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Abstract—Most existing studies of file access prediction are experimental in nature and rely on trace driven simulation to predict the 
performance of the schemes being investigated.  We present a first order Markov analysis of file access prediction, discuss its 
limitations and show how it can be used to estimate the performance of file access predictors, such as First Successor, Last 
Successor, Stable Successor and Best-k-out-of-n.  We compare these analytical results with experimental measurements performed 
on several file traces and find out that specific workloads, and indeed individual files, can exhibit very different levels of non-
stationarity.  Overall, at least 60 percent of access requests appear to remain stable over at least a month. 
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1 INTRODUCTION

NE of the most difficult problems facing operating 
systems designers is finding the best way to manage 

memory hierarchies consisting of devices with widely 
different access times.  The problem is not new and is 
worsening as gains in main memory access times have 
dramatically outpaced gains in disk access times. 

Two main techniques can be used to mitigate this problem, 
namely caching and prefetching.  Caching keeps in memory 
the data that are the most likely to be used again while pre-
fetching attempts to bring data in memory before they are 
needed.  Prefetching is inherently more difficult to implement 
than caching because prefetched data that are not needed can 
have a direct negative impact on system performance while 
keeping in a cache data that will not be reused only reduces 
the cache effectiveness.  As a result, most systems err on the 
side of caution and do not exploit the full potential of the tech-
nique.   

A key requirement for a successful implementation of file 
prefetching is a good file access predictor.  This predictor 
should have reasonable space and time requirements, make as 
many successful predictions as possible and as few bad predic-
tions as feasible. 

Most existing studies of file access prediction have been 
experimental in nature, relying on trace driven simulation to 
predict the performance of individual predictors. Even today, 
no comprehensive probabilistic analysis of file predictors can 
be found in the literature. 

This omission is especially regrettable given the very good 
performance of some very simple predictors such as First 
Successor, Last Successor, Stable Successor and Best-k-out-of-
n.  These predictors base all their prediction of the next file to 
be accessed on the identity of its immediate predecessor.  In 

that sense, they implicitly assume that file access patterns can 
be modeled by a first-order Markov model.   

This observation motivated us to present a first order 
Markov analysis of performance of these file access predictors 
and discusses its limitations, among which its incapacity to 
represent non-stationary behaviors.  

The remainder of this paper is organized as follows.  
Section 2 reviews previous work on file access prediction.  
Section 3 introduces our model and Section 4 discusses its 
limitations.  Finally, Section 5 states our conclusions. 

2 PREVIOUS WORK 
Palmer et al. [9] used an associative memory to recognize 

access patterns within a context over time.  Their predictive 
cache, named Fido, learns file access patterns within isolated 
access contexts.  Griffioen and Appleton [4] presented in 1994 
a file prefetching scheme relying on graph-based relationships.  
Their probability graphs only tracked the frequency of access 
within a particular “ look-ahead”  window size.  Shriver et al. 
[11] proposed an analytical performance model to study the 
effect of prefetching for file system reads.  The model was 
based on a 4.4BSD-derived file system, and was validated 
against several simple workloads.  Predictions of the model 
were found to be typically within 4 percent of measured val-
ues. 

Tait et al. [12] investigated a client-side cache management 
technique used for detecting file access patterns and for 
exploiting them to prefetch files from servers.  They hypothe-
sized that the work patterns of most individuals give rise to 
file access patterns that define working sets of files used for 
particular applications.   Lei and Duchamp [7] later extended 
this approach and used a match threshold to quantify the 
degree of compatibility between stored pattern trees represent-
ing file working sets and the working trees being formed.  
These authors also introduced the Last Successor predictor, 
which takes the most recently observed successor of file A as 
the predicted successor of the next occurrence of A. 
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More recent work by Kroeger and Long [5, 6] compared 
the predictive performance of that predictor to that of 
Griffioen and Appleton's scheme and introduced more effec-
tive schemes based on context modeling and data 
compression.  Finally, Yeh et al. [15] investigated a simple but 
effective successor model that identifies the relationships 
between files through identification of the programs accessing 
them. 

Two predictors Stable Successor (or Noah) [1] and Recent 
Popularity [2] extend the Last Successor predictor by attempt-
ing to filter out noise in the observed file reference stream.  
Stable Successor ignores observations that vary too rapidly, 
effectively acting as a low-pass filter.   

Stable Successor keeps track of the last observed successor 
of every file, but it does not update its past prediction of the 
successor of file X before having observed s + 1 successive 
instances of file Y immediately following instances of file X.  
Hence, given the sequence: 

S: ABABACABACACABADADADA 

Stable Successor with s = 2 will not update its predictor the 
successor of A until it encounters 3 consecutive instances of 
file D immediately following instances of file A.  Increasing s 
from 2 to 3, would require 4, instead of 3, consecutive 
instances of file D immediately following instances of file A to 
update the predictor, thus increasing the stability of the algo-
rithm and diminishing its responsiveness.   

Figure 1 describes the algorithmic behavior of a Stable 
Successor predictor.  We immediately observe that Stable 
Successor will either make predictions or guesses depending 
on its level of confidence: 

1) Stable Successor will predict that file G will be the suc-
cessor of file F whenever G was the observed successor 
of F for the last s + 1 instances of F; G will then become 
the new stable successor of F. 

2) Stable Successor will only make a guess for the succes-
sor of file F whenever the last s + 1 instances of F did 
not have the same successor.  That guess will be the cur-
rent stable successor of F. 

Recent Popularity or Best k-out-of-m provides the stability 
benefits of Stable Successor while allowing for faster adapta-
tion to workload changes.  Best k-out-of-m keeps track of the 
last m most recently observed successors of a file.  When 
attempting to make a prediction for a given file, recent 
popularity searches for the most popular successor from the 
list.  If the most popular successor occurs at least k times then 
it is submitted as a prediction.  When more than one file quali-
fies as “most popular,”  recency is used as the tiebreaker. 

Table I summarizes the performances of these three predic-
tors and compares them to those of a very simple predictor 
that always selects the first observed successor to a file (First 
Successor). The seven traces used in these experiments 
belonged to two sets of traces.  A first set consisted of four file 
traces collected using Carnegie Mellon University’s DFSTrace 
system [8].  The traces include mozart, a personal workstation,   
 

Assumptions: 
G is file being currently accessed 
F its direct predecessor 
StableSuccessor(F) is last prediction made for the 
successor of F 
LastSuccessor(F) is last observed successor of F 
Count(F) is a counter 
s is the stability parameter of the algorithm 

Algorithm: 
if LastSuccessor(F) = G then 
 Counter(F) ← Counter(F) + 1 
else 
 Counter(F) ← 0 
end if 
if Counter(F) > s then 
 LastSuccessor(F) ← G 
 StableSuccessor(F) ←G 
 Predict StableSuccessor(F)  
else 
 LastSuccessor(F) ← G 
 Guess StableSuccessor(F) 
end if 

Figure 1 The Stable Successor Predictor 

ives, a system with the largest number of users, dvorak, a sys-
tem with the largest proportion of write activity, and barber, a 
server with the highest number of system calls per second.  
They include between four and five million file accesses. A 
second set of traces was collected in 1997 by Roselli [10] at 
the University of California, Berkeley over a period of 
approximately three months.  To eliminate any interleaving 
issues, these traces were processed to extract the workloads of 
an instructional machine (instruct), a research machine 
(research) and a web server (web). 

We can make a few general observations about these data.  
First, the successor to any given file can be predicted with 70 
to 80 percent accuracy without any reference to a larger con-
text.  Second, predictors that base their predictions of the next 
successor to a given file on the identities of the most recently 
observed successors to the file fare much better than predictors 
using older observations. 

3 OUR MODEL 
A first-order Markov model for file access assumes that the 
next file to be referenced only depends on its 
immediate predecessor.  Thus file j will be accessed after file i 
with conditional probability pij and the steady state probability 
pj of accessing file j is given by the system of n linear equa-
tions: 
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where n is the total number of files to be considered.  We both 
have 



 

 

TABLE I.  HIT RATIOS OF SOME FILE ACCESS PREDICTORS (FROM [13, 14]) 

Algorithm Barber 
(%) 

Dvorak 
(%) 

Ives 
(%) 

Mozart 
(%) 

Instruct 
(%) 

Research 
(%) 

Web 
(%) 

First Successor 55.1 27.65 32.59 55.2 10.47 32.32 28.3 
Last Successor 77.76 67.61 65.2 74.45 72.43 56.28 42.88 
Stable Successor 81.01 71.71 70.47 77.97 76.35 58.3 51.53 
Best k-out-of-m 81.36 72.59 70.85 78.46 76.82 61.31 51.39 
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Let us consider first the performance of the First Successor 
predictor.  The conditional probability that file j is the succes-
sor of file i is given by pij.  Thus the chance of having file j as 
first successor of file i is also given by pij. 

The probability of making a correct prediction will depend 
on (a) the probability pij of predicting a specific file j as 
successor to file i and (b) the probability pij that this prediction 
will materialize.  Since both events are independent, we can 
multiply the two probabilities and the overall probability of 
making a correct prediction for the successor of file i is then 
given by �

=

n

j
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Summing over all possible predecessors, we find that the over-
all success ratio of the predictor is given by ���
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Since the predictor always makes a prediction, its probability 
of making a bad prediction is given by ���
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Under our assumptions, the performance of the Last Successor 
predictor should be not different from the performance of the 
First Successor predictor.  This should not surprise us, as we 
base in both cases our prediction on one single previous obser-
vation.  Hence the observed difference between the 
performance of the first successor and last successor predic-
tors is a good indication that the process is not stationary and 
the pij's vary over time. 
Consider now a Stable Successor predictor that predicts file j 
to be the successor of i if the last k= s + 1 instances of file i 
were all followed by an instance of file j.  The probability of 
predicting that file j is the successor of file i is then be given 
by pij

k and the overall probability of making a correct predic-
tion for the successor of file i is given by �
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Summing over all possible predecessors, we find that the over-
all success ratio of the predictor is given by 
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Note that this predictor will decline to make a prediction 
whenever one or more of the last k instances of file i was not 
followed by an instance of file j.  The probability of not mak-
ing a prediction will thus be given by 
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The accuracy of the predictor will then be given by 
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As two of the authors found out, one can increase the num-
ber of successful predictions of the protocol by “guessing”  file 
j when the last sequence of k consecutive identical successors 
of file i contained file j [1].  Unfortunately, this extension 
makes the stable successor difficult to analyze.  For the sake of 
simplicity, we will consider instead a somewhat more restric-
tive predictor that will only issue a guess when that last 
sequence of k consecutive identical successors occurred less 
than k reference pairs before. 

For any m < k, the probability that the last sequence of k 
consecutive instances of file j succeeding file i occurred 
exactly m reference pairs before the current reference is given 
by 

)1( ij
k
ij pp − . 

Hence the probability that the last sequence of k consecutive 
identical successors occurred less than k reference pairs before 
is given by 
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The probability of making a correct prediction for the succes-
sor of file i is thus given by �

=
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that is, the file with the highest conditional probability to suc-
ceed the current file.  The probability of making a correct 
prediction for the successor of file i will then be given by the 
same max, jip . 
Summing over all possible predecessors, we find that the over-
all success ratio of the predictor is given by 
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Figure 3 Compared performances of the First Successor (FS) and Last 
Successor (LS) on a per access basis. 
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Consider now a k-out-of-m predictor predicting that file j is 
the successor of file i whenever file j was the successor of file 
i in at least k of the last m instances of file i.  The probability 
of predicting that file j is the successor of file i will be given 
by  
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The probability of making a correct prediction for the succes-
sor of file i is then given by ���
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Summing over all possible predecessors, we find that the over-
all success ratio of the predictor is given by �����
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As before, we could increase the number of correct predictions 
by continuing to predict file j as long as no other file is the 
successor of file i in at least k of the last m instances of file i. 

Finally, our model suggests a fourth predictor, which we 
will call Most Likely Successor.  It predicts that the successor 
of file i will be the file jmax such that  

}1|max{max, njpp ijji ≤≤= , 

Summing over all possible predecessors, we find that the 
overall success ratio of the predictor is given by 

max,
1

ji

n

i
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A practical implementation of this predictor would count 
the number of times any given file j has succeeded any given 
file i and always predict the most frequent successor of file i 
as its most likely successor. 
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Figure 2 Compared performances of the First Successor (FS) and Last 

Successor (LS) on a per file basis. 

4. DISCUSSION 
Our Markov model makes two important assumptions.  First, 
it assumes that the next file to be referenced only depends on 
its immediate predecessor.  Second, it assumes that the prob-
ability pij of having file j succeeding file i does not vary over 
time.   Let us briefly discuss these two assumptions. 

Looking back at Table I, we see that all four predictors 
mentioned in the table base their predictions on the past 
successor history of the last file to be accessed.  None of them 
makes any attempt to keep track of the predecessors of that 
file.  Hence, the excellent performance of these four protocols 
is a strong indication that we only need to know the past 
successors of the last file to be accessed to be able to predict 
its successor. 

Our hypothesis that probability pij of having file j succeed-
ing file i does not vary over time is less easy to justify.  If it 
were true, the First Successor and the Last Successor predic-
tors should have identical success ratios.  As shown on Table I, 
this is clearly contradicted by our experimental data, which 
indicate that Last Successor performs much better than First 
Successor for all seven traces.  We should also observe that the 
margin of superiority of Last Successor over First Successor 
widely varies among the traces.   While the hit ratio of the Last 
Successor predictor is 30 percent better than that of First 
Successor for the mozart trace, the same hit ratio is 592 per-
cent better than that of First Successor for the instruct trace. 
To gain a deeper understanding of this behavior, we need to 
examine the behavior of the two predictors on a per-file basis.  
Figure 2 shows how the different predictors performed on a 
per-file basis for the four CMU traces at two different dura-
tions, namely approximately a month and a year.  (We could 
not include the three Berkeley traces in our study, as they were 
collected over a much shorter time span.) 



 

 

Each bar shows the fraction of files for which both predic-
tors performed equally well (“Predictors equal” ) as well as the 
fractions for which either Last Successor (LS) or First Succes-
sor (FS) was better.  We can immediately see that both 
predictors performed identically for over eighty percent of the 
files, indicating that a large percentage of files have stable 
predictors. There are very few files for which the adaptive 
Last Successor predictor actually performed worse than the 
static First Successor predictor, with the remainder of all files 
showing a clear advantage for using the Last Successor.   

A somewhat different picture emerges when we weight 
these results by the relative access frequencies of the files.   As 
Figure 3 shows, there are then much fewer instances in which 
the two predictors are equivalent.  In other words, many of the 
files for which they differ are accessed frequently. In particular 
the yearlong trace for ives shows that most accesses occur for 
files whose successors will vary over time.  The dramatic shift 
between ives-month and ives-year supports the view that the 
non-stationary behavior for this particular workload is caused 
by a shift of successor behavior over time.  Conversely, our 
measurements for the dvorak trace indicate that 70 percent of 
access requests remain stable over extended periods of time.    

5. CONCLUSIONS 
We have presented here a first order Markov analysis of file 
access prediction and show how it can be used to estimate the 
performance of file access predictors, such as First Successor, 
Last Successor, Stable Successor and Best-k-out-of-m.   
We compared our analytical results with experimental meas-
urements performed on several file traces and found out that 
individual workloads, and indeed individual files, could 
exhibit very different levels of non-stationarity.  While we 
found yearlong stable access patterns for over 80 percent of all 
files accessed in the CMU traces, we also observed that these 
files were often less frequently accessed than the files with 
non-stationary access patterns.  Even then, at least 60 percent 
of access requests appear to remain stable over at least a 
month.  

The existence of stable access patterns among a large frac-
tion of files in most workloads is a strong argument in favor of 
the development of more techniques aiming at clustering 
together files that are likely to be accessed together [3] as 
these clusters will often be able to remain unchanged over 
several weeks, if not several months.   

ACKNOWLEDGMENTS 
J.-F. Pâris was supported in part by the National Science Foun-
dation under grant CCR-9988390.  Ahmed Amer was sup-
ported in part by National Science Foundation under grant 
ITR-0325353.  Darrell D. E. Long was supported in part by 
the National Science Foundation under grant CCR-0204358. 

REFERENCES 
[1] A. Amer and D. D. E. Long, Noah: Low-Cost File Access Prediction 

Through Pairs, Proc. 20th Int. Performance, Computing, and Commu-
nications Conf., pp. 27–33, April 2001. 

[2] A. Amer, D. D. E. Long, J.-F. Pâris, and R. C. Burns, File Access 
Prediction with Adjustable Accuracy, Proc. 21st Int. Performance of 
Computers and Communication Conf., pp. 131-140, Apr. 2002.  

[3] A. Amer, D. D. E. Long, and R. C. Burns. Group-based management of 
distributed file caches.  Proc. 22nd Int. Conf. on Distributed Computing 
Systems, pp. 525–534, July 2002. 

[4] J. Griffioen and R. Appleton, Reducing file System Latency Using a 
Predictive Approach, Proc. 1994 Summer USENIX Conf., pp. 197–207, 
1994. 

[5] T. M. Kroeger and D. D. E. Long, The Case for Efficient File Access 
Pattern Modeling, Proc. 1996 USENIX Technical Conf., pp. 14–19, 
Jan. 1996.  

[6] T. M. Kroeger and D. D. E. Long, Design and Implementation of a 
Predictive File Prefetching Algorithm, Proc. 2001 USENIX Annual 
Technical Conf., pp. 105–118, June 2001 

[7] H. Lei and D. Duchamp, An Analytical Approach to File Prefetching, 
Proc. 1997 USENIX Annual Technical Conf., Jan. 1997. 

[8] L. Mummert and M. Satyanarayanan, Long Term Distributed File 
Reference Tracing: Implementation and Experience, Technical Report, 
School of Computer Science, Carnegie Mellon University, Pittsburgh, 
PA, 1994. 

[9] M. L. Palmer and S. B. Zdonik, FIDO: A Cache that Learns to Fetch, 
Proc. Conf. on Very Large Data Bases (VLDB), Barcelona, pp. 255–
264, September 1991. 

[10] D. Roselli, Characteristics of File System Workloads, Technical. 
Report, University of California, Berkeley, 1998. 

[11] E. Shriver, C. Small, and K. A. Smith, Why Does File System Prefetch-
ing Work? Proc. 1999 USENIX Technical Conf., June 1999. 

[12] C. Tait and D. Duchamp, Detection and Exploitation of File Working 
Sets, Proc. 11th Int. Conf. on Distributed Computing Systems, pp. 2–9, 
May 1991. 

[13] G. A. S. Whittle, A Hybrid Scheme for File System Reference Predic-
tion, MS Thesis, Department of Computer Science, University of 
Houston, Texas, May 2002.  

[14] G. A. S. Whittle, J.-F. Pâris, A. Amer, D. D. E. Long and R. Burns.  
Using Multiple Predictors to Improve the Accuracy of File Access 
Predictions, Proc. 20th IEEE Symp. on Mass Storage Systems & Tech-
nologies, pp. 230–240, Apr. 2003. 

[15] T. Yeh, D. D.  E. Long, and S. Brandt, Performing File Prediction With 
a Program-Based Successor Model, Proc. 9th Int. Symp. on Modeling, 
Analysis, and Simulation on Computer and Telecommunication Sys-
tems, pp. 193–202, Aug. 2001. 


