
Data Consistent Up- and Downstreaming in a
Distributed Storage System

Peter Sobe
University of Lübeck, Germany

Institute of Computer Engineering
e-mail: sobe@iti.uni-luebeck.de

Abstract— Distribution of large data objects among several stor-
age servers is a common technique to speed up access rates. In
combination with parity schemes, failures of single server nodes
can be tolerated, so that such systems reach a certain degree of
fault tolerance. In this paper such a distributed server system
is analyzed. Data objects are stored in a data layout according
to RAID level 3 among disk subsystems of different computers.
An access control provides concurrent up- and down-streaming
of data objects to/from the distributed storage system with
ensured data consistency. This consistency control is described in
combination with the handling of faulty server nodes and faulty
clients. Furthermore, performance is measured with several
access patterns. An application of that technique is for instance
a distributed video server, allowing permanently updates without
interrupting access.

I. INTRODUCTION

Nowadays, storage and streaming servers for digital media
are substituting video tape archives and classical distribution
methods of media. By storing media files on disks, durable
media storages can be built by exploiting fault tolerant data
layout schemes. Additionally, such storage servers scale with
the growing amount of content and access load. Such server
systems for storage and delivery of media content are now in
the focus of research.
In order to store data in a reliable way and to permit high data
access rates, it is obvious to apply RAID[12]-like techniques.
But exclusively using a single host-based disk array (RAID)
does not provide scalability within distributed server systems.
The point is that a disk array is accessed over one single
active controller which quickly becomes a bottleneck in terms
of availability and performance. Thus, current scalable storage
systems do either employ a separate network for global access
to storage devices, which itself usually are RAID systems,
or use the communication network of clustered computers to
combine many disks of several nodes to a scalable and fault
tolerant storage system. The first class is known as Storage
Area Networks (SAN e.g. [11]). The second class, which is
in the focus of this study, are distributed software systems
that employ RAID-like data layout schemes over several hosts
in a network. Multiple disks are logically coupled over an
existing network and data is striped over disks of the coupled
computers. This data distribution requires transfer of data to
and from several hosts. The network in the path between
storage device and application does not slow down the access
rate to a single storage medium, as long as the data rate over

the network is not lower than the storage access rate and
secondly, disk accesses and data transfer over the network
interface are overlapped. It is feasible to reach faster access
by using multiple disk subsystems and file systems in parallel
which also provides tolerance against single disk and node
failures. Examples for systems applying such a technique are
given in [1], [5], [7], [8], [14]. For this study, we used an
implementation of a RAID-level-3-like storage scheme which
was developed by ourselves, called netRAID. It has already
been conceptually introduced in [16]. In this paper, the ability
to deal with faulty clients is integrated into the access control
algorithm. Furthermore, performance results of the system are
reported, in order to prove the concept and to analyze the extra
cost of the access control.
The need for consistency can be described roughly in the
following. Ordinary host-attached RAID systems offer a single
entry point to the disk array. This point must be passed by all
read and write operations that cause accesses to subblocks on
the disks. In that way, a single disk controller determines the
order of operations and data consistency is kept in a way we
would expect from a single disk. Accordingly, accesses are
driven by a single local file system. In a distributed imple-
mentation as here, several accessing processes may read and
alter striped data objects on different hosts, so that consistency
is not guaranteed. Without controlling access operations, read
data may be corrupted. In case of concurrent updates, data may
also kept stored in a corrupted state. Commonly, this problem
is solved by locking entire data objects during updates. Many
systems use a meta-server to store information and to manage
locking of data in case of writing access. Another solution is
to use a log–based file system, where altered data is entirely
rewritten to new data objects, such as [1]. We suggest a
technique that allows concurrent updates without locking data
objects and without any need to store a new version of the
entire data object.
The described solution does not significantly cost performance.
But it induces some side effects that on the one hand are
valuable for storing data with sequential access. On the other
hand, we noticed a vulnerability against failures of accessing
processes that fortunately can be de-fused by relatively simple
extensions.
Related work and other storage solutions are described in
section II. The application scenario is described in section III
and the fault model in IV, whereas information about the used
cluster system and software environment can be found in V.

Beside the distribution scheme, we give a detailed description
of our solution to guarantee consistency in section VI and
analyze how faulty server or client nodes are tolerated. The
performance of the system is reported in section VII under
several access patterns.

II. RELATED WORK

There can be found a lot of systems employing distributed
computer systems with local disk storage for a coupled storage
system. Some of them were developed in a context of video
storage and delivery platforms.
Storage strategies for video servers were discussed in [9]. Two
proposed data layout schemes take the MPEG-1 frame coding
into account. In one proposed variant, non reference frames are
stored in round robin manner among the cluster nodes without
parity information, because their lost only causes a limited
quality degradation. This decreases the storage overhead by
30%. A second proposed variant suggests alternative B-frames
instead of parity information for all reference frames. In
that way, no parity information is used at all. It requires
a modification of the video encoder to generate alternative
frames but can save disk capacity against a non coding-aware
RAID-like parity scheme. This adapted storage scheme would
be compatible with the suggested local ordered access scheme.
RAIN (Reliable Array of Independent Nodes) [5] [4] is a
subcomponent for a reliable rainfinity web server. It is based
on distribution of data stripes and parity among several cluster
nodes. A particular data layout scheme EVEN-ODD enables
the system to tolerate up to two faulty nodes/disks under an
optimal redundancy/payload ratio.
PVFS [13], [8] is a striped file system for Unix clusters. The
aim is to provide fast reading and writing access to out of
core data for high performance applications. The data layout
is similar to RAID level 0 over several nodes. At the current
state, fault tolerance is not taken into account but is planned
for future developments.
nfsp [14] is near to PVFS, but directly compatible to the NFS
protocol. Data is stored in stripes over several cluster nodes.
Parity schemes are not implemented yet, but may be added in
the future.
A cluster video storage system (CFS as denoted by the
authors) [7] was developed at the University of Lyon on the
basis of a PC cluster connected by a Myrinet network. The
target system combines RAID level 0 as the local storage
basis on nodes and RAID level 3 as the data layout scheme
applied over different computers. Video files are gathered
through a high speed system area network (Myrinet) over
a direct access interface to the network. A result from a
detailed analysis is that server group sizes are to be chosen
in the range between three and eight nodes. Striping over a
higher number of nodes may enlarge the likeliness that one
out of these server is reacting too slowly and so worsens
performance.

A system that is directly coupled with a video streaming
server is DarwinCluster[15]. It is based on replication of the
entire stored content on the disks of all cluster nodes. Several

instances of the Darwin Streaming Server operate on that
content. It works as a plug-in module for Darwin Streaming
Server and redirects rtsp connections from a master server to a
server with currently lowest load. A drawback is the necessity
to copy all the content from the master server node to all
client nodes. Anyway, for scenarios with read-only content
and sufficient disk space on the cluster nodes this is a practical
solution.
Tiger [6] is a video file-server that also stripes video files
among several computers with attached disks. A particular
feature is that accesses to stripes are taken with a predefined
schedule taking the read times and the play times into account.
Stripes are replicated completely, whereby secondary copies
are placed in the inner zones of the disk. So the primary copies
use the part of the disk that deliver data with fast speed and
the secondary copies use the slower disk zones.
Yima-1 [17] is a cluster-based streaming server that also relies
on the Darwin Streaming Server for packet assembling and
delivery of data. Data is retrieved from a distributed file system
that stores data blocks in a pseudo–random manner distributed
over the nodes. Yima-2 uses a decentralized approach where
only a rtsp control server runs on a dedicated node and the
delivery of packets from the storage is performed from the
nodes that store data locally. In that way, the Darwin Streaming
Server had to be replaced by another streaming component.
Additionally, the video player on the client side must be aware
to receive packets from several nodes and to combine it to a
single stream.

III. TARGET SYSTEM

The netRAID-system is designed for multicomputers with local
disks. A typical target system is a PC cluster. Nodes have to
be connected by at least one switched network. For coupling
storage systems together and for transferring data to the clients
it is valuable to employ two separated networks.
On each node runs a server process, being responsible for
access to the local disk. These servers accept TCP–connections
from clients and perform access to data stripes on request.
Data to be written or read is transferred over the network. For
netRAID-clients, a library translates file access operations to
interactions with storage servers. Interaction with the netRAID
storage system always covers blocks of a predefined and
globally equal length. To adapt file accesses to this length,
buffering, splitting and assembling of data blocks is integrated
into the client component. Additionally, a client component is
responsible for calculating parity information and if necessary
for reconstruction of missed data blocks.
NetRAID–clients are application processes that directly pro-
cess stored data or process and deliver data for external
usage. In particular, we applied the netRAID–library to the
Darwin Streaming Server [10]. Many instances of the Darwin
Streaming Server run on the cluster and share the load of
data delivery. The file access is done over a netRAID–client
interface. In this application scenario, separated networks for
intra–cluster block transfer and for connections of streaming
servers to quicktime–clients were used.

IV. FAULT MODEL

As to the fault tolerance aspect, it is assumed that for a specific
time only a single node fails. A failure includes timing failures
and crashes on the level of storage node activity. A timing
failure is assumed, when a storage node does not reply within
a specified time. Additional faults can not be tolerated until
the failed node has been recovered or replaced by another
one. The latter includes that lost information is reconstructed.
Although a fault of any single node can be tolerated by the
storage scheme, the cases where a requesting process fails
during accessing the distributed data are not covered. This has
to be handled by techniques on a higher level (e.g. redundant
server processes with IP failover). Additionally, crash and
timing failures of clients are taken into account. The network is
assumed to be fault-free. Either, the network can consist itself
of totally redundant levels or can be assumed to be much more
reliable than the storage nodes.

V. DISTRIBUTION SCHEME

The data layout scheme according to RAID level 3 is illus-
trated in figure 1. A group of server nodes form a parity group.
In such a parity group, blocks of a predefined length are split
in striping units and stored on several nodes. An additional
node stores the parity information that is derived from striping
units within the parity block. Parity information expresses a
bitwise XOR-result over these stripes. On the side of storage
servers, striping units of a data object are stored sequentially
in a file using the local file system. Naming of the server files
is done by a concatenation of the data objects name with the
identification number of the storage server.

������������ ���������� ��������������������������������	�	�		�	�	
�
�
����������� �������������������� ��

���������� ���������� �������������������� ������������������������������ ���� ���������� � � � � !�!�!�!�!�!!�!�!�!�!�!"�"�"�"�"�""�"�"�"�"�"

splitting

Parity

Parity

Parity

parity block n parity block n+1

parity group

Parity

netRAID server

client

striping units

Fig. 1. RAID Level-3 Data Layout

When a storage node fails, only a single striping unit of a
parity block gets inaccessible. This case is detected by missed
replies from the failed server and the missing striping units
are reconstructed using parity information. The missed block
is derived by a bit wise XOR-ing of all available striping units
and the parity information. This is done in the client.

Incompletely filled parity blocks, normally occurring at the
end of data objects, assume zero bytes for unused space
in the context of parity calculation. In our implementation,
additionally to the parity the used length of the parity block is
stored on together with the parity information. This guarantees
to obtain the correct data object size, even in the case that
a striping unit is lost that covers the end of a data object.
Implementing such a storage scheme over several nodes is
relatively easy, whereby the storage scheme itself is well
understood. Still a problem is the occurrence of concurrent
read and update operations within a parity block. In that
case, a read operation may gather striping units that represent
a different state, some may be already updated and some
others may still contain old content. The same problem arises
when several clients update blocks concurrently. Then striping
units may represent content of different update operations.
Gathering the single striping units over the network would
then lead to invalid content. Especially, when data is coded in
a particular form (compressed files, encoded video) the entire
data may become useless. This problem can be solved using
a relatively simple technique as described in the next section.

VI. CONSISTENCY

To address the problem of conflicting access to striping units, a
technique can be used that is already known from databases.
In databases, distributed transactions have to alter tables on
several nodes, concurrently to reading accesses. For these
transactions data consistency has to be ensured, in a way that
either all table entries reflect a state before updating or after
the update. This consistency problem is similar to updating all
striping units of a parity block during concurrent read access.
One solution is to order read and update operations in a way
that no corrupted data can be read. In context of database
technology, this technique is called time stamp ordering [2].
The proposed solution for RAID-like storage schemes is a
particular application of this well known solution. The concept
of that ordering scheme was first published in [16].
The ordered access is activated only in case of clients access-
ing the same data object during the same time period. For that
decision, for each data object an object identification number
is calculated by hashing over the data objects’ names. If for
a particular access sequence another access sequence with the
same identification number is present, the ordering is activated,
otherwise no ordering is necessary.

A. Ordered Access

On storage nodes, so called access instances execute read
and write operations to the local file system. Their activity is
driven by events – incoming request messages and self-induced
events. Ordering consists in either immediately fulfilling the
request or in postponing the needed activity until conflicts
will disappear. For that access control, each access sequence
p is assigned a tuple (lsnp, access-modep, vp, statep) in the
memory of access instances. The first element is a number lsn,
which is uniquely chosen for an access sequence. An access-
mode ∈ {R, U} indicates whether it is a sequence of read (R)
or update (U) operations.

The number v specifies the parity block number within the
last activity occurred for the particular access sequence. For
internal coordination, a state ∈ {WAIT , ACC, FIN} has to
be stored additionally. This state expresses if the access has to
wait for another (WAIT), if the server is currently accessing
the striping unit (ACC) or if the access is finished and no
further request was received for accessing the particular data
object (FIN).
The basis of the ordering mechanism is the lsn, a number
that has to be determined for all storage nodes equally and
the block number v that determines the access position in the
local sequence of stripes. With an open request an atomic
broadcast protocol is executed that provides ordered delivery
of messages. Such an atomic broadcast is a building block
in distributed fault-tolerant systems and implemented by a
middleware (e.g. ISIS/HORUS [3]). According to the order
of received broadcast messages, the lsn is assigned to access-
sequences.
Conflicts to a current request (lsnp, access-modep, vp, statep)
that would violate consistency are characterized as follows:

Case 1: An entry with lsni < lsnp and access-
modei = U is found and one of the following
conditions holds:

• C1: vi ≤ vp ∧ statei 6= FIN

• C2: vi < vp ∧ statei = FIN

In this case, an earlier started sequence of write
accesses has not yet updated the striping unit that
is requested to be read or written.

Additionally, if access-modep = U , it has to be checked for
a second case:

Case 2: Another access sequence with a lower
lsnj < lsnp and access-modej = R is present and
C1 or C2 applies (see Case 1).
Here, the current write request would overwrite a
striping unit that has not been read in a previously
initiated sequence of read accesses.

In both cases, the current access associated with (lsnp, access-
modep, vp, statep) must be postponed. So, the data is tenta-
tively not accessed and the statep is set to WAIT .
Figure 2 illustrates the states that are assigned by the access
instance to a sequence of accesses. A sequence of access
operations always has to start with an open-request. Here, the
lsn is determined and a newly created table entry with v = −1
and state = FIN is created.
In case of no conflicts, requests lead to the state ACC ,
whereby v is incremented and the access is immediately
fulfilled. When the access is finished, a response message is
sent to the requesting client and the state is set to FIN . Each
fulfilled access is triggering a reactivation event. If conflicts
are present for an incoming request, v is incremented and
state is set to WAIT . For a write request, data that can not be
written immediately must be buffered. Waiting requests are
reactivated, when other accesses have finished and conflicts
disappear.
A reactivation event lets the access instance check waiting
requests in ascending order of their lsn. The first found request
(represented by a table entry) that is not in conflict with other

/ v = -1

/ v = v+1

/ v = v+1

request with
finshedconflict

FIN

ACC

NOT
EXIST

WAIT

reactivation
without conflict

access

request
open close

request
without conflict

request

and conflict
reactivation

Fig. 2. States and transitions for access ordering

access sequences is reactivated and its state is set from WAIT

to ACC . This is followed by sending back a response message
and changing the state to FIN . After a reactivation and a
fulfilled request, a new reactivation event is initiated.
The described scheme assures that each striping unit is ac-
cessed by clients in the order of ascending lsn and thus on
each node in the same order. The table entries (lsn, access-
mode, v, state) can be found in figure 3 whereby the position of
entries is related to a virtual time-line of accesses. This vertical
position expresses the value v in a graphical representation.
Entries in state ACC are directly positioned in the striping
unit v, in WAIT are placed above the striping unit and those
in FIN below. In that representation

1) time lines of a pair of reading access sequences are
allowed to intersect.

2) if at least one access of a pair is a write operation, the
time lines are not allowed to intersect.

The reason for (1) is that read accesses do not influence each
other and therefore do not need to be ordered. In figure 3,
among read sequences with lsn=4 and lsn=5, no ordering is
needed. In the example, the write sequence lsn=1 needs an
ordering related to all other access operations. In the used
graphical representation, each related pair of points of these
timeliness is kept in the same relation to the other ones. Only
when an updating client is present (2), ordering is activated.

(4,R,0,Fin)

(5,R,1,Acc)

(0,R,4,Fin)

(1,U,4,Acc)

d=0

0

v

1

4

(5,R,1,Acc)
(4,R,1,Acc)

(1,U,4,Wait)

(0,R,4,Acc)

d=1

(5,R,1,Acc)
(4,R,1,Acc)

(1,U,4,Acc)

(0,R,4,Fin)

d=2

(0,R,3,Fin)
(1,U,4,Wait)

(4,R,1,Fin)

d=3

(5,R,1,Wait)

(4,R,1,Fin)

(5,R,1,Acc)

d=7 (parity)

(1,U,3,Fin)
(0,R,3,Fin)

Fig. 3. Snapshot of sub-operations on different stripes

B. Side Effects

Up to this point, we focused on consistency in scope of a
parity block access. Ordering ensures that a single access

is free of any corruption due to concurrent activity of other
clients. Beyond this scope, such an ordering scheme ensures
that several clients get sequential access to succeeding parity
blocks in the same order related to each other. So, an implicit
coordination is given, also for sequences of accesses. A
reading client that starts access after an updating client will
always get the updated data portions when invoking block-
wise read operations sequentially. Accordingly, if two writ-
ing/updating clients access the same data object sequentially,
one particular client will always determine the last written data
portion. This ensures that a data object is left in a consistent
state. Consistency is reached at the expense of dependency
of operations in terms of speed. Thus, a negative aspect is
that accesses may get blocked until data is accessed by other
clients. For instance, a writing client must wait, in order to
avoid overwriting of data that is still to be read. A slow reading
client may slow down the writing process. Effects of faulty
clients are analyzed in VI-C.2.

C. Fault Tolerance of the Ordering Scheme

Ordering introduces dependencies among different accessing
clients, if accesses are related to a common data object. So,
beyond data availability under faults, the ordering must be
checked for proper function under faults.
1) Faulty Server Nodes: The question is, how this ordering
on a faulty acting storage node may affect consistency. As
mentioned in IV, timing and crash faults of a single node are
to be tolerated.
Potentially, ordering could get violated in two ways. The first
potential fault scenario (i) would be an access that is executed
without waiting for possibly existing accesses that must be
executed before. The impossibility of this scenario can be
explained by following two points:

• When all present accesses are represented by a valid lsn
and a table entry, such a behavior (i) can not occur due to
a crash or a timing fault. Solely, a current request may be
ignored due to a crash or get delayed by a timing fault.

• Case (i) would occur only, when an access sequence
with a smaller lsn is not represented in the local table.
A crash or a timing fault can not cause this situation
without omitting the table entry for the present access
operation too. Because a current request can not get
effective without an entry in the servers table for the
particular lsn, this scenario is impossible.

The other potential fault scenario (ii) is an access that is set
to WAIT when no dependency to other accesses is present.

• Such a situation may occur, for instance when another
access is finished and the node crashes before setting the
state to FIN . Then the node is crashed for the present
access too. The same applies for a timing fault. If the
access management is delayed, also the processing of
new requests gets delayed. This is equivalent to a not
responding storage server.

So, there is no way for order violation, even in the case of
faults (that comply to the fault scenario). The only remaining
effect is that a node does not process an access at all or only
incompletely and then is unavailable for all subsequent access

requests. This behavior is tolerated by the storage scheme and
the fault correction at the client side.
2) Faulty Clients: As described in VI for consistency reasons,
it is necessary to order accesses of several access sequences
that are initiated by several client processes on different nodes.
A drawback is that these dependencies cause a vulnerability
of the server system against faulty acting clients. According
to the fault model, also a client may crash or delay accesses
due to timing faults. In both cases,

• a client that initiates a sequence of read accesses and then
fails, causes blocking of concurrent write accesses.

• a failed writing client will block concurrent read and write
requests.

Because a client sends requests to many server nodes, it
will be possible as well that not all messages are sent and
the client fails or delays activity in a timing fault manner.
Such an inconsistency may occur which is known as a partial
distribution fault. In such a scenario, a subset of servers can
be get blocked for dependent accesses.
The basic ordering scheme would block accesses with a larger
lsn for all parity blocks that were not yet accessed by the failed
client. This means that a single crashing client may block the
access to a particular data object on all server nodes. This
weak point has to be avoided by an extension of the basis
scheme.
The extension consists in an assertion of a maximum access
interval intvx. If a client does not invoke the next access
within intvx, the ordering related to the particular access
sequence is deactivated. Other accesses proceed in case
of conflicts, but the clients are informed about possible
consistency problems. In the following we use t as the current
time and taccess,x as the time of the recent access of access
sequence x.

So case 1 as described in VI-A has to be restricted in the
following way:

Case 1:
Another entry with access-modei = U and a lower
lsni < lsnp is found and C1 or C2 applies. Only, if
intvi ≥ t− taccess,i holds, the current access has to
be postponed, according to the basic scheme.
If a conflicting access sequence is present that does
not comply with the predefined maximum access
interval, intvi < t− taccess,i, then the current access
can get activated, if no other conflicts apply. The
client has to be informed that the current access
is influenced by a delayed concurrent operation.
This is done by responding with a notification of
active consistency violation (ACV). Access sequence
i is marked in the server data structures as being
influenced by a passive consistency violation (PCV).

Case 2 that is effective when the current access is an update
request (access-modep = U), must be altered in the following
way to comply to an environment with faulty clients.

Case 2:
Another access sequence with access-modej = R

and a lower lsnj < lsnp is present and C1 or

C2 holds. According to the basic scheme, then the
current write request is conflicting with the found
one.
A cause for postponing the current request is only
given, when intvj ≥ t − taccess,j holds. But if the
conflicting access sequence is delayed longer than
the allowed interval (intvj < t − taccess,j), the
current access is allowed to be executed (when no
other conflicts forbid this). The entry for accessj

has to be marked as a passive consistency violation
(PCV). For the current request, no consequences in
terms of consistency are present. But, if the delayed
access sequence is reactivated again, it will respond
with an PCV notification. This situation can be
handled on application level.

Because of the decoupling of dependent accesses that do not
comply the timing constraint, a reactivation event has to be
induced by the system itself, after a time of min(intvx)
relative to the last reactivation event.
When a client receives a response with an order violation
notification from only one server f , it can mask that fault.
A reading client can reconstruct data from server f using the
parity information and deliver data to the application. If a
writing process gets an ACV response, it proceeds operation.
If PCV is reported on more than one server, a reading client
must assume data to be corrupted. The reaction is application–
dependent and may range from application stop to just ignor-
ing the corruption and continuing reading and processing. In
principle, it must be assumed that the data is corrupted by a
concurrent write operation. A write sequence with an ACV
must proceed, whereby in case of a PCV, a write sequence
gets obsolete and can be stopped.

VII. PERFORMANCE ANALYSIS OF THE STORAGE SYSTEM

A requirement to the distributed server system is the ability
to upstream and downstream video data fast enough, even
when many users are downstreaming content concurrently.
We analyzed the performance of the storage system from the
viewpoint of many streaming servers that are acting as clients
of the storage system. These streaming servers run inside the
cluster concurrently to the activity of storage server processes.
Such a client may use two different strategies for data access:
Sequential access – Striping units are requested and received
one after another. After requesting a stripe, the client waits for
a response from the storage server.
Multithreaded access – All striping units are requested without
waiting for response messages. Threads are used to receive the
data from the storage servers. From the perspective of a client
the data is gathered in parallel.

A. Measurement Setup

We use an eight node pc cluster as video server. Each node
is a double-processor Intel Pentium III system, and contains
an IDE disk (Seagate ST 330621A). Storage nodes run under
Linux and local data storage is accessed by the reiser-fs file
system. There are two types of networks present, a 100 MBit/s
switched Ethernet and additionally a Gigabit Ethernet network

(GE). For coupling the storage nodes we exploited the fast GE
network.

B. Single Accessing Client

First we measured the obtained throughput by using a single
process that reads or writes on the netRAID system. We varied
the number of involved storage nodes (striping group size)
and the granularity of striping (length of striping units). In the
experiment, a 300 MByte video file was used. In the single
client scenario, a multithreaded access strategy has been used.
Figures 4 and 5 show the results. A maximum read throughput
can be found on a striping unit size of 24 KByte and a number
of seven storage servers. The maximum write performance
was found with eight server nodes and a striping unit size of
16KByte.

5

10

15

20

25

30

35

40

45

2 3 4 5 6 7 8

th
ro

ug
hp

ut
 in

 M
B

yt
e/

s

number of storage server

su len
1024
2048
4096
8192

12288
16384
24576
32768

Fig. 4. Throughput measured for a single downstreaming client. The
measurements reflect different striping unit sizes (see legend).

C. Many Reading Clients

In a second step, we measured the obtained throughput by
many processes that read data objects from the netRAID
system in parallel. In order to start read access sequences of
several clients nearly at the same time, a controller process was
used that sends a start message to clients and finally receives
the number of read bytes from each client. This controller was
also used to obtain the total throughput as the sum of read
bytes over all clients in a time that has expired from sending
the start message to the reception of the report message from
the last client.
Figure 6 shows results for a parity group size1 of 7+1 and a
striping unit length of 24 KByte. One scenario (denoted by

17+1 denotes a group of eight storage server, whereby one server acts as
parity storage.

5

10

15

20

25

30

35

40

45

2 3 4 5 6 7 8

th
ro

ug
hp

ut
 in

 M
B

yt
e/

s

number of storage server

su len
1024
2048
4096
8192

12288
16384
24576
32768

Fig. 5. Throughput measured for a single writing client.

single file) is given by many clients which are accessing one
common file and a second scenario (denoted by many files)
covers access to different files.
For multithreaded access strategy, a maximum throughput is
observed when two clients are accessing stripes concurrently.
A higher number of clients leads to a performance degradation.
With more than two clients, the sequential access strategy
provides a higher throughput. The reason for that is the high
number of threads in the multithreaded access scenario, which
is only beneficial when a single or a few netRAID-clients run
on a host.

D. Concurrent Read/Write

Figures 7 and 8 show results for a 7+1 data distribution,
whereby one half of nodes are writing to the storage system
concurrently to clients that read data. We distinguish following
scenarios:

1r+1u One client performing a read operation and one client
updating a data object is present.

2r+2u Two client processes are performing a read operation
on two different data objects and two clients are
updating data objects.

4r+4u Here, four data objects are read by four clients in
parallel. Additionally, four clients are updating data
objects.

The first part of the experiment is based on independent ac-
cesses, so that the read and the written/updated data objects are
different ones. The ordering is not activated. The second part
assumes common data objects. In all scenarios one reading
client and one updating client use a particular data object in
common. So, for all accesses the ordering is activated.
In figure 7 and 8 the values represent the sum of all access
rates, including read and write. Each diagram can be used

0

20

40

60

80

100

1 2 3 4 6 8 12 16

th
ro

ug
hp

ut
 in

 M
B

yt
e/

s

number of retrieving netRAID-clients

single file, seq. access
single file, multithr.access

many files, seq. access
many files, multithr.access

Fig. 6. Total throughput measured for several downstreaming clients.

for a comparison between dependent and independent access.
The total data size that has been read and written by all active
clients has been measured over a period of time starting with
the activity of the first client and ending when the last active
client has completed access. In such a way, scenarios where
slower clients are longer active than other faster clients are
covered. The results show that there is no performance degra-
dation due to ordering when clients access data sequentially
in a best effort manner.
Multithreaded access led to the effect that ordered accesses
are slower than independent accesses, but absolutely exhibit
higher access rates (in cases 1r+1u and 2r+2u) compared to
sequential access.

E. Discussion

The reported performance results for single client processes
are comparable with other systems (e.g. [14]), so that we
argue that the ordering of accesses does not influence the
performance significantly. Additionally, by activating the or-
dering (comparing results of VII-D), we could not notice a
significant performance degradation. Moreover, when accesses
are dependent (related to same date objects), data can be more
often found in disk and file system caches. Thus, in some
cases, dependent access sequences will reach a higher total
throughput than independent access sequences.

VIII. FURTHER DEVELOPMENT

Concurrent access in netRAID demands further optimizations.
One point is reading in advance and caching in the storage
server. When a high number of accesses are present on the stor-
age server, a more intelligent scheduling of accesses promises
an improvement. For instance, non dependent accesses may
be scheduled bulk-wise in order to employ locality and to

0

10

20

30

40

50

60

1r+1u 2r+2u 4r+4u

th
ro

ug
hp

ut
 in

 M
B

yt
e/

s

number of netRAID-clients

dependent accesses
independet accesses

Fig. 7. Sequentially accessing clients: comparison between independent and
dependent accesses.

0

10

20

30

40

50

60

1r+1u 2r+2u 4r+4u

th
ro

ug
hp

ut
 in

 M
B

yt
e/

s

number of netRAID-clients

dependent accesses
independent accesses

Fig. 8. Multithreaded accessing clients: comparison between independent
and dependent accesses

minimize accesses to different disk regions and to utilize
caching in a better way.
As mentioned before, the netRAID system is coupled to the
Darwin Streaming Server. For that, several streaming server
run on several cluster nodes. For this application level, a
middleware for load balancing and fault tolerance among
these servers is currently developed. It consists in a group
management with built–in diagnosis coupled with a global
exchange of load information.

IX. SUMMARY

A distributed storage system for multicomputers with local
disks, called netRAID, has been described. Particularly, we
focused on a method for a guaranteed consistency for concur-

rently up- and downstreaming clients in an adopted RAID-
like distribution scheme. The solution consists of ordering
of access operations, according to an order determined on
the start of each access sequence. So, coordination among
several storage nodes takes place at the time of beginning a
new sequence of access operations to a data object. During
accesses no additional communication is necessary. The local
ordering is feasible, because only the order among write and
read accesses determines the output. Experiments show that
the ordering by itself does not influence the performance
significantly. But causal dependencies are introduced - access
operations possibly have to be blocked until other dependent
operations are finished. These may slow down accesses in par-
ticular cases. This side effect comes together with an extended
consistency for concurrent sequences of access operations on
sequential structured data objects and can be used to update
content during access without data corruption.

REFERENCES

[1] T. Anderson, M. Dahlin, J. Neefe, D. Patterson, D. Roselli, and R. Wang.
Serverless Network File Systems. In 15th Symposium on Operating
System Principles, ACM Transactions on Computer Systems, 1995.

[2] P.A. Bernstein, V. Hadzilacos, and N. Goldman. Concurrency Control
and Recovery in Database Systems. Addison Wesley, 1987.

[3] K.P. Birman and R. Van Renesse. Reliable Distributed Computing with
the Isis Toolkit. IEEE Computer Society Press, 1994.

[4] M. Blaum, J. Brady, J. Bruck, and J. Menon. EVENODD: An Efficient
Scheme for Tolerating Double Disk Failures in RAID Architectures .
IEEE Transactions on Computers, 44(2), February 1995.

[5] V. Bohossian, C.C. Fan, P.S.LeMahieu, M.D. Riedel, L. Xu, and
J. Bruck. Computing in the RAIN - A Reliable Array of Independent
Nodes. Technical report, California Institute of Technology, September
1999.

[6] W. Bolosky, J. Barrera, R. Draves, R. Fitzgerald, G. Gibson, M. Jones,
S. Levi, N. Myhrvold, and R. Sashid. The Tiger Video Fileserver. In
International Workshop on Network and Operating System Support for
Digital Video and Audio. Springer, 1996.

[7] A. Bonhomme and L. Prylli. Performance Evaluation of a Distributed
Video Storage System. In IPDPS 2002, Proceedings (CDROM). IEEE
Computer Society, 2002.

[8] P. H. Carns, W. B. Ligon, R. B. Ross, and R. Thakur. PVFS: A Parallel
File System for Linux. In Proceedings of the 4th Annual Linux Showcase
and Conference, pages 317–327, 2000.

[9] E.N. Elnozahy. Storage Stratigies for Fault-Tolerant Video Servers.
Technical Report CMU-CS-96-144, Carnegie Mellun University, 1996.

[10] Apple Computer Inc. ”QuickTime Streaming Server 4.1. Datasheet on
http://www.apple.com/quictime/products/qtss, 2002.

[11] Tivoli Systems Inc. Vision – Tivoli Storage Management Solutions for
the Information Grid. White Paper, 2000.

[12] R. Katz, G. Gibson, and D. Patterson. Disk System Architectures for
High Performance Computing. In Proceedings of the IEEE, pages 1842–
1858. IEEE Computer Society, December 1989.

[13] W. B. Ligon and R. B. Ross. An Overview of the Parallel Virtual File
System. In Proceedings of the 1999 Extreme Linux Workshop, June
1999.

[14] P. Lombard and Y. Denneulin. nfsp: A Distributed NFS Server for
Clusters of Workstations. In IPDPS 2002, Proceedings (CDROM). IEEE
Computer Society, 2002.

[15] Darwin Plugings. Clustering/Load Balancing for Darwin Streaming
Server, http://www.darwinplugins.com/darwincluster. 2002.

[16] P.Sobe. Concurrent Updates on Striped Data Streams in Clustered Server
Systems. In IPDPS 2001 Proceedings (CDROM), Workshop on Fault-
Tolerant Parallel and Distributed Systems. IEEE Computer Society,
2001.

[17] C. Shahaby, R. Zimmermann, K. Fu, and S.D. Yao. Yima: A Second-
Generation Continuous Media Server. IEEE Computer, pages 56–64,
June 2002.

