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Abstract—Virtual reality (VR) holds a great potential to pro-
vide interactive and immersive learning experiences for students
in remote education by using existing mobile devices, which is
extremely meaningful during the current pandemic. In such a
VR application, satisfactory user experience requires: 1) high-
resolution panoramic image rendering; 2) high frame rate; 3)
synchronization among users. This requires that either mobile
devices perform fast image rendering or today’s wireless network
can support multi-Gbps traffic with extremely low delay, neither
of which is the case in current practice. In this demo, we develop a
platform for interactive and immersive remote education based
on commodity devices, where a server performs rendering to
ensure that the rendered images have high-resolution (2560 x 1440
pixels) and are displayed at a high frame rate (60 frames per
second) on the client-side. We further leverage motion prediction
to overcome the diverse round-trip time (RTT) between a server
and users and ensure synchronization among users (average 9.2
ms frame latency difference among users), which improves at
least 60% and 20% compared to the existing local-rendering and
server-rendering methods, respectively.

I. INTRODUCTION

Virtual reality (VR) has a great potential to provide more
interactive and immersive experiences for students in remote
education than traditional video conferencing platforms such
as Zoom and Webex. Indeed, when a teacher introduces
the solar system to students, students can visualize various
planets in a 3D manner and see the same perspective as
the teacher does. When a student has a question regarding
a particular part of the solar system, he/she can point to it for
further explanations. While VR-based remote education seems
appealing, it comes with new requirements and challenges.
To provide the best immersive user experience, the VR-
based remote education system should provide 1) high-quality
panoramic image rendering: users want to ensure a resolution
with 2560 x 1440 pixels and have at least 60 frames-per-
second (FPS); 2) synchronization among users: views should
be properly synchronized across participating users to support
smooth interactions among them.

Existing mobile devices only support low-quality immersive
applications due to their constrained CPU/GPU capabilities.
Systems such as Furion [1] and Firefly [2] offload compute-
intensive rendering load to a powerful server, which wirelessly
streams the rendered frames to the mobile device. As such, in
this demo, we adopt the server-rendering approach and develop
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an interactive and immersive remote education platform based
on commodity mobile devices. Since students and the teacher
have different round trip times (RTT) between their devices
and a server, it is difficult for them to see the same view
simultaneously. We observe that if a teacher’s motion is
perfectly predictable and RTTs of all students and the teacher
are deterministic, then the server can deliver rendered frames
corresponding to each client’s displayed time to ensure that
all of them see the same view at the same time. However,
a teacher’s motion and RTTs cannot be accurately predicted
in practice. Hence, we leverage motion prediction to improve
synchronization performance among users compared with the
traditional server-rendering approach.

II. SYSTEM ARCHITECTURE

In this section, we will introduce our system for interactive
and immersive remote education. Our system consists mainly
of three parts: the offline rendering engine, the server, and
clients (see Fig. 1), which are explained in details next.

Offline Rendering Engine: We modify a commercial VR
scene from [3] such that it is compatible with the offline
rendering engine, which splits the VR world into grids. On
each grid point, a panoramic frame is captured such that all
of the possible views on that position are included. We use
Equirectangular projection [4] to process the mega frames
such that the frames are compressed using the H.264 codec to
reduce the required bandwidth during the transmission. During
the runtime, the frames will be swapped to the RAM and
stored as a HashMap indexed by its position to be quickly
distributed.

Server: The server is responsible for delivering both the
pose (from the teacher client) and the rendered frame to the
clients. To alleviate asynchronization caused by diverse RTTs
of clients, we use motion prediction to deliver future frames
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Fig. 2: Platform of the prototype

to clients. We observe that in remote education, the teacher
usually stops in some places for a long time to introduce
more details, and thus we predict the future positions as
the same as the last position. Concerning the orientation,
we use the Autoregressive Process (AR) model (see [5]) to
predict the future orientation. To quantify the performance
of synchronization between the teacher client and student
clients, we compare the display time of each frame received
by the teacher client and each student client. However, due to
different system time (could be hundreds of milliseconds) in
each client, it is inaccurate to directly compare them on the
client-side. As such, we collect the data on the server-side by
recording the time when it receives the display ACK (which
will be introduced shortly) from a client. The actual display
time can then be calculated by

tdisplay = tack — Tone—way

where Tipe-way 18 the one-way RTT which is estimated at the
beginning of each network connection.

Clients: The client always waits for the frame from the
server and puts the received frame into a network buffer pool.
Then the frame decoder extracts compressed frames from the
network buffer pool and decodes them using Android Media
Codec [6]. To alleviate the impact of dynamic network band-
width, we maintain a frame buffer implemented by OpenGL
Frame Buffer Object. Once a panoramic frame is ready, it will
be passed to the OpenGL thread where it would be projected
to a specific FoV according to the received trace and stored
in the frame buffer. The capacity of the buffer is set to only 5
frames to ensure real-time interactivity. Once the frame buffer
is full, the oldest 40% of the frames will be released. When
it is time to display a frame, the client displays the frames
from the frame buffer in order and sends a display ACK to
the server which includes the pose of the displayed frame.
Different from the student clients, the application designed
for the teacher client needs to sample the current pose, and
send it to the server periodically.

III. DEMONSTRATION

The platform of our prototype is shown in Fig. 2. In
our system, the teacher client controls the teaching content
by using the Xbox controller and shares the same view
with student clients through Google Pixels. We compare the
performance of our system design with two existing methods:

(1) local rendering, and (2) server rendering. We record a trace
played in the teacher client using the controller and replay it to
demonstrate the superior performance of our design compared
to two existing designs. The demo video is available at [7].
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Fig. 3: Performance comparison.

We mainly focus on the following two metrics: FPS and
frame latency difference, where the latter is defined as the
display time difference of similar frames between the teacher
client and the student clients. We conduct experiments on five
clients under ordinary network bandwidth and add extra RTTs
by Linux TC [8] on those clients which are 0, 10,20, 30,40
ms separately. We can observe from Fig. 3 that our system
achieves 60 FPS on average and reduces the average frame la-
tency difference by at least 60% and 20% compared to existing
local-rendering and server-rendering methods, respectively.

IV. CONCLUSION

In this demo, we develop a VR-based remote education
platform that provides interactive and immersive learning
experiences for students using commercial off-the-shelf mo-
bile devices. Specifically, the server delivers high-resolution
(2560 x 1440 pixels) panoramic content to the clients that is
displayed at a high frame rate (60 FPS). Furthermore, we uti-
lize motion prediction to mitigate the impact of heterogeneous
RTTs between clients and the server and achieve at least 60%
and 20% synchronization improvement compared to existing
local-rendering and server-rendering methods, respectively.
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