programming 
Languages and Operating Systems 
(ASPLOS VII), pp. 84-92, Oct. 1-5,1996. 

[14] D. E. Long, B. R. Montague, L. Cabrera, 
“Swift/RAID: A Distributed RAID 
System,” Computing Systems 7(3): 333-
359 (1994). 

[15] Y. Lu and D. Du, “Performance Study of 
iSCSI-based Storage Systems,” IEEE 
Communications, Vol. 41, No. 8, 2003. 

[16] R. V. Meter, G. G. Finn, S. Hotz. “VISA: 
Netstation's Virtual Internet SCSI 
Adapter.” In Proceedings of the 8th 
International Conference on Architectural 
Support for Programming Languages and 
Operating Systems (ASPLOS VIII), pp. 71-
80, October 4-7,1998. 

[17] D.A. Patterson, et al., “A Case for 
Redundant Arrays of Inexpensive Disks 
(RAID),” ACM International Conference 
on Management of Data (SIGMOD), pp. 
109-116, 1988.  

[18] P. Sarkar, S. Uttamchandani, and K. 
Voruganti, “Storage Over IP: When Does 
Hardware Support Help?” USENIX 
Conference on File And Storage 
Technologies, 2003. 

[19] J. Satran, et al. “iSCSI draft standard,” 
URL: http://www.ietf.org/internet-
drafts/draft-ietf-ips-iscsi-20.txt, Jan. 2003. 

[20] M. Stonebraker and G. Schloss, 
“Distributed RAID- a New Multiple Copy 
Algorithm,” Proceedings of the 6th 
International Conference on Data 
Engineering, Feb. 1990, pp. 430-437.  

[21] P. Wang, et al.,“IP SAN-from iSCSI to IP-
Addressable Ethernet Disks,” 20th IEEE 
Conference on Mass storage Systems and 
Technologies, 2003. 


