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Abstract—

Fault tolerance is one of the most important issues for par-
allel file systems. This paper presents the design, implemen-
tation and performance evaluation of a cost-effective, fault-
tolerant parallel virtual file system (CEFT-PVFS) that pro-
vides parallel I/O service without requiring any additional
hardware by utilizing existing commodity disks on cluster
nodes and incorporates fault tolerance in the form of disk
mirroring. While mirroring is a straightforward idea, we
have implemented this open source system and conducted
extensive experiments to evaluate the feasibility, efficiency
and scalability of this fault tolerant approach on one of the
current largest clusters, where the issues of data consistency
and recovery are also investigated. Four mirroring protocols
are proposed, reflecting whether the fault-tolerant opera-
tions are client driven or server driven; synchronous or asyn-
chronous. Their relative merits are assessed by comparing
their write performances, measured in the real systems, and
their reliability and availability measures, obtained through
analytical modeling. The results indicate that, in cluster
environments, mirroring can improve the reliability by a
factor of over 40 (4000%) while sacrificing the peak write
performance by 33-58% when both systems are of identical
sizes (i.e., counting the 50% mirroring disks in the mirrored
system). In addition, protocols with higher peak write per-
formance are less reliable than those with lower peak write
performance, with the latter achieving a higher reliability
and availability at the expense of some write bandwidth. A
hybrid protocol is proposed to optimize this tradeoff.

Keywords—Fault-tolerance, reliability, availability, parallel
I/O, Markov process

I. Introduction

An attractive approach to alleviate the I/O bottleneck
in clusters is to utilize the commodity disks that already
exist as an integral part of each cluster node. Such disks
in a large cluster collectively form a terabyte-scale capac-
ity, which may satisfy the high I/O requirements of many
data-intensive scientific applications when provided with
efficient and reliable access. In fact, with the emergence
of high-bandwidth and low-latency networks, such as the
Myrinet and Gbps Ethernet, these independent storage de-
vices can be connected together to potentially deliver high-
performance and scalable storage.

Parallel file systems can in theory significantly improve
the performance of I/O operations in clusters. One ma-
jor concern of this approach is the fault-tolerance (or lack
thereof). Assume that the Mean Time To Failure (MTTF)
of a disk is three years and all the other components of a
cluster, such as network, memory, processors and software,
are fault-free, the MTTF in a parallel file system with 128
server nodes will be reduced to around nine days if the fail-

ure of storage nodes is independent. Moreover, the MTTF
will be further reduced when the failures of the other com-
ponents are considered. Similar to disk arrays [1], without
fault tolerance, these parallel file systems are too unreliable
to be useful.

In this paper, we incorporate fault-tolerance into paral-
lel file system by mirroring. More specifically, we present
our design, implementation and performance evaluation
of a RAID-10 style, cost-effective and fault-tolerant par-
allel virtual file system (CEFT-PVFS), an extension to
the PVFS [2]. The analytical modelling results based
on Markov process show that CEFT-PVFS can improve
the reliability of the PVFS by a factor of over 40 times
(4000%). While the mirroring scheme degrades the write
performance by doubling the data flow, four mirroring pro-
tocols are designed with different write access schemes to
achieve different tradeoffs between reliability gain and per-
formance degradation. The write bandwidths of these four
protocols are measured in a 128-node cluster while their
reliability is evaluated by a new analytical model devel-
oped in this paper. Finally, a hybrid mirroring protocol is
proposed to optimize the balance between the write per-
formance (bandwidth) and the reliability.

The rest of this paper is organized as follows. We first
discuss the related work in Section II. Then the design
and implementation of our CEFT-PVFS are presented in
detail in Section III. Section IV describes four different
mirroring protocols and Section V shows the write perfor-
mance of these protocols under a microbenchmark. In Sec-
tion VI, a Markov-chain model is constructed to analyze
the reliability and availability of these protocols. Finally,
Section VII presents our conclusions and describes possible
future work.

II. Related Work

The proposed system has roots in a number of dis-
tributed and parallel file systems. The following gives a
brief overview of this related work.

Swift [3] and Zebra [4] employ RAID-4/5 to improve re-
dundancy. Swift conducts file striping so that large files
benefit from the parallelism. Zebra aggregates client’s data
first and then does striping on log-structured file systems
to enhance small write performance. In both designs, the
parity is calculated by client nodes. In I/O-intensive appli-
cations, the calculation of parity potentially wastes impor-
tant computational resources on the client nodes, which are



also computation nodes in a cluster environment. In ad-
dition, both systems can tolerate the failure of any single
node. The failure of a second node causes them to cease
functioning.

PIOUS [5] employs a technique of data declustering to
exploit the combined file I/O and buffer cache capacities
of networked computing resources. It provides minor fault
tolerance with a transaction-based approach so that writes
can be guaranteed to either completely succeed or com-
pletely fail.

Petal [6], a block level distributed storage system, pro-
vides fault tolerance by using chained declustering [7].
Chained declustering is a mechanism that reduces the re-
liability of RAID-1 to trade for balancing the workload on
the remaining working nodes after the failure of one storage
node [8]. In Petal, the failure of either neighboring node of
a failed node will result in data loss, while only the failure of
its mirrored node can make the data unavailable in RAID-
1. In addition, Petal does not provide a file level interface
and the maximum bandwidth achieved is 43.1MB/s with 4
servers and 42 SCSI disks, which does not fully utilize the
disk bandwidth.

GPFS [9] is IBM’s parallel shared-disk file system for
clusters. The stripping among many disks that are con-
nected over a switching fabric, a dedicated storage network,
to the cluster nodes achieves high I/O performance. It uti-
lizes dual-attached RAID controllers and file level duplica-
tion to tolerate disk failures. While CEFT-PVFS requires
no additional hardware in a cluster, GPFS typically needs
fabric interconnections and RAID controllers.

PVFS [2][10] is an open source RAID-0 style parallel file
system for clusters. It partitions a file into stripe units and
distribute these stripes to disks in a round robin fashion.
PVFS consists of one metadata server and serveral data
servers. All data trafic of file content flows between clients
and data server nodes in parallel without going through
the metadata server. The fatal disadvantage of PVFS is
that it does not provide any fault-tolerance in its current
form. The failure of any single server node will render the
whole file system dysfunctional.

III. Implementation Overview

A. The Choice of Fault Tolerance Designs

There are several approaches to provide fault tolerance
in parallel file systems. One simple way is to strip data on
multiple RAIDs that are attached to different cluster nodes.
However, this approach provides moderate reliability since
it cannot tolerate the crash of any cluster nodes.

Another possible approach is to provide the redun-
dancy by computing the parity in the same way as RAID-
5. RAID-5 can tolerate any self-identifying device failure
while self-identification may not be available in a typical
cluster environment. In addition, a small RAID-5 write
involves four I/Os, two to pre-read the old data and parity
and two to write the new data and parity [11]. In a loosely
coupled system, such as clusters, the four I/Os cause a
large delay. Finally, in a distributed system, the parity
calculation should not be performed by any single node to

avoid severe performance bottleneck; instead, it should be
performed distributively. However, this distributed nature
complicates the concurrency control since multiple nodes
may need to read or update the shared parity blocks si-
multaneously.

Still another possible approach is to use erasure cod-
ing, such as Rabin’s Information Dispersal Algorithm
(IDA) [12] and Reed Soloman Coding [13], to disperse a
file into a set of pieces such that any sufficient subset al-
lows reconstruction. Consequently, this approach is usually
more space-efficient and reliable than RAID-5 and mirror-
ing. While the erasure coding is extensively used in P2P
systems [14], it not suitable for GB/s scale cluster file sys-
tems since the dispersal and reconstruction require matrix
multiplications and multiple disk accesses and generate a
potentially large computational and I/O overhead.

In CEFT-PVFS, we choose to use mirroring to improve
the reliability. As the storage capacity increases exponen-
tially, the storage cost decreases rapidly. By August 2003,
the average price of commodity IDE disks has dropped
below 0.5 US$/GB. Therefore, it makes perfect sense to
“trade” 50% storage space for performance and reliability.
Compared with the parity and erasure coding style parallel
systems, our approach adds the smallest operational over-
head and its recovery process and concurrency control are
much simpler. Another benefit from mirroring, which the
other redundancy approaches can not achieve, is that the
aggregate read performance can be doubled by doubling
the degree of parallelism, that is, reading data from two
mirroring groups simultaneously[15].

B. Design of CEFT-PVFS

CEFT-PVFS is a RAID-10 style parallel file system that
mirrors the striped data between two groups of server
nodes, one primary group and one backup group, as shown
in Figure 1. There is one metadata server in each group.
To make the synchronization simple, clients’ requests go to
the primary metadata server first. If the primary metadata
server fails, all metadata requests will be redirected to the
backup one. All following requests will directly go to the
backup metadata server until the primary one is recovered
and rejoins the system. For write requests, the data will
first be written to the primary group and then be dupli-
cated to the backup group. Four duplication (or mirroring)
protocols are designed and will be discussed in Section IV.

C. Metadata Management

CEFT-PVFS maintains two metadata structures, system
metadata and file metadata. The system metadata indi-
cates the dead or live status of the data servers. When one
data server is down, all I/O access will be redirected to its
mirror server. Currently, a data server is simply thought to
be down if the metadata server does not receive the periodic
“heartbeat” message from this data server within a certain
amount of time. The file metadata describes the striping
information, the data mirroring status and other conven-
tional file information, such as ownership, access mode, and
last access time, etc. Like UNIX file systems, the access au-
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Fig. 1. Basic diagram of CEFT-PVFS.

TABLE I

Sample Metadata in CEFT-PVFS

striping information
strip width 3
block size 65536 bytes
location 1, 2, 7
data duplication status
dstatus 3, 3, 3
others
uid 213
gid 501
mode rwx–r–r
size 786432 bytes
atime Wed Jan 22 09:00:10 2003
...

...

thorization is implemented by checking the ownership and
access mode. Table I gives a metadata example in CEFT-
PVFS with 8 data servers in either storage group.

The striping information is described by the stripe width,
the stride block size and the data location. The location, an
array of size stripe width, records the data server indices
on which the data is striped. In this example, the file is
striped across 3 data servers, i.e., Node 1, 2 and 7, with
a striping block size of 64KB. While the strip width is
given by clients, the values of location are assigned by the
metadata server to approximately balance the disk space
utilization on each data server.

The dstatus, an array of size stripe width, describes the
mirroring status between two groups of mirroring servers
that a file is striped on. More precisely, it is defined ac-
cording to the status of data blocks, shown as follows.

dstatus(i) =





1 if on location(i) of primary group;
2 if on location(i) of backup group;
3 if on location(i) of both groups;
0 if not on location(i) of both groups.

where 1 ≤ i ≤ stripe width.

D. Metadata Backup and the Naming Mechanism

Metadata server holds the most critical information
about striping and authorization. The failure of the meta-
data server will crash the whole storage system. Therefore,
the metadata server needs to be backed up to improve reli-
ability. However, the original PVFS can not achieve the
backup of the metadata server due to the limitation of
its naming mechanism for the striped files. In PVFS, the
striped data in a data server is sieved together and stored
as a file. In addition, the file name is chosen to be the inode
number of the metadata file to guarantee the uniqueness
of the file name in the data servers. This approach has
two main disadvantages. One is that the total number of
inodes on the metadata server is limited. When the file
number is large, we may run out of inode numbers. The
other, more significant disadvantage is that PVFS can not
backup the meta server theoretically because the data of a
new file will be falsely written into an existing file when the
primary metadata server is down and the backup metadata
server assigns the new file an inode number that has been
used by the primary metadata server.

In the design of CEFT-PVFS, we have changed the nam-
ing mechanism and instead used the MD5 sum [16] of the
requested file name as the data file name. In this way, the
metadata can be directly duplicated to any backup storage
device to provide redundancy.

The calculation of MD5 will not introduce significant
overhead in CEFT-PVFS. First, we only need to calcu-
late the MD5 of file names, which are typically 5-20 bytes.
While we measured that the MD5 program can calculate
with a speed of 200 MB/sec on a single node, the calcula-
tion of a file name usually takes only 25-100 ns. Second,
the MD5 calculation is not the bottleneck since it is per-
formed distributively by client nodes. Each client node cal-
culates the MD5 of its destination file name and sends the
result along with its I/O requests to the metadata server
so that the metadata server can directly extract it from the
requests.

E. Data Consistency

The I/O trace of scientific applications shows a frequent
pattern that multiple clients concurrently access the same
files [17]. In CEFT-PVFS, we employ an centralized byte-
range locking mechanism to support the multiple-reader
single-writer semantics. When the metadata server receives
a write request, it looks at the desired portion of the desti-
nation file and checks whether this portion has already been
locked by any other clients. If nobody locks this portion,
the metadata will issue an write-lock to the client to per-
mit the write access. Multiple read-locks can be issued to
different read-only requests as long as no conflicting write-
lock exists. Deadlock is avoided by using a two-phased
locking, in which all locking operations in a transaction
precede the first unlock operation [18]. To reduce the over-
head of locking, after the clients are granted the access,
they continue to hold this access grant for a short period
of time in a hope to save the negotiation with the meta-
data server for the immediate accesses of the same data.



This access grant is revoked by the metadata server be-
fore the short period expires if other clients are waiting.
The centralized management of locking certainly limits the
parallelism of I/O operations. However, as discussed in
Section V, the metadata server is not likely the bottleneck
under our measurements.

F. Data Recovery

After the reboot of a failed node, all the data on this node
should be recovered. The recovery process in CEFT-PVFS
is simple and fast since all the data after the checkpoint can
be directly read from its mirrored server without doing any
calculations. But consistency must be carefully enforced
to eliminate any discrepancy between the primary and the
backup caused by write requests from clients during the
duplication process. A simple recovery method is to lock
the primary server until the duplication has finished. How-
ever, this will make the I/O services unavailable for write
requests (but still available for read requests) during the
recovery. In the current implementation of CEFT-PVFS,
the recovery process is designed by using “copy-on-write”
on-line backup techniques [19]. The functional server will
record the destination file names of every I/O write request
that happens during the recovery period and put them in
a waiting list. After finishing the duplication of the data
after the checkpoint from the functional server to the re-
booted server, the functional server will duplicate the files
on the waiting list again to the rebooted server to eliminate
the possible inconsistency caused during the recovery. As
long as no files is in the waiting list, the recovery process
completes. On the functional server, the recovery process
holds a higher priority than I/O service process to guaran-
tee that the recovery will eventually finish.

IV. Duplication Protocols

Once a naming mechanism, metadata management, data
consistency and data recovery are in place to facilitate fault
tolerance, several different protocol possibilities exist for
detailed implementation. We have investigated four dis-
tinct protocols, which are detailed in this section.

A. Protocol 1: Asynchronous Server Duplication
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Fig. 2. The steps of duplication process for Protocol 1.

Figure 2 shows the steps of the duplication process.
First, the client fetches the striping information from the
metadata server (Step 1 & 2). Then it writes the data to

the primary servers simultaneously (Step 3). Once the pri-
mary server receives the data, it immediately sends back
an acknowledgment to inform the client of the completion
of the I/O process (Step 4). The duplication operation will
be performed by the primary servers in the background
(Step 5 & 6). After a backup server receives and stores the
data from its primary server, it will send a request to both
metadata servers to change the corresponding flag in the
dstatus array to indicate the completion of the duplication
operation. This duplication process can be considered as
asynchronous I/O. A potential problem with this protocol
is that the new data will be lost if the primary node fails
during the duplication operation.

B. Protocol 2: Synchronous Server Duplication
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Fig. 3. The steps of duplication process for Protocol 2.

Protocol 2 is shown in Figure 3. As in Protocol 1, the
duplication operation is performed by the primary servers.
The difference is that the primary servers postpone the
acknowledgment to the client until their corresponding
backup servers signal the completion of duplication. In
addition, the duplication process is pipelined on each data
server to speedup the write performance, i.e., as soon as a
block of striped data from any client arrives at the mem-
ory of the primary server, this data will be immediately
duplicated to the backup server without waiting for the
whole data from that client to reduce disk accesses. This
protocol can always guarantee that the data is duplicated
to both servers before the client finishes writing. However,
this guarantee, and thus an enhanced reliability, comes at
the expense of write performance, as to be analyzed and
discussed later in the paper.

C. Protocol 3: Asynchronous Client Duplication

In this protocol, the duplication task is assigned to the
client, as shown in Figure 4. After fetching, the client can
write to the primary and backup servers simultaneously.
The duplication process is regarded as successful after re-
ceiving at least one acknowledgment among each pair of
mirrored servers. Obviously, there is a potential problem if
the slower server in the pair fails before acknowledgment.
This problem is similar, but not identical to that in Proto-
col 1.

D. Protocol 4: Synchronous Client Duplication

Protocol 4 is similar to Protocol 3, but it will wait for the
acknowledgments from both the primary and the backup
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Fig. 4. The steps of duplication process for Protocols 3 and 4.

servers in each mirrored pair. This protocol can always
guarantee that the new data will be stored in both servers
of the pair before the completion of I/O access. Similar to
the trade-off between Protocols 1 and 2, there is an obvious
performance-reliability trade-off between Protocols 3 and
4.

E. Cache Effect

In these protocols, the file system caches on the servers
are fully utilized to improve the overall I/O performance.
Thus there is a possibility, however small, that data can
be lost when the disk or the server node crashes before
the cache data is written onto the disks. Nevertheless, if a
“hard” reliable storage system is required, we can poten-
tially use techniques such as forced disk writes in these four
duplication protocols. While the four protocols with forced
disk writes improve the reliability, the penalty on the I/O
performance are too heavy to make the forced disk writes
appealing. In addition, even if the forced disk writes are
used, these four duplication protocols still present different
performance and reliability.

V. Experimental Results on Write
Performances

A. Experimental Environments

The performance results presented here are measured on
the PrairieFire cluster [20] where CEFT-PVFS has been
implemented and installed, at the University of Nebraska-
Lincoln. At the time of our experiment, the cluster had 128
computational nodes, each with two AMD Athlon MP 1600
processors, 1GByte of RAM, a Myrinet card and a 20GB
IDE(ATA100) hard drive. Under the same network and
system environment as CEFT-PVFS, the ttcp [21] bench-
mark reports a TCP bandwidth of 112 MB/s using a 1KB
buffer with 46% CPU utilization. The disk write band-
width is 32 MB/s when writing 2GBs of data, according to
the Bonnie [22] benchmark.

B. Benchmark

A simple benchmark, similar to the one used in
Ref. [2][5][23][24], was used to measure the overall concur-
rent write performance of this parallel file system. Fig-
ure 5 gives a simplified MPI program of this benchmark.
The overall and raw write throughput are calculated. The

overall write throughput includes the overhead of contact-
ing the metadata server while the raw write throughput
does not include the open and close time and measures
the aggregate throughput of the data servers exclusively.
In both measurements, the completion time of the slowest
client is considered as the overall completion time. While
this benchmark may not reveal complete workload patterns
of real applications, it allows a detailed and fair compari-
son of the performance of PVFS and the four duplication
protocols.

for all clients:
synchronize with all clients using MPI barrier;
t1 = current time;
open a file;
synchronize with all clients using MPI barrier;
t2 = current time;
loop to write data;
t3 = current time;
close the file;
t4 = current time;
ct1 = t4 - t1; /* overall completion time */
ct2 = t3 - t2; /* raw completion time */
send ct1 and ct2 to client 0;

for client 0:
/* find the slowest client */
find maximum of ct1 and ct2 respectively;
calculate overall write throughput using maximum ct1;
calculate raw write throughput using maximum ct2;

Fig. 5. Pseudocode of the benchmark

The aggregate write performance is measured under
three server configurations, 8 data servers mirroring 8, 16
data servers mirroring 16, and 32 data servers mirroring 32,
respectively. With the metadata servers included, the total
numbers of servers in the three configurations become 18,
34 and 66. In the three sets of tests, each client node writes
a total amount of 16MB to the servers, i.e., it writes 2MB,
1MB and 0.5MB to each server node respectively, which are
the approximate amounts of data written by a node during
the checkpointing process of a real astrophysics code [25].
During the measurements, there were other computation
applications running on our cluster, which shared the node
resources, such as network, memory, processors and I/O de-
vices, with the CEFT-PVFS, and thus the aggregate write
performance was probably degraded. In order to reduce the
influence of these applications on the performance of these
protocols, many measurements were repeated at different
times and the average value is calculated after discarding
the 5 highest and 5 smallest measurements.

C. The Metadata Server Overhead

The overall and raw write throughput is measured in
CEFT-PVFS with a configuration of 8 data servers mir-
roring 8 under two access patterns: all clients concurrently
write different files and all clients concurrently write differ-
ent portions of the same file. Figure 6 and 7 plot the overall
and raw write performance of Protocol 2 as a function of
the number of client nodes, in which each measurement is
repeated 20 times. As the experiment indicates, the aggre-
gate write performance increases with the number of client
nodes and reaches its maximum values when the cache at



the data server side achieves best utilization. When the
client number continues to increase, the aggregate write
performance will decrease since on the data server side the
context-switching overhead among different I/O requests
increases while the benefit of cache decreases. The aggre-
gate throughput will eventually saturate the disk through-
put.

An important observation from these figures is that the
performance gap between overall and raw write through-
put does not increase significantly with the total number
of clients. This implies that the metadata server is most
likely not the performance bottleneck even when that client
number is 100, close to the total available client number of
128 in our cluster. Experimental results of the other three
protocols also show the same pattern of performance gap
between the overall and raw throughputs. This further val-
idates the claim made in [10][2] that the metadata server
only introduces insignificant performance degradation and
is not the performance bottleneck in a moderate-size clus-
ter.
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Fig. 6. Aggregate write performance when each client writes to a
different file using Synchronous Server Duplication with 8-mirroring-8
data servers (20 measurements, discarding 5 highest and 5 smallest).
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Fig. 7. Aggregate write performance when all clients write to the
same file using Synchronous Server Duplication with 8-mirroring-8
data servers (20 measurements, discarding 5 highest and 5 smallest).

D. Write Performances of the Four Duplication Protocols

The overall write performance of the four duplication
protocols and PVFS are measured in the three server con-
figurations using the benchmark and workload described
previously. Figures 8, 9 and 10 show their average perfor-
mances over 70 measurements, in which the 5 highest and
5 lowest are discarded. When there is only one client node,
Protocols 1, 2, and 3 perform almost identically, where the
bottleneck is likely to be the TCP/IP stack on the client
node. In contrast, Protocol 4 performs the worst since it
is at a double-disadvantage: first, the client node that is
already the bottleneck must perform twice as many writes;
second, it has to wait for the slowest server node to com-
plete the write process.
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Fig. 8. Write performance when 8 I/O data servers mirror another
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In Protocol 2, the write process from the clients to the
primary group and the duplication process from the pri-
mary group to the backup group are pipelined and thus
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the performance is only slightly inferior to that of Protocol
1 when the primary server is lightly loaded (e.g., with fewer
than 5 clients). As the workload on the primary server in-
creases, the performance of Protocol 2 lags further behind
that of Protocol 1.

When the number of client nodes is smaller than the
number of server nodes, Protocols 1 and 2 outperform Pro-
tocols 3 and 4, since more nodes are involved in the dupli-
cation process in the first two protocols than in the last
two. On the other hand, when the number of client nodes
approaches and surpasses the number of server nodes in
one group, the situation reverses itself so that Protocols 3
and 4 become superior to Protocols 1 and 2. To achieve a
high write bandwidth, we have designed a hybrid protocol,
in which Protocol 1 or 2 is preferred when the client node
number is smaller than the number of server nodes in one
group, and otherwise Protocol 3 or 4 is used. When the re-
liability is considered, this hybrid protocol can be further
modified to optimize the balance between reliability and
write bandwidth. This will be explained in detail later in
this paper.

Table II summarizes the average peak aggregate write
performance of the four protocols in the saturation region,
along with their performance relative ratio to the PVFS
with half the number of data servers and the same number
of data servers, respectively. The aggregate write perfor-
mance of Protocol 1 is nearly 30%, 28% and 25% better
than that of Protocol 2 under the three server configura-
tions, respectively, with an average improvement of 27.7%.
The performance of Protocol 3 is nearly 14%, 7% and 23%
better than that of Protocol 4, under the three configura-
tions respectively, with an average improvement of 14.7%.
While the workload on the primary and backup groups are
well balanced in Protocols 3 and 4 due to the duplication
symmetry initiated by the client nodes, in Protocol 1 and
2 the primary group bears twice the amount of workload
as the backup group because of the asymmetry in the du-
plication process. As a result, the peak performance of

Protocol 3 is better than that of Protocol 1, while Protocol
4 outperforms Protocol 2 consistently.

Compared with the PVFS with the same number of data
servers, the server driven protocols 1 and 2 improve the re-
liability at the expense of 46-58% write bandwidth and the
client driven protocols 3 and 4 cost around 33% and 41%
write bandwidth respectively. Compared with the PVFS
with half the number of data servers, as shown in Table II,
such cost is not only acceptable in most cases, but it is also
at times negligible or even negative, especially for Protocol
3. In Protocol 3, when the total number of clients is large
enough, the extra work of duplication at the client side
will not influence the aggregate write performance since the
data servers have already been heavily loaded and their I/O
bandwidth have been saturated. Furthermore, the applica-
tion running on a client node will consider its write opera-
tions completed as long as the client has received at least
one acknowledgment among each mirroring pair, although
some duplication work may still proceed, transparent to
the application. Since the data servers are not dedicated
and their CPU, disks, memory and network load are differ-
ent, Protocol 3 chooses the response time of the less heavily
loaded server in each mirroring pair and thus surpass the
PVFS with half the number of data servers.

VI. Reliability and Availability Analysis

In this section, a Markov-chain model is constructed to
analyze the reliability and availability of the four duplica-
tion protocols, and to compare their reliability with that
of the PVFS.

Markov models have been used to analyze the reliabil-
ity of RAID-1 in Ref. [26] [27] [28] [29] [30]. However,
none of these models distinguishes the primary disk fail-
ures from the backup disk failures, i.e., they assume that
all the data on a failure disk can be recovered from its mir-
ror disk. This assumption holds true in a tightly coupled
array of disks, such as RAID, because data on primary
and backup disks is always kept consistent with the help
of hardware. However, this assumption may not be true in
our loosely coupled distributed system, such as clusters, in
which the failure of a primary server and a backup server
have different implications. For example, in Protocol 1, if
a primary server fails before the completion of duplication,
the backup server will lose the data that has not been du-
plicated. But the system does not lose any data if only a
backup node fails. Therefore, in our system, the primary
and the backup server nodes are not symmetrical in terms
of their failure implications and the classic RAID model
can not be used. In addition to being able to reflect the
asymmetry, our model should be general enough so that
the reliability of all four protocols can be derived directly.
In the following sections, we take Protocol 1 as an exam-
ple to show how the Markov-chain model is developed and
how it can be applied to other protocols by appropriately
changing some relevant definitions.

To simplify the analysis, the following assumptions are
made:
1. In this model, we neglect the data loss caused by the



TABLE II

Average Peak Write Performance and Ratio to the Performances of PVFS with half nodes

Number of Data Servers in One Group
Protocol 8 16 32

MB/s % MB/s % MB/s %

1(Server Asynchronous Duplication) 492 87 796 86 1386 94
2(Server Synchronous Duplication) 391 68 660 71 1114 75
3(Client Asynchronous Duplication) 604 106 974 104 1501 101
4(Client Synchronous Duplication) 528 93 905 97 1218 82
5(PVFS with half # of nodes) 567 100 929 100 1482 100
6(PVFS with same # of nodes) 929 164 1482 160

TABLE III

Notation

N total number of nodes in one group
S total number of Markovian states
i, j index of Markovian states, 1 ≤ i, j ≤ S
m, n number of failed nodes, 0 ≤ m, n ≤ N
λ failure rate per node
λs failure rate of the network switch
λw arrival rate of write requests per server
µ repair rate per node
µd duplication rate

MTTFnode = 1
λ

mean time to failure per node

MTTFswitch = 1
λs

mean time to failure per switch

MTTW = 1
λw

mean time to write

MTTRnode = 1
µ

mean time to repair per node

MTTD = 1
µd

mean time to duplicate

MTTDL mean time to data loss
M Markovian fundamental matrix
Q = [qij ]S×S Markovian truncated matrix
Pc probability that a primary node is con-

sistent with its mirror node

P̂ (mPnB) probability of the system being still
functional when m primary nodes and
n backup nodes have failed(

n
k

)
= n!

(n−k)!k!
binomial coefficient

failure of nodes or disks that happens before the data in
the cache is written onto the disks since its size is relative
small. We understand that this assumption is somewhat
unrealistic and may make us overvalue the reliability.
2. Network and node failures are all independent and fol-
low an exponential distribution. This assumption might
not be realistic in some situations, such as power surges,
burst of I/O tasks, etc.
3. Write requests arrive at the primary server from the
clients following the Poisson process, with an exponentially
distributed inter-arrival time whose mean value is referred
to in this paper as the mean-time-to-write (MTTW ).
4. The duplication time is a random variable, following
an exponential distribution, whose value depends on the
data size, network traffic, workload on both the primary
server and the backup server, etc. Its mean time interval is
referred to as the mean-time-to-duplicate (MTTD) in this
paper.

Tab. III presents some basic notations, while others will
be introduced appropriately during the discussion.

A. Calculation of Pc

According to the given assumptions, we know that write
requests arrive in the duplication queue with an arrival rate
of λw and leave the queue with a duplication rate of µd.
For the system to be stable, it is implied that λw < µd,
otherwise the length of the duplication queue will grow to
infinity, causing the system to saturate. If the number of
requests in the queue is zero, we say that the data in the
primary node is consistent with the backup node. This
duplication queue can be modeled by an M/M/1 queuing
model [31][32]. In the model, the probability of the consis-
tent state, i.e., the probability of an empty queue, can be
calculated as follows:

Pc = 1− λw

µd

= 1− MTTD

MTTW
(1)

Although Pc is derived based on the duplication process
of Protocol 1, this term can also be used in other protocols.
In Protocol 2 and 4, all data has already been duplicated
to the mirror nodes at the time when the client nodes com-
plete the writing access. Thus MTTD can be thought to
be 0. In Protocol 3, at the time the client finishes the
writing process, there is still a chance that a primary node
is not consistent with the its backup node. Similarly, it
can also be modeled as M/M/1 theoretically if we redefine
MTTD as the difference between the time instants when
data is stored in the faster server and when data is stored
in the slower server node.

B. Markov-Chain Model for Reliability Evaluation

Figure 11 shows the Markov state diagram for Protocol
1, which can also be applied to the other protocols. In this
diagram, i : mPnB signifies that the state number/index
is i, and there are m and n failed nodes in the primary
and backup group, respectively. All the states shown are
working states, with the exception of DL, which is the data
loss state. The total number of states in the Markov state
diagram is denoted by S and is equal to (N +1)(N +2)/2.
The Markov chain begins with State 1 (1 : 0P0B), followed
by State 2(2 : 1P0B), and so on.

To facilitate the solution to this model, we derive a func-
tion, given in Eqn. 2, that maps from the system state with
m failed primary nodes and n failed backup nodes to the
state index i of the Markov state diagram:
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Fig. 11. Markov state diagram for Protocol 1.

i =
1
2
(m + n)(m + n + 1) + (n + 1) (2)

Similarly, the inverse mapping function is given in Eqn. 3
and 4.

n = i− 1− x(x + 1)
2

(3)

m = x− n (4)

where x =
⌈√

8i+1−3
2

⌉
.

µ)1( +m

µ)1( +n

cij PPmN λ)( −

ikPnN λ)( −

sikijc PnNPPmN λλλ +−−+−− )1()()1()(

���������	
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Fig. 12. The transition probability between different states.

Figure 12 shows the transition rate between the neigh-
boring states. In the diagram, Pij denotes the probabil-
ity that the system remains functional, also referred to
as safety probability, given that one more primary node
fails while m primary nodes and n backup nodes have
already failed. Similarly, Pik denotes the probability, or
safety probability, of the system remaining functional when
one more backup node fails while m primary nodes and n

backup nodes have already failed. Pij can be calculated as
Eqn. 5.

Pij = P̂ ((m + 1)PnB |mPnB)

=
P̂ ((m + 1)PnB ∩mPnB)

P (mPnB)

=
P̂ ((m + 1)PnB)

P (mPnB)
(5)

where P̂ is the safety probability when m nodes in the
primary group and n nodes in the backup group fail simul-
taneously. Eqn. 6 gives the calculation of P̂ .

P̂ (mPnB) =

{ ( N
m+n)2m+n

( 2N
m+n)

if m + n ≤ N ;

0 otherwise.
(6)

Similarly, we have

Pik =
P̂ (mP (n + 1)B)

P̂ (mPnB)
(7)

The transition probability from State i to the data loss
state, denoted as qi,DL, can be calculated as Eqn. 8.

qi,DL = loss caused by one more primary node failure
+ loss caused by one more backup node failure
+ loss caused by network switch failure

= (N −m)λ[(1− Pij) + Pij(1− Pc)]
+(N − n)λ(1− Pik) + λs

= (N −m)λ(1− PcPij)
+(N − n)λ(1− Pik) + λs (8)

The stochastic transitional probability matrix is defined
as Q = [qij ], where 1 ≤ i, j ≤ S and qij is the transition
probability from State i : miPniB to State j : mjPnjB.
In summary, qij can be calculated as follows.

If i < j, then

qij =





(N −mi)λPijPc if mj = mi + 1 and nj = ni;
(N −mi)λPij if mj = mi and nj = ni + 1;

0 otherwise.
(9)

If i > j, then

qij =





mjµ if mj = mi + 1 and nj = ni;
njµ if mj = mi and nj = ni + 1 ;

0 otherwise.
(10)

If i = j, then

qii = 1−
j≤S∑

i=1,j 6=i

qij − qi,DL (11)

If Pc = 1, i.e., the primary node and backup node are
always kept consistent, like in RAID-1, and a fault-free
network is assumed, the model shown in Figure 11 can
be simplified to the classic RAID-1 model [28], as shown
in Figure 13. This is proven by the fact that numerical
results generated by both models with the same set of input
parameters are identical.
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Fig. 13. Classic Markov state diagram of RAID-1.

C. Calculation of MTTDL

MTTDL can be obtained from the fundamental matrix
M , which is defined by the following equation [33].

M = [mij ] = [I −Q]−1 (12)

where mij represents the average amount of time in State j
before entering the data loss state, when the Markov chain
starts from State i.

The total amount of time expected before being absorbed
into the data loss state is equal to the total amount of time
it expects to make to all the non-absorbing states. Since
the system starts from State 1, where there are no node
failures, MTTDL is the sum of the average time spent on
all states j, (1 ≤ j ≤ S), i.e.,

MTTDL =
S∑

j=1

m1j (13)

When MTTD = 0 and MTTFswitch = ∞, our model
becomes the classic model for RAID-1. If MTTD = ∞
and MTTFswitch = ∞, it then becomes the classic model
for RAID-0. When using the same MTTF and MTTR to
calculate the MTTDL of RAID-0 and RAID-1 as Ref. [28],
our model shows identical results to those given in the
above references.

To further validate our model, Figure 14 shows the re-
lationship between MTTDL and MTTD under different
workload conditions in an CEFT-PVFS where there are 8
data server nodes in either group. The MTTDL in this
figure is calculated based on our model built above. This
figure indicates that the MTTDL decreases with an in-
crease in MTTD. With the same MTTD but increas-
ing MTTW , MTTDL increases. All of these performance
trends are intuitive and realistic.

D. Reliability Analysis

The numerical results, calculated according to the
Markov chain model, show the significant impact of the
mean-time-to-duplication on the whole system reliability,
measured in terms of mean-time-to-data-loss, under differ-
ent workload conditions. As the model indicates, the re-
liability of CEFT-PVFS depends on the write frequencies
of the client nodes. The more frequently the client nodes
write data into the storage nodes, the higher the probability
that the primary storage group remains inconsistent with
the backup group, thus giving rise to increased likelihood
of data loss due to the failure of some nodes in the storage
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Fig. 14. Influence of MTTD on MTTDL of 8 mirroring 8 data
servers under different workloads.(MTTF = 1 year, MTTFswitch =
3 years, MTTR = 2 days and MTTW = 5 minutes)

group. The write frequency, measured as mean-time-to-
write, is highly dependent on the applications running on
the client nodes.

To quantitatively compare the reliability of the four du-
plication protocols, we evaluate their reliability in the sce-
nario of a simple benchmark presented in Section V. Al-
though this simple benchmark does not reflect all appli-
cations that run on CEFT-PVFS, it gives a quantitative
and fair comparison of these duplication protocols. We
recorded the time instants of all the events on all server
and client nodes and stored them into the files so that
we could calculate the MTTW and MTTD of this sim-
ple benchmark. The MTTD of Protocol 1 can be directly
calculated from the trace files. The MTTD of Protocol 2
and 4 can be regarded as 0 since the data is consistent as
soon as the client node finishes the write process. To obtain
the MTTD of Protocol 3 is tricky because the duplication
process is performed by the client nodes. In Protocol 3, we
define MTTD as the mean time difference between the ar-
rivals of the acknowledgments from the primary node and
the backup node.

We assume that MTTF = 1 year, MTTFswitch =
3 years and MTTR = 2 days. In the simple benchmark,
MTTW = 1 minute. We calculate the MTTDL curve
as a function of the number of server nodes for the four
protocols under the three server configurations. Figure 15
compares the reliability between CEFT-PVFS and PVFS
and Compared with their MTTDL, on the average the four
duplication protocols improve the reliability of PVFS by a
factor of 41, 64 and 96 in the three server configurations,
respectively. In addition, Protocol 1 is 93%, 93% and 99%
of Protocol 2 and 4 under the three different server config-
urations, respectively, with an average degradation of 5%.
Protocol 3 is 96%, 94% and 99% of Protocol 2 and 4, with
an average degradation of 3.3%.

E. Availability Analysis

Availability is defined in this paper to be the fraction of
time when a system is operational. More precisely, it is
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Fig. 15. Reliability comparison of CEFT-PVFS and PVFS

defined as follows.

Availability =
MTTF

MTTF + MTTR
(14)

Figure 16 and Figure 17 give the availability comparisons
between the four duplication protocols and PVFS within
the same scenarios as the reliability analysis. While the
availability of PVFS is only 0.91, 0.85 and 0.73 in the
three server configurations, respectively, the availability of
CEFT-PVFS with four duplication protocols are all above
0.99. Similarly with the reliability comparisons, Protocol 2
and 4 achieve a better availability than Protocol 1 and 3.
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F. Optimization of the Tradeoffs

As the measurement and analytical results indicate, if
the number of client nodes is smaller than the number of
server nodes, server-driven protocols tend to have a higher
write performance than the client-driven protocols since
more nodes are involved in sharing the duplication work.
Between the server driven protocols, the synchronous one
is preferred because it has a higher reliability with only
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Fig. 17. Availability comparison of four duplication protocols

slightly lower bandwidth. On the contrary, if the total
number of the client nodes is greater than that of the
server nodes, the client-driven protocols are better than
their server-driven counterparts. Between the client-driven
protocols, the asynchronous client duplication is the most
favorable since it has the highest write performance and
the second best reliability. These observations lead us to
propose a hybrid protocol to optimize the tradeoff between
the reliability and bandwidth performances.

A scientific application is usually required to specify the
total number of parallel jobs or clients it needs before run-
ning in a cluster. In the hybrid duplication protocol, each
client compares the total server number in one storage
group with the total number of parallel clients of the cur-
rent application. If the server number exceeds the client
number, the synchronous server

duplication is used to mirror the data. Otherwise, the
asynchronous client duplication is preferred. In this way,
this hybrid protocol always tries to achieve a considerably
high write performance or reliability with little degradation
of the other.

VII. Conclusion and Future Work

In this paper, we demonstrate the feasibility and scalabil-
ity of building a considerably reliable storage system with
multi-terabyte capacity without any additional hardware
cost in a cluster while maintaining high I/O performance
to alleviate the I/O bottleneck for parallel applications.

Four different duplication protocols are designed to im-
plement the fault tolerance in the parallel file system. Our
experimental results and analytical analysis lead us to con-
clude that these protocols can improve the reliability over
the original PVFS 40 times while degrading the peak write
performance only around 33% in the best case, and around
58% in the worst case when compared with PVFS with the
same total number of servers. In addition, these duplica-
tion protocols strike different balances between reliability
and write performance. A protocol that has higher band-
width is most likely to be inferior in reliability. Between
the server-driven protocols, the asynchronous one achieves
a write performance that is 27.7% higher than the syn-



chronous one, which comes at the expense of an average
5% reliability degradation. Similarly, between the client-
driven protocols, the asynchronous one has a write per-
formance that is 14.7% higher than the synchronous one,
while paying a premium of an average 3.3% reduction in re-
liability. We also proposed a hybrid protocol that optimizes
the tradeoff between the reliability and write performance.
In this hybrid protocol, if the total number of jobs of a
data-intensive application is less than the server number
of one storage group, the synchronous server duplication
is used to mirror the data. Otherwise, the asynchronous
client duplication is preferred.

None of the proposed protocols employs high-cost but
more reliable techniques such as “forced writes” to the
disks, and thus can potentially lose data if a disk or node
fails while data is being copied from the I/O buffer (cache)
on the processor to the disk. We will further investigate
the tradeoff when considering “forced writes”.
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