Meta-data Snapshotting: A Simple Mechanism for
File System Consistency

Livio B Soareé, Orran Y Kriege?, and Dilma Da Silv5
§
Department of Computer Science, Universidade de Baulo, Brazil

i
IBM T.J. Watson Research Center, USA

Abstract—File system consistency frequently involves a choice adoption by commercial operating systems. The soft updates
between raw performance and integrity guarantees. A few technique has been incorporated into the 4.4BSD fast file
software-based solutions for this problem have appeared and system [4], and we have no knowledge of the incorporation

are currently being used on some commercial operating systems; £l tructured fil t ial f
these include log-structured file systems, journaling file systems, of log-structured hie systems on any commercial operating

and soft updates. In this paper, we proposeneta-data snapshotting System. The implementation complexity imposed by these
as a low-cost, scalable, and simple mechanism that provides filemechanisms is a disadvantage that may inhibit their adoption
system integrity. It allows the safe use of write-back caching and inclusion in commercial file systems. Even though there
by making successive shapshots of the meta-data using COpYy-0Nis evidence [5] that the soft updates approach can achieve

write, and atomically committing the snapshot to stable storage bett f dh t inteqrit t th
without interrupting file system availability. In the presence of etier periormance and has stronger integrity guarantees than

system failures, no file system checker or any other operation journaling file systems, the industry so far has adopted the
is necessary to mount the file system, therefore it greatly latter.

improves system availability. This paper describes meta-data |n this paper, we presemheta-data snapshotting a new,
shapshotting, and its incorporation into a file system available efficient, scalable and simple solution to the meta-data consis-

for the Linux and K42 operating systems. We show that meta- t bl This techni basicall ists of intai
data snapshotting has low overhead: for a microbenchmark, and ency probiem. This technique basically consists of maintain-

two macrobenchmarks, the measured overhead is of at most 4%, iNg & “snapshot” of a consistent state of the file system’s meta-
when compared to a completely asynchronous file system, with data. The snapshot is kept intact during subsequent file system
no consistency guarantees. Our experiments also show that it gperations by writing meta-data to new locations on stable
induces less overhead then a write-ahead journaling file system, storage, using copy-on-write. The new data comprises a new

gggté%sngrzt?gﬁghggﬁf when the number of clients and file generation of the file system. When all changed meta-data has

Furthermore, this new technique can be easily extended to Peen propagated to storage, the new generation becomes the
provide file system snapshotting (versioning) and transaction current consistent snapshot of the system. This approach was

support for a collection of selected files or directories. conceived and prototyped in the Hurricane [6] File System [7],
Index Terms— Operating Systems, File Systems, Consistency, [8], [9] to provide recoverability in a new operating system
Availability environment where failures were very frequent. Our current

research extends this initial work to take into consideration
performance and it generalizes the basic approach to achieve
i : file system versioning and transaction support (for example,
ILE system consistency, in the presence of System CI 5iqwing several generations to be simultaneously active).
shes, has always been a strong concern in the operatingyen the system needs or desires to make the current file
system community. Availability, integrity, and performancey gt state persistent, it forces a consistent collection of dirty
are commonly the main requirements associated with filgaia_ qata buffers out (to new locations), finally writing back a
system cor}sustency. Consistency n file sygtems is achie file system superblock for this new snapshot. If the system
by performing changes to the on-disk version of meta-dgi@,spes pefore the superblock is committed to stable storage,
in a consistent manner. That is, when a system crash oCCWs, ¢ ;rrent on-disk version of the meta-data is still consistent,
the on-disk version of the meta-data should contain enougg the “snapshotted” version has not been altered. In fact,
information to permit the production of a coherent state of ”}ﬁeta-data snapshotting is similar to tsieadow-pagind10],

file system. Lll technique designed for recovery in database systems.
In recent years, several novel software-based approache eta-data snapshotting allows the use of write-back

for solving the meta-data update problem have been studiegh,i, guaranteeing that there is always a consistent version
and implemented. One of these approaches in particulgh giape storage, so that in the presence of a system failure,
journaling [1], has been implemented and is in use in a Wige fjje system can become available instantaneously. There is
range of server platforms today. Other approaches, such as log+eeq for a file system checker, or any other pre-processing
structured file systems [2] and soft updates [3] have had Ifbc‘éfore recovery. Our experiments indicate that availability

This research is partially supported by CNPg (Conselho Nacional éﬁéith meta—dqta snapshotting can .be aghieved at little cost,
Desenvolvimento Cientfico e Tecnolgico), through grant 132845 at most 4% in meta-data update intensive workloads, when

I. INTRODUCTION

compared to a completely asynchronous file system, with noSoftware based solutions that have been previously pro-
consistency guarantees. Additionally, in the same workloaggsed for achieving file system consistency in the presence
meta-data snapshotting can improve performance up to 108¥%crashes fit into two strategies. The first strategy is to try to
when compared to a write-ahead journaling file system. guarantee atomicity by performing write-ahead logging. If the
Meta-data snapshotting is being designed for use in the Kdgstem crashes, it has enough information on the stable storage
File System (KFS) [12], which has been strongly influencei recover the meta-data into a consistent state. Journaling and
by the Hurricane File System [9]. KFS is available for théog-structured file systems are based on this approach and they
K42! [13] and Linux [14] operating systems. KFS, as otheare described on sections II-A and II-B.
components of K42, uses a building-block approach [15], [9], The second strategy is to determine a strict ordering of
which permits a high degree of customization for applicationgpdates to the stable storage, so that, even though the image
Several service implementations (alternative structuring afd the stable storage is not correct at all times, it is consistent
policies) are available in KFS. Each element (file, directorgnd recoverable. Historically, systems such as FSF[4] have
or open file instance) in the system can be serviced by the imét this requirement by synchronously writing each block of
plementation that best fits its requirements; if the requiremerggta-data, thereby hindering file system performance softe
change, the component representing the element in KFS caripdatesapproach (described below in Section II-C) guarantees
replaced accordingly. Parallel applications can achieve betteat blocks are written to disk in their required order without
performance by using the services that match their accetssng synchronous 1/O.
patterns and synchronization requirements. .]
The remainder of this paper is organized as follows. Sef: Journaling File Systems
tion Il further describes the meta-data consistency problem andlany modern file systems use thmurnaling (also
discusses previous solutions. Section Il describes the metalled logging) approach to keep meta-data consistent (e.g.,
data snapshotting technigue, and the implementation detailsG&fdarFS[1], Episode[16], JFS[17], XFS[18], reiserFS[19],
a prototype incorporated into KFS. An experimental evaluati&xt3[20], VERITAS[21], NTFS[22], BFS[23]). Some systems
is presented in Section V. A couple of extensions to meta-dgtarform data and meta-data logging, but in general the idea is
snapshotting are discussed in Section V. Finally, we conclutiekeep an auxiliary log that records all meta-data operations.
summarizing the article’s contribution in Section VI. The log is written sequentially, in large chunks at a time, in
such a way to guarantee that the log is written to disk before
any page containing modified data, i.e., the file system must
never perform an in-place update until the meta-data is written
File system operations, such as file creation, file truncatioit to the log. If the system crashes, the file system recovers
file renaming, etc., frequently manipulate and alter differeRty replaying the log, using its information to update the disk.
meta-data. These meta-data can be, and usually are, locatethe on-disk structure of the file system can be left undis-
on distinct blocks of the stable storage. For this reason, fflérbed. The log is accessed read-only during crash recovery
system operations which alter more than one block of mef@d sometimes for log space reclamation; operations that
data are non-atomic operations. Furthermore, for performartdedate the meta-data use the log in append-only mode. The
reasons, file systems commonly manipulate their meta-d&tgta-data log typically records changes to inodes, directory
on fast and volatile storage (memory) and the propagation ®Jpcks, and indirect blocks. Information regarding the su-
these changes to the stable storage is done asynchronoBgKplock and disk allocation maps can be either stored in the
(i.e., write-through caching). log or reconstructed during crash recovery. The log entries
The lack of atomicity in updating a determined set of met&an either store both the old and the value of the meta-data
data is what leads to file system corruption or inconsistendfllowing redo-undo operations) or only the new value (redo-
For example, when renaming a file, the file system must p&dly). Changes made by operations that modify multiple meta-
form two sub-operations: remove the directory entry pointi:gata objects (e.g., rename of files, creation or removal of
to the inode, and create a new directory entry that poirfi§€ctories) are collected in a single log entry.
to the same inode. If the system crashes while updating the' "€ 10g may reside either inside the file system itself or
blocks which have been altered in these two sub-operatiof§térnally as an independent object. Seltzer et al.[5] discuss
independently of the order in which they are performed, the fil@'Plementation issues and performance tradeoffs between the
system will be inconsistent. If the directory entry removal i§¥0 approaches. o o
done first, then the file system will have lost the inode, becausdRECOVery activity requires identifying the beginning and end
there are no entries pointing to that inode anymore. On tRk the 109, since it wraps around continuously. The recovery
other hand, if the new directory entry creation is performdime is proportional to the active size of the log at the time of
first, it will end up with two entries pointing to the same inodeth€ crash. o .
While the latter case is certainly preferred against the first, asvahalia et al.[24] and Seltzer et al.[5] provide insights into

it does not incur in losing information, it is still not the resulth® performance issues involved in journaling file systems.
expected from the operation. Journaling systems always perform additional 1/O to write the

log, but it is also meant to reduce the number of in-place meta-

1K42 is a research operating system being developed for 64-bit cacﬁ@ta writes by deferring them. In addition, the log itself may
coherent multiprocessors, designed to scale to hundreds of processors. become a performance bottleneck.

II. THE META-DATA CONSISTENCYPROBLEM

B. Log-structured File Systems Updates code to review the list of dependencies. If there are

Log-structured file systems (LFS) explore the journalingny blocks that have to be written befofg then the parts:
approach further by making the log itself the file system. ff B relating to these blocks are _replaced_ with an earlier
uses a sequential, append-only log as its only on-disk structYg&sion (where no dependency exist#), which has been
containing both data and meta-data. The fundamental idedQi€d backto a state that does not depend on any cached meta-
to improve write performance by buffering a sequence of figata npt propagated to storage, is then written to disk. After
system changes in the file cache and writing all the chand8§ Write has completed, the system updates the dependency
to disk sequentially in a single large disk write operatiowformat'on’ and it restores any rolled back values to the_lr
(typically a full disk track), eliminating the need for rotationafurrent value. Applications always see the most recent copies
interleaving. When writing each segment of the log, blockdf the meta-data blocks and the disk always see copies that
are carefully ordered. Since the log is append-only, ea8ff consistent with its other contents.

write operation flushes all the dirty data from the cache, The dependency information covers the main changes that
which means the log contains all the information requiregquire meta-data update ordering: block allocation and deal-
for a complete recovery. Implementations of this approach ggation, link addition and removal. To maintain the depen-
Sprite LFS [2] (the original implementation, developed for thgency information, a natural solution would be to keep a
Sprite network operating system) and BSD-LFS[25] . dynamically managed graph of dependency at the block level.
To service file SyStem read requirements, an efficient W@Ut meta-data blocks usua”y contain many pointers (e_g_,
of retrieving information from the log is necessary. Traditiongj|gck pointers and directory entries), leading to many cyclic
file system implementations associate each inode with a fixgependencies between blocks. Also, blocks could consistently
location on disk. In the LFS approach the inodes are writtéyve dependencies and never be written to storage. Like false
to disk as part of the log, therefore they do not reside in fixegharing in multiprocessor caches, the problem is related to the
positions. A data structure callédode mapis used to keep granularity of the dependency information. With Soft Updates,
track of the current location of each inode. This mapping iependency information is maintained per field or pointer.
kept at memory and written to the log at periodic checkpointefore” and “after” versions are kept for each individual

A high degree of reliability is achieved with LFS becausgpdate together with a list of updates on which it depends.
all components of an operation (data blocks, attributes, index

blocks, directories) are propagated to stable storage through 2°ft Updates rollback operations may cause more writes
single atomic write. If it is not possible to write all the relatedn@n would be minimally required if integrity were ignored,
meta-data in a single disk transfer, it is necessary to LFS Rgcause blocks with dependencies become dirty again imme-
maintain log segment usage information in such a mannerd@tely after writing (when rolibacks are undone). If no other
guarantee that it can recover the file system to a consist§Hnges are made to the block before it is again written to
state. Sprite LFS applied a logging approach to the probléﬁ? disk, then there is an extra vynte operation. To minimize
by adding small log entries to the beginning of a log segmefile frequency of such extra writes, the cache reclamation
and BSD LFS used a transaction-like interface. algorithms and the syncer task attempt to write dirty blocks
Crash recovery locates the latest checkpoint, reinitializ8an order that minimizes the number of rollbacks.

the in-memory inode map and segment usage table. Then iff 3 Soft Updates system crashes, the only inconsistencies
replays the part of the log following the checkpoint. The worlhat can appear on the disk are unused blocks/inodes that
is prOpOftional to the amount of file SyStem aCtiVity since thﬁ]ay not appear in the free space data structures and inode
last checkpoint. link counts that may exceed the actual number of associated
The most difficult design issue for log-structured file sysjirectory entries. Both situations can be easily fixed by running

tems is the management of free space in the log. The goahifile system check utility on the background, so the file system
to maintain large free extents for writing the new data. Thigan be immediately reusable after a crash.

requires a garbage collection scheme to collect data from one

segment and move it to a new location, making the original Ganger et al. report in [27] encouraging performance
segment reusable. numbers. For workloads that frequently perform updates on

Rosenblum at al reports in [2] that LFS can use 70% Speta-data (such as creating and deleting files), Soft Updates

the disk bandwidth for writing, whereas Unix file system&TProves performance by more than a factor of 2 and up to a

typically can use only 5-10%. Seltzer et al. report in [Zsf,actor of 20 when compared to the conventional synchronous

[26] that BSD-FFS is clearly superior than the traditional FF4it€ approach and by 4-19% when compared to an aggressive

implementation or Sun-FFS in meta-data-intensive tests, tffite-ahead logging approach. In addition, Soft Updates can
Sun-FFS was faster in most I/O-intensive benchmarks. IMProve recovery time in more than two orders of magnitude.
Seltzer et al.[5] compares the behavior of Soft Updates to

journaling. Their asynchronous journaling and Soft Updates

C. Soft Updates systems perform comparably in most cases. While Soft Up-
Soft Updates[27], [28] uses write-back caching for metatates excels in some meta-data intensive microbenchmarks,
data and maintains explicit dependency information that spdor three macrobenchmarks Soft Updates and journaling are

ifies the order in which data must be written to the disk. Whezomparable. In a file intensive news workload, journaling
the system selects a blodk to be written, it allows the Soft prevails, and in a small ISP workload, Soft Updates prevails.

I1l. M ETA-DATA SNAPSHOTTING a copy of that block, and working with the new copy.

This section describes the meta-data snapshotting mech- |f Some meta-data point to the altered block, they also
anism. It gives an overview description of the technique, Need to be altered to reflect that the block has now a new
while also describing relevant implementation issues of meta- ~ l0cation, so a new copy of that meta-data is also made.
data snapshotting in KFS. Then, it goes on to discuss some Thls should .happen |terat|vely_unt|I the superblock itself
relevant design issues, and the solutions we have adopted in S updated (if the newest version of the superblock does

our implementation. not belong to the new generation, a new copy of the
superblock is also created and its generation version
. . updated).
A. Mechanism OverV|e\rv _ _ o 2) When all meta-data blocks in the old generation have
Meta-data snapshotting is a mechanism that efficiently peen written out to disk, the generation’s superblock is
maintains the on-disk version of meta-data consistnall finally written out. Writing out the superblock is what

times, while aIIowing the use of write-back Caching. It does actua”y commits (persists) the generation; overwriting
not impose any ordering on the propagation of changed the previous superblock makes previous generations
metadata to the server or any restriction on cached meta-data jnaccessible.
availability to applications. When performing copy-on-write of meta-data blocks, it is
The main problem in maintaining consistent meta-data stafgportant to free previous resources from the inode maps and
is to commit completed operations to stable storage atomicafyae/allocated block bitmaps. For example, if a meta-data block
To achieve this, the snapshotting mechanism, instead of altgizated at a certain positignneeds to be copied for alteration,
ing current meta-data on the stable storage, copies new @nfew positiong is allocated, and the previous positipnis
altered meta-data to new locations on the stable storage, tfdad. This prevents the leakage of resources which are not in
preserving the old meta-data intact. This new version of thge in the current in-core generation. However, this introduces
meta-data is called generationof the meta-data. The newg special case in which a generation may interfere with the
generation is committed to disk by updating the superblock @ta of another generation. It occurs when reutilizing meta-
the correct moment. Section IlI-E further describes the procesggta blocks which were freed in an in-memory generation.
of committing a generation to stable storage and how it is doffsta-data blocks freed in a previous generation can not be
atomically. reused until that generation’s superblock is written out (i.e.,
In essence, a snapshot of the on-disk version of the fi@ the files that referred to those blocks are now gone from
system meta-data is created whenever the user, operaifjg disk image). If freed meta-data blocks are used before
system or file system wants or needs to commit the file systepa generation that freed them has been committed (and
state. For subsequent file system operations which alter mqt@srefore written out to stable storage), meta-data which is
data, a copy-on-write technique is used. The blocks pertainigg)| valid on the committed version of the stable storage may
to the saved snapshot will not be overwritten until the nexe gverwritten.
shapshot is committed. An example of the execution of meta-A solution to this problem is to have the superblock only
data snapshotting when a file system operation alters an ingfligke freed meta-data locations available for allocation, after
is illustrated in Figure 1. the generation in which the freed occurred is committed to
Observe, however, that for this mechanism to work usingsk. This guarantees that future generations will not try to
copy-on-write, a level of indirection is required to accesgverwrite previous generation’s valuable meta-data.
physical meta-data block numbers; the only blocks with fixed |n KFS, we currently adopt another solution to this problem.
locations are the ones which belong to the superblock. Whilge refrain the file system from submitting dirty buffers to
it is common in various file systems to contain that level afO from newer generations until the previous generation is
indirection inside inodes, for example, several file systengdmpletely committed. With this policy, no valuable meta-
maintain fixed positions for inode and free-block bitmapgata from an older generation will be overwritten, because
(such as the BSD Fast File System [4], and Linux SecoRgtites from newer, in-memory generations will wait until the
Extended File System [29]). This level of indirection alreadgider generation is completely committed to stable storage.
exists in KFS to allow each file to be composed of differemturthermore, not submitting dirty buffers to I/O from newer
sets of building-blocks. Furthermore, changing the physicgénerations ensures that the operating system, when reclaiming
layout of a file system to remove static positions of physicahemory, will choose to write out buffers from the oldest
structures to dynamic assignments is not a daunting task. generation, speeding up that generation’s commit proccess,
With meta-data snapshotting, to commit a set of dirty metand shortening the overall meta-data vulnerability window.
data blocks, the file system must perform two steps: In a file system with meta-data snapshotting, if a crash
1) To prevent the file system from being unavailable whileccurs at any time, the file system will have a consistent image:
a snapshot is being flushed to stable storage, a new If the up-to-date version of the superblock has not been
generation of in-memory meta-data is created (i.e., written to disk, we lose the very recent modifications
prohibiting changes to both the currently committed to the file system,but the file system is consistent.
version of on-disk meta-data and blocks from current This is because all of the “new” generations (which
generations being flushed). Changes to meta-data blocks were on volatile storage, and therefore lost in the crash),
belonging to an older generation are done by creating had written altered meta-data blocks on other locations,

1) SuperBlock 2) SuperBlock

Bitmap \ Record Map Bitmap Record Map
LSOBasic X LSOBasic Y LSOBasic X LSOBasicY
3) SuperBlock 4) SuperBlock

Bitmap \ Record Map Bitmap Record Map

LSOBasic X LSOBasic Y LS0Basic X LSOBasic Y

Fig. 1. Basic snapshotting example: white rectangles represent a clean meta-data object (i.e., residing on a clean buffer page), while gray rectangles represen
dirty objects, which need to be committed tmew locationon stable storage when propagated to storage.RémrdMapobject is responsible for inode

mapping. LSOBasic X and LSOBasic Y are objects representing meta-data for inodes X and Y, respectively. Diagram (1) illustrates an initial setup for the
file system. (2) shows the result of a file system operation on an inode Y that requires allocation or release of blockapperdas truncate. Note that

besides the change to LSOBasic Y, the global BitMap is also altered. (3) shows the propagation of meta-data snapshotting: a new location is allocated for the
LSOBasic Y, so the Record Map has to change its internal data to reflect this change. Finally, (4) shows the end result of the changes, when the SuperBlock
forks to point to the altered versions of the BitMap and the Record Map. Note that the original file system tree (in wihite)aegedat all times, as the

gray tree (comprising only modified meta-data) is being formed to represent a new generation. Also, it is possible to have several generations active at the
same time, each with its partial set of copy-on-write blocks being propagated to the disk.

not on the current ones. Since the old version of theach generation is representing only an individual file system

superblock is pointing to the old locations, nothing gabperation.

corrupted/inconsistent. A central point of meta-data snapshotting is deciding when
« If the up-to-date version of the superblock did get out tto spawn a new generation. On the one hand, delaying the

disk, then all other blocks pertaining to that generatiotreation of a new generation is good for performance; there

had already gone to disk, and the file system is certainly no need to create new copies of altered meta-data blocks,

consistent, and contains all recent modifications. therefore no extra memory pressure is made on the system. But
on the other hand, delaying the creation of new generations
B. Spawning generations has a bad side-effect, namely, the window of vulnerability for

The meta-data snapshotting mechanism revolves around fi& operations increases.
concept of generations. A generation is, in fact, a collection of Given this dichotomy, the following events should trigger
file system operations (or transactions), each of which need$hg spawning of a new generation:
be committed atomically. In theory, at any given moment in « The number of dirty meta-data buffers hits a certain limit.
time, the file system could have any number of in-memory Fixing a maximum number of dirty meta-data buffers
generations; it would be possible to adjust the file system prevents starvation for the superblock, and consequently,
with meta-data snapshotting to an extreme scenario where for the generation per se, when a large number of

operations are issued in a short period of time. If thand the directory entry creation in the next, the file system will
file system is receiving a higher rate of operations whighossibly end up with an inaccessible inode (lost resource), if
affect meta-data than the stable storage can write out, the next generation does not have a chance to commit to stable
number of dirty meta-data buffers will only increase. Irstorage. On the other hand, if the directory entry is created
effect, the superblock would have to wait indefinitely, anfirst, the file system might contain a directory entry pointing
would not be able to commit itself to the stable storagéo an invalid inode.

« The superblock has not been written out for some time One way of guaranteeing that operations are completed
(a few minutes, for example). Creating a new generatianside a single operation is to spawn new generations when
after a fixed amount of time, in a scenario where a smdlie file systems reaches a quiescent state. But, as previously
amount of operations is being generated, prevents ttiscussed, this could cause the generation to starve. A syn-
window of vulnerability for new data from becomingchronization barrier issued when spawning a new generation
greater than desired. Additionally, it provides apper- could enforce the quiescing of the file system. This barrier
boundon the amount of time a certain generation can livwould wait for all ongoing operations to finish, and block
without being committed to stable storage. Depending axew operations until the superblodkrk is completed. This
the consistency guarantees that are expected or demarnstgldtion, however, would render meta-data snapshotting im-
from the file systems, the upper-bound can be adjustpthctical. Its performance would be closely based on the speed
accordingly. of the stable storage, and would, in practice, perform as slow
Note, however, that since meta-data snapshotting daessynchronous, write-through file systems.
not issue dirty meta-data buffers to stable storage syn-The solution adopted in KFS is to make every file system
chronously, the upper-bound is not only this predefinegperation receive a reference to the current context, which,
fixed amount of time; it is augmented by the time iamong other things, includes a reference to the superblock.
takes for the operating system to actually write out ol@he context is then passed on to every sub-operation so that the
dirty buffers. In the Linux kernel, for example, a kernekntire operation belongs to the same generation and operates
thread kupdatein the 2.4 version) wakes up every 30using the correct version of the superblock, inode maps, free
seconds, and starts sweeping the queue for dirty buffeldock bitmaps, etc.
sending the buffers to I/O. The time actually necessary In summary, the following steps are executed, in this order,
for a particular buffer to go to disk, depends on the lengththen spawning a generation:
of the queue, and the disk speed. 1) The current superblock i®rked and a new version is

A sync() system call is issued to the file system. The
reason for creating a new generation for fyac system

call is straightforward; the system must commit its current
in-memory version to disk. Therefore, a new generation
is created, and the previous is synchronously committed
to disk. The call can only return to the user after the
snapshot is completely on the stable storage.

A fsync() system call is issued. ThHesync() system call
should return to the user only after file data and meta-
data have been propagated to storage. A new generation
is necessary fofsync() because there is no way of com-
mitting only a particular file, without having to commit

all of the transactions of the same generation. This is true
due to the fact that specific data about the transactions
(which files, directories, and blocks participated in each
transaction) are not kept. A problem with this approach is 3)
that it might be unreasonable to make an application wait
for the whole generation to be committed. An alternative
solution is to extend the snapshot mechanism to use
logging specifically for this case.

2)

One important issue with spawning generations is that of

created. The negeneration versioof the superblock is
incremented, and the global context is updated to point
to this new version. This is done at the very beginning
of the spawning process, so that subsequent file system
operations are serviced by the new superblock, and the
old generation has a chance to be committed.

Transfer any in-memory meta-data to their respective 1/0O
buffers, and dirty those buffers, so that the operating sys-
tem starts writing them out to stable storage. Operati