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Motivation

« Emerging Commercial Head-mounted Displays (HMDs)

Google Daydream Facebook Oculus Samsung Gear

« Panoramic video streaming provides immersive experience for users
as If they are In a virtual 3D world

« Main challenge: it typically consumes 4~6x bandwidth of a regular
video with the same resolution



Opportunity

* A user may only see as low as 20% of 360° scenes, known as Field of View
(FoV). It is sufficient to deliver 20% of 360° video scenes under perfect
motion prediction.
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Practical Challenges and Goal

* Imperfect prediction: should deliver a portion larger than the FoV

* Time-varying wireless environment: should quickly identify the
optimal delivered portion

* There are a finite number of content portions covering the FoV and

the goal is to quickly determine a portion with the maximum

throughput. Second Portion \ \

FoV

— o = —

|
1
|
I
I
I

Third Portion !

1
|
1
1
I
|
I
I

1
First Portion
Example of a set of content portions



Multi-armed Bandit Formulation

* Transmission fails for one of two reasons:

* FoV prediction: If the selected portion covers the actual FoV, then the
prediction is successful. Otherwise, the prediction fails.

* Wireless transmission: If the rate of the selected portion is smaller than the
channel rate, then the transmission is successful. Else, the transmission fails.

* Each arm n corresponds to the selected portion or rate r;,. Each arm
is associated with a success probability y,,

* If all statistics are available, our goal is to select an arm satisfying

n* € argmax 1,Yn,
n=1,2,...N



MAB Formulation (Cont’d)

* However, statistics are unknown. Therefore, we need to dynamically
select an arm with the goal of minimizing the regret.
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I(t): the index of the selected rate in time slot t
Z, (t): indicates success or not in time slot t



Refined MAB Formulation

» After each play, we have both prediction and transmission outcomes

of the user.

* Even when the transmission fails, the HMD device automatically records the
user’s orientation and sends back to the server for the next decision

* Each arm n corresponds to the selected portion or rate r;,. Each arm
is associated with a successful prediction probability a,, and a
successful transmission probability £,,.

* If all statistics are available, our goal is to select an arm satisfying

n* € argmax 1,a, [,
n=1,2,...N



Refined MAB Formulation (Cont’d)

* As before, minimize regret

[T
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[(t): the index of the selected rate in time slot t
X,,(t): indicates whether the prediction is successful or not in time slot t

Y, (t): indicates whether the transmission is successful or not in slot t



Standard KL UCB

* For each arm n, assign an index y,, which is the largest value of y that

satisfies
D7, (®)|ly) < en(0),

where ¥,,(t) is the empirical success probability at time t and €,,(t) is
appropriately chosen

* Pull the arm with the largest index

e Extension to two-level feedback?



KL UCB for Two-Level Feedback

 Possibility 1: pick an index for the wireless part and the prediction part
separately

* mo?x D(&n(t)”a) = Eln(t)» m[?XD(IBAn(t)”:B) = EZn(t)

* Indexis @, x [,

* Possibility 2: pick an index based on the overall success
» max D(@,(8) Bu(DlY) < en(0)

* Indexis ¥,

* These approaches don’t seem to work well



Thompson Sampling with Single Feedback

 Selecting the rate according to the posterior probability:

[(t) = argmax 1;,y,(t)

ne{1,2,-N} ‘
Draw y,,(t)~Beta(S,, + 1,F, + 1)
Beta(a, b) is the beta distribution whose I I
pdf is: Counter of  Counter of
,_, L(a+Db)

a—1 .
Pap = X (1—x) successes failures

[(a)l'(b)

The Gamma function



Thompson Sampling with Two-Level Feedback

* Selecting the rate according to the approximate probability:

[(t) = argmax n,ay,(t)Bn (1)

ne{1,2,--,N} | |

Posterior Posterior
prediction  transmission
probability probability

* Maintain a pair of counters for each outcomein each arm
* Draw probabilities from two independent Beta distributions



Simulations
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Simulations (Cont’d)

* We used the dataset from [Bao, Rate =[0.251,0.259,0.271,0.305]
Wu, Zhang, Ramli, Liu, 2016] and
predict the user’s orientation j{’l
using linear regression.

+
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* We simulated wireless AP —a
. 9. 4 ——
transmission o1 4 Single feedback

Two-level feedback

* We got the estimated probabilities

for each rate as follows by running ~ Num of time slots
experiments with fixed rate.

a = [0.034,0.708,0.892,0.990]
p =[0.749,0.599,0.099,0.030]



Regret Lower Bound

* Lower bound for single feedback:

raify —raf;

D(azp;|la1f1)

log(t)

 Lower bound for two-level feedback:

ra fy — a5

D(az|la1) + D(B2||B1)

log(t)



Is D(aq||az) + D(B1|IB2) = D(aiB1llazB2)?

* Yes! Consider independent random variables
X, ~ Ber(a,),Y, ~ Ber(ay),X, ~ Ber(f1),Y, ~ Ber(f5;)

* Independence gives
D((Xl) Yl)”(X2) YZ)) — D(X]J XZ) + D(Yll YZ) = LHS

e Data Processing Inequality: (XY) _.m_> XY

* D((X1, YDII(X2,Y2)) = D(X,1Y1]1X,Y,) = RHS



Conclusions

* Formulated the problem of adaptive rate selection for panoramic video
streaming as a multi-armed bandit problem with two-level feedback.

 Proposed a modified Thompson Sampling algorithm efficiently leveraging the
two-level feedback information.
« Ongoing work
« Matching upper bound

* Intuitively, the larger the selected rate, the higher the successful prediction
probability and the lower the successful transmission probability, i.e.,

a, <oy << dy

7‘1<7‘2<°°°<7‘N >B>ﬁ> >ﬁ
1 2 N
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