
1

1

Some Coding Concepts
in Computer Communication

Section 9. Serial Communication

2

Define binary addition:
0 + 0 = 0;
0 + 1 = 1;
1 + 0 = 1;
1 + 1 = 0.
Exclusive-OR

Error Control Coding
N-bit Binary Vectors:
N-tuple of 0’s and 1’s
Also referred to as N-bit word
i.e. 4-bit vector or 4-bit word:
(0100), (1001), & (1101)

Define Vector addition:
(0101) + (1100) = (1001)
Bit-wise Exclusive-OR

Scalar Multiplication:
Two scalars: 0 and 1:
1*(0110) = (0110)
0*(0110) = (0000)

3

Hamming weight (w): # of nonzero
components of X = (x1, x2, … xn)

Minimum Distance:
•  the minimum of the distances

between all pairs of code C, it is
also the distance of the code.

Goal: detect “errors” (e.g., flipped bits) in transmitted
segment

Block code
a set of code words of fixed length n,
with each code word being an n-tuple
over a finite field: S, V = all n-tuples

Linear code
If S forms a subspace of V, then S is
called linear code
codeword: a word in S is called
codeword and otherwise noncodeword

Hamming distance (d): # of positions in
which the two words differ

examples:	

x=(10011), y=(01010),
w(x)=3, w(y)=2, d(x,y)=3
C= (001, 010, 100,110, 101,
011)	

distance of C is 1	

Error Control Coding

4

Theorem 1:
 It is necessary and sufficient

that the distance of a code is
at least d in order to detect
any error pattern of weight
d-1 or less

A linear code can be
represented by a matrix
G, or H:

G =

How do we design a code
that has distance d?

g0,0 g 0,1 …… g0,n-1

gk-1,0 g k-1,1 …… gk-1,n-1
…...

Where n is the code length, k is
number of information bits, and
n-k is number of parity bits

Coding Theory

5

Matrix G is called generating
matrix

Matrix H, defined as a null
space of G, is called parity
matrix

G or H uniquely defines a
linear code

codewords =

Code words of the linear code are
generated by multiplying all possible
information words to G

g0,0 g 0,1 …… g0,n-1

gk-1,0 g k-1,1 …… gk-1,n-1
…...

For u = 0……00, 0……01,…,1……1

 u *

Ik Pn-k

PT
 In-k

If G =

 then H =

Representation of Linear Code

6

1 0 ……0 p1,1 p 1,2 …… p1,n-k
0 1 ……0 p2,1 p 2,2 …… p2,n-k

0 0 ……1 pk,1 p k,2 …… pk,n-k
…... G =

p1,1 p 2,1 …… pk,1 1 0 ……0
p1,2 p 2,2 …… pk,2 0 1 ……0

P1,n-k p 2,n-k …… pk,n-k 0 0 ……1
…... H =

For any i and j, we have
(0 0..1 ……0 pi,1 p i,2 …… pi,n-k) *

* (p1,j p 2,j …… pk,j 0 0...1 ……0)T

= pi,j + pi,j = 0

Two Orthogonal Matrices

2

7

1 0 1 1 0

0 1 0 1 0
 1 1 0 1 1 G =

1 0 0 0 1

0 0 1 1 1
 0 1 0 1 0

Through
canonical
reduction

G=

PT
 In-k H =

0 1 1 1 0
1 0 1 0 1 =

U * HT = 0

Relationship Between G and H

After canonical reduction, the resulting G matrix:
First row = (11011)+(01010);
Second Row =the original third row;
Third row=(10110)+11011)+(01010).

8

How do we relate distance of a code to G?

Theorem 2: For any codeword u of weight d in a linear
code C, d columns of its H matrix are linear dependent

Theorem 3: A linear code C has distance at least d iff every
d-1 or fewer columns of its H matrix are linearly independent

recall that distance of a code is also the minimum weight.

Distance and Error Control

9

Design a 5-bit linear code that can
detect 2 bits errors

•  come up with a H matrix
with distance 3

•  derive G from H
•  generate all codewords
•  encoder and decoder circuit.

0 0 0 1 1

1 0 1 0 1
 0 1 1 0 0 H = Through

canonical
reduction

0 1 1 0 0

1 1 0 0 1
 1 1 0 1 0 H=

1 0 0 1 1
 0 1 1 1 1 G =

An Example

10

With this generating matrix, we can design simple encoder
and decoder circuits as shown here.

Encoder and Decoder Circuits
Design

D0 D1 P0 P1 P2

D0 D1

⊕ ⊕

Data bits

Transmitted code word

D0 D1 P0 P1 P2

⊕ ⊕ ⊕

OR

Error
Correct

Received word

Encoder Circuit Decoder Circuit

11

Definition: A linear code C is said to be a cyclic code if for any code word
u=(u0 , u1 , … , un-1) in C, the word u’ =(un-1 , u0 , u1 , … , un-2) obtained by a
shift of the bits to the right cyclically is also a code word in C

In cyclic code, we use polynomials to represent codeword, e.g 1101 is
represented using X3 + X2 + 1
It is the algebra of polynomials modulo xn + 1, xn = 1 mod (xn + 1)

For example, X7 + 1 can be factorized as
X7 + 1 = (X+1)(X3 + X + 1)(X3 + X2 + 1)
Any factor can be a generator of a cyclic code.

Defining CRC

12

0*g(x) = 0, 0000000
1*g(x) = X3 + X + 1 0001011
x*g(x) = X4 + X2 + X 0010110
(x+1)*g(x) = X4 + X3 + X2 + 1 0011101
X2 * g(x) = x5 + x3 + x2 0101100
(x2+1)*g(x) = x5 +x2+x+1 0100111
(x2+x)*g(x) = x5+x4+x3+x 0111010
(x2+x+1)*g(x) = x5 +x4 +1 0110001
X3 * g(x) = x6 +x4 +x3 1011000
(x3+1)*g(x) = x6 +x4 +x +1 1010011
(x3+x)*g(x) = x6 +x3+x2+x 1001110
(x3+x+1)*g(x) = x6+x2+1 1000101
(x3+x2) *g(x) = x6+x5+x4+x2 1110100
(X3+x2+1)*g(x) = x6+x5+x4+x3+x2+x+1 1111111
(x3+x2+x)*g(x) = x6+x5+x 1100010
(x3+x2+x+1)*g(x) = x6+x5+x3+1 1101001

Assume C is generated by g(x) = (X3 + X + 1), then we have

An Example

3

13

Every proper divisor, g(x), of (xn + 1) generates an (n,k) cyclic code,
where r=n-k is the order of g(x) = xr + xr-1 + …..+1

Every codeword polynomial is a multiple of g(x), since g(x) generate the code

 d(x)g(x) generates codewords that are usually nonsystematic.
To generate systematic CRC code words, we divide d(x)xr by g(x),
the remainder R(x) is added (concatenated) to the data part. i.e.
U(x) = d(x)xr + R(x)

Algorithm:
• Append r 0’s to d(x) -->k+r bits: xrd(x)
• divide g(x) into xrd(x): xrd(x)/g(x)
• subtract(add) the remainder (which is always r or fewer
bits) from xrd(x) using modulo 2
• transmit the frame.

A few important points

14

g(x) = (X3 + X2 + 1),
To generate the CRC code, we multiply d(x) by X3 :

d(x) X3

Then divide d(x) X3 by g(x) = (X3 + X2 + 1),
 add remainder to d(x) X3 to obtain the transmitted

word

An Example

15

Decoding: Rem {(T(x)+E(x))/g(x)} = Rem{E(x)/g(x)},
if no remainder===> no error!
Key, all errors that do not have g(x) as a factor can be detected.

•  If E(x)= xi: any g that has 2 or more terms will detect it

• If E(x) = xi + xj = xi (1 + xj-I) , any g that has a constant term, 1,
x is not a factor, it is sufficient to detect if 1 + xj-i can not be
divided by g.
e.g. x15 + x14 + 1 will not divide 1 + xk for k upto 32,768.

• If E(x) has odd number of bits:
no polynomial with odd number of terms has x+1 as a factor
By making x+1 a factor of g(x), we can detect all odd number
bits errors.

Which factor to chose as G?

16

Proof:
 Assume E(x) has odd # of terms and has (x+1) as a
factor.

Then we have
 E(x) = (x+1)Q(x)

 substituting x by 1 we have
 E(1) = (1+1)Q(1) = 0

But

Odd # of 1’s
 E(1) = 1 + 1 + …… + 1 = 1.

Contradiction! Proved.

Selecting g(x) for cyclic code

17

•  r check bits detect all bursty errors of length <= r

Example g(x):

CRC-12 = (x12 + x11 + x3 + x2 + x + 1)
CRC-16 = (x16 + x15 + x2 + 1)
CRC-CCITT = (x16 + x12 + x5 + 1)

if k <=r, (xk-1+…... +1) /g(x) is never divisible ie remainder is
 never 0.

Assume xj (xk-1+…... +1) 0< k <=r, j gives
position

 if g0 = 1, xj is not a factor of g(x)

Selecting g(x) for cyclic code

