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Abstract

The main goal for parallel I/O is to increase I/O
parallelism by providing multiple, independent data
channels between processors and disks. To realize
this goal, I/O streams need to be parallelized and
partitioned at multiple system layers. Contention at
any level can dramatically decrease performance and
limit scalability. To address this disk contention bot-
tleneck, it is important to carefully study disk access
patterns.

From our previous work on I/O profiling, we found
that I/O access patterns of parallel scientific applica-
tions are usually very regular and highly predictable.
Thus it is possible to detect I/O access patterns stat-
ically during compiler time. Large datasets are logi-
cally linearized in file space on disk, and these inten-
sive data accesses follow a linear space traversal. In
this paper, we present our recent work on compiler-
directed I/O partitioning, based on Linear Disk Ac-
cess Descriptors (LDAD). We use the SUIF compiler
infrastructure to perform data-flow analysis and rec-
ognize LDADs. We then use these LDADs to guide
our I/O data partitioning that utilizes multiple disks
to significantly increase I/O throughput.

1 Introduction

In the area of high performance computing, we
are seeing a growing need to work with very large
datasets, which usually reside on secondary storage
systems. As the gap between processor and disk
speeds continues to grow, when multiple processes
access data stored on the same storage device simul-
taneously, high disk latencies will be incurred. Access
to disk-based data can be a barrier to achieving scal-
able parallel performance.

The main goal for parallel I/O is to increase I/O
parallelism by providing multiple, independent data
channels between CPUs and disks. To realize this

goal, I/O streams need to be parallelized at multiple
layers (i.e., at the process level [6, 11], file level [4],
and disk level [8, 15]). Contention at any level can
dramatically decrease performance and limit scalabil-
ity. Ideally, each I/O process only needs to access a
file partition located on its associated local disk and
thus no disk contention will occur. Unfortunately,
for real applications, data sharing exists when multi-
ple processes access the same file space. We need an
effective method to recognize I/O access patterns in
order to effectively parallelize I/O streams.

Previous studies characterizing parallel I/O ac-
cesses have shown that I/O intensive parallel applica-
tions often access disks using a large number of non-
contiguous, small, data chunks [2, 13]. These I/O
characteristics prevent disk bandwidth to be fully
utilized and impact I/O performance. Access pat-
terns can be detected both statically (at compile
time) [3, 7, 12, 16] and dynamically (at runtime) [17].
In [7, 16], Paek et al. use Linear Memory Access
Descriptors to detect memory array access patterns
within loop nests. In our previous studies [1, 17],
we have used profile-directed optimization to improve
both memory and disk I/O accesses. In [17], we found
that disk I/O accesses exhibit very regular and highly
predictable patterns. In this paper, we present our re-
cent work on a static (i.e., compile time) approach to
performing data partitioning.

The rest of this paper is organized as follows. Sec-
tion 2 will describe our static I/O partitioning ap-
proach. Section 3 will describe the experimental en-
vironment that we are using to do this work. Section
4 will discuss four I/O intensive workloads and evalu-
ate how our compile-time driven approach can obtain
significant speedup. In section 5, we will summarize
this paper and talk about our future work.
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2 Compiler-directed Optimiza-
tion

2.1 Linear Disk Access Descriptor

Data intensive applications often access a very
large dataset (i.e., a multi-dimensional array) on disk.
When a large dataset is allocated on disk, it is log-
ically linearized and laid out in file space. Hence,
accessing the array on disk should be equivalent to
traversing a linear space. I/O access patterns can
characterized using three values (shown in Figure 1):

1. span

2. stride

3. size

The stride records the distance between two con-
tiguous data chunks; the span captures the total dis-
tance accessed by the program; the size denotes the
size of every contiguous data chunk.

A Linear Disk Access Descriptor con-
sists of these three values and is denoted as
LDAD(span, stride, size).

Figure 2 shows typical code implementing paral-
lel IO using MPI-IO [14]. In this example, multiple
processes perform interleaved writes to a shared file,
all within a loop. After MPI completes initialization
and the shared file is opened in the loop nest, each
process writes a small data chunk starting from an
address defined by a MPI function call. In this ex-
ample, the stride of each process is nprocs∗SIZE and
the span is computed as K ∗ nprocs ∗ SIZE, where
SIZE is the size of the contiguous data chunks.

Next, we define two different classes of LDADs.
An LDAD can be:

• an interleaved LDAD, if stride/size is equal with
number of processes (See Figure 3(a)), or

• an overlapped LDAD, if stride/size is less than
the number of processes(See Figure 3(b)).

An LDAD L1(span1,stride1,size1) is said to have
a finer granularity than LDAD L2(span2, stride2,
size2) if:

• L1 and L2 are interleaved LDADs;

• span1 = span2;

• stride1 < stride2 (see Figure 3(c)).

2.2 SUIF2 Compiler Infrastructure

In order to capture LDAD patterns exhibited
within an application, we perform data flow analysis
using the SUIF2 compiler infrastructure [5]. SUIF
is a compiler infrastructure designed to support re-
search and development of a range of compilation
techniques based on a program representation called
SUIF [5]. Many previous studies have used SUIF to
study loop transformation optimizations as well as
characterize data parallelism [9, 10]. In [10], Wolf
and Lam presented a loop-level transformation algo-
rithm to improve data locality within a loop nest.
In [9], Hall et al. proposed to automatically paral-
lelize and optimize sequential programs for shared-
memory multiprocessors using SUIF.

The goal of our data flow analysis is to predict val-
ues of LDADs statically i.e., at compile time). Vari-
ables can be classified into four categories based on
their charateristics:

• variables that are initialized early in the source
code (i.e., through static analysis) and never
modified;

• variables that are initialized at the beginning of
the dynamic execution and never modified;

• variables that are initialized and then modified
later, and it is possible to resolve these values
statically;

• variables whose values are impossible to detect
statically due to complicated control flow.

We are using the SUIF2 compiler to analyze val-
ues of LDADs. We input source code to SUIF2,
which performs front-end transformations and data
flow analysis, and outputs any predicted values of
LDADs.

2.3 Weighted I/O Control Flow
Graph

Data-intensive applications often access disk many
times during their execution. Every access may ex-
hibit a different access pattern over different execu-
tions. We capture file operations (reads and writes)
for every basic I/O code block, as well as the LDAD
access pattern. We then construct a weighted I/O
control flow graph for each dataset/file.

In a I/O control flow graph, every node denotes
a basic I/O code block, which is usually a loop nest
in the source code. The value on each node denotes
a read or write, capturing the particular file opera-
tion. The weighted directed edge between each pair
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Figure 1: Linear I/O access patterns.

…
MPI_Init( );
MPI_Comm_size(MPI_COMM_WORLD, &nprocs);
MPI_Comm_rank(MPI_COMM_WORLD, &mynod);
…
MPI_File_open( MPI_COMM_WORLD, “filename”,

MPI_MODE_RDWR, MPI_INFO_NULL, &fh);
…
…
For( i=0; i<K; i++) {

…
MPI_File_write_at( fh, i*nprocs*SIZE+mynod*SIZE, 

buff, SIZE, 
MPI_DOUBLE_PRECISION,

mstatus, ierr);
…

}

Figure 2: Typical parallel I/O code.
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Figure 3: Access patterns

of read and write nodes is labeled with the number
of times the dataset is read or written after it has
been written to, or read from, disk. From our profil-
ing study [17], I/O control flow patterns contained in
parallel scientific applications typically fall into one
of three categories shown in Figure 4:

• some applications first generate a large data file
and then read the data back a number of times
(Figure 4(a));

• some applications periodically write to and read
from disk (Figure 4(b));

• some applications read data from an input data
source and generate files dynamically during ex-
ecution (Figure 4(c)).

Although some applications may exhibit a hybrid
combination of these control flow patterns, we only
focus on these three I/O control flow graphs described
above.

After building the weighted I/O control flow graph,
we traverse each write-read pair in every graph to
find the access pattern which possesses the heaviest
weight. We then use this access pattern as a template
to guide source codes transformations. For example,
in Figure 4(a), access pattern LDAD1,2 has the heav-
iest weight, which means that LDAD1,2 is traversed
most frequently, and thus we need to modify the write

access pattern and the other two read access patterns
to LDAD1,2. In Figure 4(b), LDAD2,1 and LDAD
2,2 have the same weight and so we can choose either
of them as a template. However, in Figure 4(c), there
is no dominant write-read pair.

2.4 Source Level Transformation

To effectively guide I/O partitioning, our goal
is to allocate datasets across multiple disks in an at-
tempt to maximize data parallelism. Having deter-
mined an optimized access pattern using the I/O con-
trol flow graph, we partition local dataset of each pro-
cess onto its local disk and keep shared datasets resi-
dent on centralized disks. We substitute the original
file operations with our partitioned file operations,
which will localize file accesses to local disks.

The steps in our algorithm are shown in Figure 5.
We use the SUIF compiler infrastructure [5] to per-
form all dataflow anlysis and I/O control flow analysis
in order to generate the initial LDADs and optimized
LDADs, respectively. The optimization information
is used to guide I/O partitioning and source level
transformations. We then compare the runtimes of
the optimized code and the original source.
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Figure 4: Weighted I/O Control Flow Graphs

3 Experimental Environment

We have performed a set of experiments on a
Beowulf cluster with a centralized SCSI RAID device
and multiple local IDE disks, as shown in Figure 6.
The Beowulf Cluster used in this work has 32 nodes;
each node has a local 8.4 GB IDE disk and there are
shared SCSI RAID devices directly attached to four
of these nodes.

Table 1 provides detailed configuration informa-
tion about the Beowulf Cluster. In the results pre-
sented, all runs used standard nodes and one RAID-
connected node. The SMP node is not used in this
work.

Table 2 provides raw bandwidth rates for a local
access to an IDE disk, a non-local access to the SCSI
disk, and a local access to a SCSI disk. I/O rates are
measured for different chunk sizes. Non-local access
assumes that the I/O must communicate across the
100Mb switched ethernet network to transfer data,
as well as to read/write to the SCSI disk.

4 Experiments

4.1 Parallel I/O workloads

We study four parallel I/O-intensive workloads.
Some characteristics of these workloads is shown in

Table 3.

• The Perf benchmark is a parallel I/O test pro-
gram provided with the MPICH standard distri-
bution. The code is written in C. Every process
writes a 1 MB chunk at a location determined by
its rank, and then reads it back later. The chunk
size is user-defined. There is no overlap between
chunks. Two parallel I/O schemes are studied
with this benchmark: MPI I/O (provided in the
benchmark source) and partitioned I/O (our own
implementation).

• Mandelbrot is an image processing application
that generates a Mandelbrot image file. In
this benchmark, a Mandelbrot image data file
(256MB) is generated by multiple processes and
then read back for visualization. The code is
written in C. The code is computationally inten-
sive, I/O intensive, and visualization intensive.
The size of each contiguous file access depends
on the number of processes. Two parallel I/O
schemes are studied with this benchmark: MPI-
IO (provided in the benchmark source) and par-
titioned I/O (our own implementation).

• Jacobi is a file-based out-of-core jacobi applica-
tion from University of Georgia. In this program,
the initial out-of-core data is stored in a file. The
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Table 1: Hardware specifics of the Beowulf Cluster used in this work
Number of nodes 32 (27 standard nodes, 4 RAID device host nodes and 1 SMP node)
Processor Type Intel Pentium II 350 (standard nodes and RAID nodes)

Memory 256MB SDRAM, PC100, ECC (standard nodes and RAID nodes), 2GB (SMP nodes)
Disk adapters

IDE Onboard Intel PCI (PIIX4) dual ultra DMA/33
SCSI UltraWide SCSI

RAID device Morstor TF200 with 6-9GB Seagate SCSI disks, 7200rpm
RAID capacity 36GB usable, one hot spare

IDE disk IBM UltraATA, 8.4GB, 5400rpm
Parallel file system NFS 3

Network 10/100 Ethernet Cisco Catalyst 2924 Switch
NIC Intel 82558 10/100Mb

Table 2: Raw bandwidth rates in MBs per second for our Beowulf Cluster.
Disk/Operation 128 512 1K 2K 4K 32K 64K 128 512 1MB

IDE read 7.1 11.9 13.0 10.1 9.8 7.6 8.5 8.2 8.1 9.0
SCSI read non-local 0.4 1.1 2.1 3.9 5.6 7.0 7.5 10.7 9.9 8.9

SCSI read local 9.8 13.8 14.6 16.7 16.4 19.5 16.1 17.9 17.1 17.9
IDE write 2.6 3.2 3.7 4.6 4.5 4.1 4.1 4.4 4.9 4.1

SCSI write non-local 0.2 0.6 0.8 1.7 2.8 2.1 2.8 2.8 3.3 3.3
SCSI write local 4.6 8.2 9.9 12.5 11.6 12.9 11.2 10.0 11.3 12.1

Table 3: Parallel I/O workloads used in this work
Name Source Language Parallel I/O implementation
perf MPICH C MPI-IO

Mandelbrot Synthetic C MPI-IO
ooc-jacobi Univ. of Georgia C MPI-IO
ooc-FFT MPI-SIM C MPI-IO
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Figure 5: Procedure of Compiler-directed I/O partitioning.

code is written in C. The result of the jacobi iter-
ation is written to a second file. The size of each
file is 64 MB. The size of every contiguous data
chunk is a function of the number of processes.
Two parallel I/O schemes are studied with this
benchmark: MPI-IO and partitioned I/O.

• FFT is another file-based out-of-core application
from MPI-SIM. It performs a Fast Fourier Trans-
form on a disk-resident array of 1M complex
numbers. The size of each dataset depends on
the number of processes. The input file size is
8MB and two temporary files and the final re-
sult file are generately dynamically, each being
8MB in size. The code is written in C. We com-
pare the performance of MPI-IO and partitioned
I/O for cluster sizes of 4, 8 and 16 nodes. Since
the the number of nodes had to be a power of 2,
we were not able to configure a system with 32
nodes.

4.2 Experimental Results

Figure 7 shows the overall execution time for
the four file-IO oriented applications studies as run
on 24 nodes of our cluster. The runtime results have
shown that I/O throughput has been significantly im-
proved by compiler-directed partitioned I/O. Overall
execution time has been reduced by 81.2%, 27.8%,

87.1% 72.8% for perf, Mandelbrot, Jacobi and FFT,
respectively. We have achieved significant speedup
because that we have created multiple independent
data channels between CPUs and disks by providing
local access to local disk; we have reduced the net-
work contention to centralized disk devices; we have
also reduced disk seek time by improving spatial lo-
cality.

5 Summary and Future Work

To achieve high performance in file data domi-
nated applications, I/O streams must be parallelized
at both the application level and the disk level. Mul-
tiple disks should be employed to create multiple in-
dependent data channels between CPUs and under-
lying storage systems. In this paper, we have been
able to demonstrate how to perform source-to-source
code transformations, assigning I/O chunks to par-
titions in an attempt to produce parallel streams of
access. Experimental results show that we have re-
duced execution time by 28-87% for 4 I/O-dominated
applications.

For more complicated applications, it is not always
possible to detect file access patterns statically be-
cause of their intricate control flow. In past work, we
have been able to characterize complicated I/O ac-
cess patterns dynamically using a profile-guided ap-
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proach [17]. In our future work, we will focus on
using a more sophisticated data flow and I/O control
flow analysis to guide data partitioning, and we will
also study how better to use profiling information to
guide our compiler analysis to deliver high I/O per-
formance.
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