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Some Coding Concepts 
in Computer Communication 

Section 9. Serial Communication 

2 

Define binary addition: 
0 + 0 = 0; 
0 + 1 = 1; 
1 + 0 = 1; 
1 + 1 = 0. 
Exclusive-OR  

Error Control Coding  
N-bit Binary Vectors: 
N-tuple of 0’s and 1’s 
Also referred to as N-bit word  
i.e. 4-bit vector or 4-bit word: 
(0100),  (1001),  & (1101) 

Define Vector addition: 
(0101) + (1100) = (1001) 
Bit-wise Exclusive-OR  

Scalar Multiplication: 
Two scalars: 0 and 1: 
1*(0110)  = (0110) 
0*(0110)  = (0000) 

3 

Hamming weight (w): # of nonzero 
components of X = (x1, x2, … xn) 

Minimum Distance: 
•  the minimum of the distances 

between all pairs of code C, it is 
also the distance of the code. 

Goal: detect “errors” (e.g., flipped bits) in transmitted 
segment 

Block code 
a set of code words of fixed length n, 
with each code word being an n-tuple 
over a finite field: S, V = all n-tuples 

Linear code 
If S forms a subspace of V, then S is 
called linear code 
codeword: a word in S is called 
codeword and otherwise noncodeword 

Hamming distance (d): # of positions in 
which the two words differ 

examples:	

x=(10011), y=(01010),  
w(x)=3, w(y)=2, d(x,y)=3 
C= (001, 010, 100,110, 101, 
011)	

distance of C is 1	


Error Control Coding 
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Theorem 1: 
 It is necessary and sufficient 

that the distance of a code is 
at least d in order to detect 
any error pattern of weight 
d-1 or less 

A linear code can be 
represented by a matrix 
G, or H: 

 
G =    

How do we design a code 
that has distance d? 

g0,0  g  0,1     ……    g0,n-1 

gk-1,0  g  k-1,1 …… gk-1,n-1 
…... 

Where n is the code length, k is 
number of information bits, and  
n-k is number of parity bits 

Coding Theory 
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Matrix G is called generating 
matrix 

Matrix H, defined as a null 
space of G, is called parity 
matrix 

G or H uniquely defines a 
linear code 

codewords = 

Code words of the linear code are 
generated by multiplying all possible 
information words to G 

g0,0  g  0,1     ……    g0,n-1 

gk-1,0  g  k-1,1 …… gk-1,n-1 
…... 

For u = 0……00, 0……01,…,1……1 

 u * 

Ik   Pn-k 

PT
   In-k 

If G = 

 then H = 

Representation of Linear Code 
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1 0 ……0 p1,1  p  1,2     ……    p1,n-k 
0 1 ……0 p2,1  p  2,2     ……    p2,n-k 

0 0 ……1 pk,1  p k,2     ……    pk,n-k 
…... G = 

p1,1  p  2,1     ……    pk,1    1 0 ……0  
p1,2  p  2,2     ……    pk,2    0 1 ……0  

P1,n-k  p 2,n-k   …… pk,n-k  0 0 ……1  
…... H = 

For any i and j, we have 
( 0 0..1 ……0 pi,1  p  i,2     ……    pi,n-k ) * 

* ( p1,j  p  2,j     ……    pk,j    0 0...1 ……0)T  

=  pi,j  + pi,j = 0 

Two Orthogonal Matrices 
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1 0 1 1 0 

0 1 0 1 0 
         1 1 0 1 1  G = 

1 0 0 0 1 

0 0 1 1 1 
         0 1 0 1 0 

Through 
canonical 
reduction 

G= 

PT
   In-k H = 

0 1 1 1 0 
1 0 1 0 1 = 

U * HT = 0 

Relationship Between G and H 

After canonical reduction, the resulting G matrix: 
First row = (11011)+(01010); 
Second Row =the original third row; 
Third row=(10110)+11011)+(01010). 
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How do we relate distance of a code to G? 

Theorem 2: For any codeword u of weight d in a linear  
code C, d columns of its H matrix are linear dependent 

Theorem 3: A linear code C has distance at least d iff every 
d-1 or fewer columns of its H matrix are linearly independent 
 
recall that distance of a code is also the minimum weight. 

Distance and Error Control 
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Design a 5-bit linear code that can 
detect 2 bits errors 

•  come up with a H matrix 
with distance 3 

•  derive G from H 
•  generate all codewords 
•  encoder and decoder circuit. 

0 0 0 1 1 

1 0 1 0 1 
         0 1 1 0 0  H = Through 

canonical 
reduction 

0 1 1 0 0 

1 1 0 0 1 
         1 1 0 1 0 H= 

1 0 0 1 1 
         0 1 1 1 1 G = 

An Example 
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With this generating matrix, we can design simple encoder 
and decoder circuits as shown here. 

Encoder and Decoder Circuits 
Design 

  

   

D0      D1     P0    P1     P2  

D0     D1  

⊕ ⊕

Data bits 

Transmitted code word 

D0      D1     P0    P1     P2  

⊕ ⊕ ⊕

OR 

Error 
Correct 

Received word 

Encoder Circuit Decoder Circuit 
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Definition: A linear code C is said to be a cyclic code if for any code word  
u=(u0 , u1 , … , un-1) in C, the word u’ =(un-1 , u0  , u1 , … , un-2)  obtained by a  
shift of the bits to the right cyclically is also a code word in C 

In cyclic code, we use polynomials to represent codeword, e.g 1101 is 
represented using X3 + X2 + 1 
It is the algebra of polynomials modulo xn + 1, xn = 1 mod ( xn + 1) 

For example, X7 + 1 can be factorized as  
X7 + 1 = (X+1)(X3  + X + 1)( X3 + X2 + 1)  
Any factor can be a generator of a cyclic code.  

Defining CRC 
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0*g(x) = 0,     0000000 
1*g(x) = X3 + X + 1     0001011 
x*g(x) = X4 + X2 + X     0010110 
(x+1)*g(x) = X4 + X3 + X2 + 1    0011101 
X2 * g(x) = x5 + x3 + x2    0101100 
(x2+1)*g(x) = x5 +x2+x+1    0100111 
(x2+x)*g(x) = x5+x4+x3+x    0111010 
(x2+x+1)*g(x) = x5 +x4 +1    0110001 
X3 * g(x) = x6 +x4 +x3    1011000 
(x3+1)*g(x) = x6 +x4  +x +1    1010011 
(x3+x)*g(x) = x6 +x3+x2+x    1001110 
(x3+x+1)*g(x) = x6+x2+1    1000101 
(x3+x2) *g(x) = x6+x5+x4+x2    1110100 
(X3+x2+1)*g(x) = x6+x5+x4+x3+x2+x+1   1111111 
(x3+x2+x)*g(x) = x6+x5+x    1100010 
(x3+x2+x+1)*g(x) = x6+x5+x3+1    1101001 

Assume C is generated by g(x) = ( X3 + X + 1), then we have 

An Example 
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Every proper divisor, g(x), of ( xn + 1) generates an (n,k) cyclic code, 
where r=n-k is the order of g(x) = xr + xr-1 + …..+1 

Every codeword polynomial is a multiple of g(x), since g(x) generate the code 

 d(x)g(x) generates codewords that are usually nonsystematic. 
To generate systematic CRC code words, we divide d(x)xr by g(x), 
the remainder R(x) is added (concatenated) to the data part. i.e.    
U(x) = d(x)xr + R(x) 

Algorithm: 
• Append r 0’s to d(x) -->k+r bits: xrd(x) 
• divide g(x) into xrd(x): xrd(x)/g(x) 
• subtract(add) the remainder (which is always r or fewer 
bits) from xrd(x) using modulo 2 
• transmit the frame. 

A few important points 
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g(x) = ( X3 + X2 + 1), 
To generate the CRC code, we multiply d(x) by  X3 : 

d(x) X3 

Then divide d(x) X3 by g(x) = ( X3 + X2 + 1),  
 add remainder to d(x) X3 to obtain the transmitted 

word 

An Example 
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Decoding: Rem {(T(x)+E(x))/g(x)} = Rem{E(x)/g(x)},  
if no remainder===> no error! 
Key, all errors that do not have g(x) as a factor can be detected. 

•  If E(x)= xi: any g that has 2 or more terms will detect it 

  

• If E(x) = xi + xj = xi (1 + xj-I) , any g that has a constant term, 1,  
x is not a factor, it is sufficient to detect if 1 + xj-i  can not be  
divided by g. 
e.g. x15 + x14 + 1 will not divide 1 + xk for k upto 32,768. 

• If E(x) has odd number of bits: 
no polynomial with odd number of terms has x+1 as a factor 
By making x+1 a factor of g(x), we can detect all odd number 
bits errors. 

Which factor to chose as G? 
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Proof: 
 Assume E(x) has odd # of terms and has (x+1) as a 
factor. 

Then we have 
  E(x) = (x+1)Q(x) 

 substituting x by 1 we have 
  E(1) = (1+1)Q(1) = 0 

But 
 

Odd # of 1’s 
 E(1) = 1 + 1 + …… + 1 = 1. 

Contradiction! Proved. 
 

Selecting g(x) for cyclic code 
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•   r check bits detect all bursty errors of length <= r 

 
Example g(x): 
 
CRC-12 = (x12 + x11 + x3 + x2 + x + 1)  
CRC-16 = (x16 + x15  + x2  + 1)  
CRC-CCITT = (x16 + x12 + x5 + 1)  

if k <=r, (xk-1+…... +1) /g(x) is never divisible ie remainder is 
     never 0. 

Assume xj (xk-1+…... +1) 0< k <=r, j gives 
position 

  if g0 = 1, xj  is not a factor of g(x) 

Selecting g(x) for cyclic code 


